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Infroduction

® \We need accurate modeling to match synthetic and observed data
® Anisotropy significantly affects wave propagation
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Infroduction

Two main approaches to anisotropic modeling:

® Pseudo-acoustic TTI wave equation

» e.g. Zhang et al. (2011), CGG

» coupled 2 x 2 system of equations with pseudo pressure field and
auxiliary wave field

® Pure quasi-P wave TT| wave equation

p e.g. Xu et al. (2014), Statoil or Chu et al. (2011), Conoco Philips
» only one wavefield, free of S-wave artifacts




Isofropic modeling in the time-domain

Acoustic, isotropic wave equation in continuous form

m Vu = g

Time derivative: second order leap-frog scheme

0 u u*tl — 2uf + uk-!
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Isofropic modeling in the time-domain

1D Spatial derivative: FD schemes of various orders (2,4,6)
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Isofropic modeling in the time-domain

Construction of 3D 2nd derivative operators:

Lx — Dxx 0 Iyy 02 Izz

3D Laplacian is sum of 1D Laplacians

L=L,+L,+L,

Advantages of operator in matrix form

® boundary conditions, FD order etc. can easily be modified without
changing anything in time loop itself




Forward modeling

Fully discretized wave equation

Aluk—l—l _|‘A2uk _I_A3uk—1 _ qk—l

with:
1841
A, = di
1 lag(Atz)
1841
As = di
3 lag(Atz)

1m
JANR: )
qk : Source wave field at time step k

A, = —L — 2diag(




Forward modeling

Corresponds to one large system of equations Au = q

A4 0 0 0 . )

. u q

Az Al 0 . 112 q2

3 3

As Ay A4 O
0

i i I 0 :n,t :rzt

0 0 Asg As A4 . 4

that we solve in a time-stepping manner

U.k_l_l _ Al_l(—Azuk o A3uk—1 4 qk—l)
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Back propagation

For back propagated (adjoint) wavefields solve: A'v = P, §d

A" A AT 0 o0 )

\% P od’
0 : v? P};édQ
v P, 6d”

AT AT ARt

- - : :
N AR AV S

Solve backwards intime k£ = nt, ..., 1

Vk—l _ A]__T(—AzTVk o A3Tvk—|—1 1 PrlTédk‘—l)
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Gradient for (non-) linear inversion

How does a change in the model om affect the modeled data?

e,

om

\) aA(m)u+A(m) Ou 0

om

(A(m)u — q) 4

om

= Jacobian and its adjoint
7_ Ou _A(m)_l(afl(m) u)

om

(Haber, 2013)
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Gradient for (non-) linear inversion

FWI least squares objective function

O(m) == » ||di —PrAm) 'q|,  ai:im source

The gradient of the FWI objective is given by
T o 8 T
J'od = — Z ( Alm) ui) A(m)~TP," 6d;

, om
1=1

Temporal derivative of wave field

d; : 745, observed shot record

P, : Restriction operator

.

Solution of adjoint wave equation
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Gradient for (non-) linear inversion

Calculation of FWI gradient (RTM image)
e Model the wavefields u forall timesteps £ = 1, ..., nt

e Model the adjoint wavefields v inreverseorder kK = nt, ..., 1

and at each time step multiply ,

k—1 k+1 ., k -
v Tand v with A2 and v~ with N

(corresponds to applying a time derivative operator D)

e Correlate wavefields and update gradient
g=g—(u") diag(Dv)

e Repeat for all sources and sum




m
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0°U (ky, k., t)

Extension to anisofropy

2D anisotropic wave equation with PS methods

Ot?

- ks . o
= {ki + kZ+(20sin” 0 cos” 0 + 2€ cos™ 0) EEwTR k.: spatial wavenumber in x-direction
0 ) x 4 Z €, 0,0: Thomsen parameters, tilt angle
(20 80" cos™ 6 + 2esin”6) k2 + k2 I Uk, k., t): wavefield in t-k domain
k2 k2
(—6 sin® 260 + 3esin? 20 + 26 cos? 20) 22 5:_ 22 |
kok,
(6 sin 40 — 4e sin 260 cos” ) 2 j_ 2 |
ko ko
(—6 sin 40 — 4e sin 260 sin” ) B2 7{2} U(ks, k., 1)

(Zhang et al., 2005)
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Extension to anisofropy

Discretize with 2nd order leap frog scheme in time and rewrite as

Im

At?

diag( )(u"le —2u” + u”_1> — Lu" =q"*!

=P exactly the same scheme as for isotropic modeling, only that
L = real (F*diag(kam)F)

F': 2D Fourier matrix,
k... : wavenumbers + anisotropy parameters
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Extension to anisofropy

Extension to anisotropic modeling:
e Just Laplacian changes = only change A o in existing workflow
e Backpropagation is done in the same way as before

Jacobian and adjoint for anisotropy:
e Only take partial derivative with respect to squared slowness m

e 1M does not appear in Laplacian = expressions for J, J Y do
not change either!

o J passes adjoint tests with and without anisotropy

160d” Jom — 6d” J* od|| < e
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Extension to anisofropy

One code for both isotropic and anisotropic modeling and
Inversion

e both modes use the same functions and operators
e only Laplacian changes for anisotropy
® easy to use via function overloading

data = Gen_data(mO, params, q) ~,

data = Gen_data(mO, params, q, ani) isotropic modeling with

/ FD Laplacian

anisotropic modeling
with PS Laplacian
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Extension to anisofropy

Function to automatically determine optimal grid spacing and
time step

mO, params| = Setup_CFL(m0, params) =p> Af =

mO, params, ani| = Setup_CFL(mO, params, ani) =p> Al =

Higher time step restrictions for PS method, but less grid points
per wave length possible (G=5 instead of 10)

Umin
h —

G- f




_ Synthetic example: FWI on BG model
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Generate data with anisotropic modeling
e Invert with isotropic and anisotropic modeling kernel
e Influence of anisotropy on data misfit, final velocity model?

Setup:
e 501 receivers (10 m apart), 99 sources (50 m apart)
e 2.4 s recording time (601 samples)
e Data generated with 15 Hz peak frequency
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FWI BG model

True velocity model and initial model
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FWI BG model

Result with anisotropy
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_ FWIBG model
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Data Misfit
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~ RTMfield data example
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Reverse time migration of BP Machar data set

Marine data set from North Sea

18.3 km x 6 km Model

330 shot records with 8 seconds recording time
Streamer with 1080 receivers

Processing parameters

Direct wave removed

10 m grid spacing (602 x 1832 grid points)

Migrate with ~30 Hz peak frequency

Velocity model and anisotropy parameters provided by BP
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Velocity model
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Epsilon model
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_ RTMfield data example
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Tilt angle
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~ RTMfield data example

Anisotropic modeling
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~ RTMfield data example

Anisotropic modeling
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RTM field data example
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Image with depth scaling only
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RTM field data example
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Alternative derivative matrices

Main drawback of current implementation:
e Each time steps requires ;. X n, forward + inverse FFTs
¢ becomes even more problematic for 3D

Alternatives for highly accurate derivative matrices (time-domain)?
e EPS method (Sandberg et al., 2011)

e |ow-rank FD and low-rank FFD (Song et al., 2013)
° 7




__EPS method
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Eigen-decomposition Pseudo-Spectral (EPS) method (Sandberg et
al., 2011)

e Derivative operator as integral operator
b
Li@) = | K.y

e where K (x,vy) isaKernel function of the form

K(a,y) =3 At (@)om(y)

{Um }o°_ 1, {vm }SO_1 : Set of orthonormal functions



__EPS method
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Numerical representation by
¢ truncating the sum after V. terms

e replacing the integral by quadratures with nodes {6, }4_, and

weights {wg }i—, (Gaussian quadratures or PSWFs)

LFO) = At (80) S wiwn (B F(6) k!

With discretized operator matrix

N
Lit =  Amtm (0r)wivm (6))
m=1




45

Rank completion

® Operator hasrank N_. where N, < N
® Truncation controls the operator norm, but:
e Truncated functions absorb high frequency oscillations

e Add “tail” to operator such that L; has full rank

N, N
Lit =) AmUm(0k)wivm (6;) > A (0k)witm (6)
m=1 m=N.+1

where {tm (0;)},,_n. 11 areorthogonalized vectors
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Second derivative operator

Second derivative operator on interval [-1,1] has SVD

(" (G )},

m=1

which leads to Kernel function

K(z,y) = i f: m~ sin (W;W (x + 1)) sin (W;W (y + 1))




L

47

Second derivative operator

Second derivative operator with Dirichlet boundary conditions

T ( i 2 (%(ek—Fl))wl sin (%(elﬂ)% g: M (01,15 (6))

m=1 m=N.+1

In practice choose V. such that for functions with bandlimit 2¢

N
< cC
5

)



Derivative of

— sin (47 (x + 1

Accuracy (1st derivative)

Error of first derivative for N=128

FD 8th order (error = 4.36e-08)
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Accuracy (1st derivative

Error of first derivative for N=128

FD 8th order (error = 3.19e-05)
20 | | | | | |

Derivative of

f(CE) _ e—lOOx2
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Accuracy (1st derivative)

Accuracy as function of band limit

First derivative of sin(mmt/2(x+1)) (N=128)
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2D Wavefield
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2D derivative operators:
Lx — Dxx 0 Izz
L=Ls+L,

Model 2D wave equation =P
(non regular grid)
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EPS method

EPS derivative operator:

® s adense matrix

e requires special algorithms to be applied efficiently (e.g. partitioned
low rank representation)

e small norm = allows larger time steps
e accuracy in range of machine precision

We need to test whether this operator is applicable for large scale
problems!




53

Low-rank FD

Wave extrapolation in time (Song, Fomel and Ying ,2013):

p(x,t+ At) + p(x,t — At) = / p(k, t) cos(|k|v(x)At)e " *dk

with the mixed domain matrix
W(x,k) = cos(|k|v(x)At)

Low rank representation of W (x, k)

* as spectral method with cost O(NN N, log N,) (N small integer)

e as FD method with cost O(LN,) (L related to order of FD
scheme/number of FD coefficients)
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Low-rank FD

High accuracy of low-rank FD compared to normal FD
e Error of 1D extrapolator in medium with linearly increasing velocity

0

—0.1002

Error
—0.904

1 LFD: solid line
FD: dotted line

0 0.01 0.02 0.03
Wavenumber (1/m)

—0.006

Image from Song et al., 2013
e Extension to TTI media available
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Conclusion
Time-domain modeling and inversion code with matrix based
operators:

® simple extension to anisotropy (2D TTI with PS method)

® Exact Jacobians and adjoint Jacobians

® Run existing codes for RTM, LSRTM, FWI in anisotropic mode by
passing additional argument with Thomsen parameters




_ Outlook
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Current problems:

® PS method is computationally expensive (multi-dimensional FFTs
at every time step)

® Anisotropic mode is twice as slow as isotropic mode
e Stability and artifacts are an issue for strong abrupt changes in ¢, 0, ¢

® |nvestigation in alternative derivative operator (e.g. EPS method)
e |SRTM, FWI on field data sets
® |nvert for anisotropy parameters
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