Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Time-lapse FWI with distributed Compressive Sensing Felix Oghenekohwo & Felix J. Herrmann

Time-lapse FWI with distributed Compressive Sensing Felix Oghenekohwo & Felix J. Herrmann contributions from Rajiv Kumar and Ernie Esser

Objective

New approach to FWI of time-lapse seismic data

Dealing with large acquisition gaps in data

Improved time-lapse inversion results

Full waveform inversion

Problem

- **d** :
- ${\cal F}$:
- α :
- **m**:

observed data forward modelling kernel source wavelet model parameters

Assume known source wavelet

Full waveform inversion

Problem

- **d** : ${\cal F}$:
- **m**:

observed data forward modelling kernel model parameters

Standard FWI

- Initialization, iteration k = 0: Compute gradient :
- Update model- iteration @ k+1 :

$\underset{\mathbf{m}}{\operatorname{minimize}} \frac{1}{2} \|\mathbf{d} - \boldsymbol{\mathcal{F}}[\mathbf{m}]\|_2^2$

 \mathbf{m}_k $\delta \mathbf{m}$ $\mathbf{m}_{k+1} = \mathbf{m}_k + \delta \mathbf{m}$

<u>Xiang Li, Aleksandr Y. Aravkin, Tristan van Leeuwen, and Felix J. Herrmann,</u> "Fast randomized full-waveform inversion with compressive sensing", *Geophysics*, vol. 77, p. A13-A17, 2012.

Linearization + sparsity on update

Modified Gauss-Newton

$$\tilde{\mathbf{x}}^k = \arg\min_{\mathbf{x}} \frac{1}{2} \| \mathbf{d} - \mathcal{F}(\mathbf{m}^k) - \mathbf{f}(\mathbf{m}^k) - \mathbf{f}(\mathbf{m}^$$

model update: $\mathbf{m}^{k+1} = \mathbf{m}^k + \mathbf{C}^T \mathbf{\tilde{x}}^k$

$\mathbf{F}(\mathbf{m}^k) \mathbf{C}^T \mathbf{x} \|_2^2 \quad \text{s.t.} \quad \|\mathbf{x}\|_1 < \tau$

<u>Xiang Li, Aleksandr Y. Aravkin, Tristan van Leeuwen, and Felix J. Herrmann,</u> "Fast randomized full-waveform inversion with compressive sensing", *Geophysics*, vol. 77, p. A13-A17, 2012.

Method

- (1) Select frequency batch
- (2) Initialization, iteration k = 0
- (3) Draw subset (randomly select shots) of data
- (4) Compute gradient via sparsity promotion
- (5) Update model- iteration @ k+1
- (6) Repeat (3)
- (7) Select next frequency batch
- (8) Repeat (3) to (5)
- (9) Repeat until last frequency batch is reached

Timelapse FWI

Given:

- Baseline data :
- A starting model from \mathbf{d}_1 :
 - Monitor data :

Objective:

- Inversion for baseline model :
- Inversion for monitor model :
- Estimate/interprete timelapse model :

 $egin{array}{c} \mathbf{d}_1 \ \mathbf{m}_0 \ \mathbf{d}_2 \end{array}$

 \mathbf{m}_1 \mathbf{m}_2 $d\mathbf{m} = \mathbf{m}_2 - \mathbf{m}_1$

Timelapse FWI approaches

Timelapse FWI approaches

Parallel difference

Start with similar starting model, given observed data : Invert for baseline and monitor separately :

Sequential difference

- Start with baseline data and initial model: $\mathbf{m}_0, \mathbf{d}_1$ Invert for baseline : \mathbf{m}_1
- Inversion of \mathbf{d}_2 using \mathbf{m}_1 as starting model : \mathbf{m}_2 Estimate timelapse model : $d\mathbf{m} = \mathbf{m}_2 - \mathbf{m}_1$

- $\mathbf{m}_0, \mathbf{d}_1, \mathbf{d}_2$
- $\mathbf{m}_1, \mathbf{m}_2$
- Estimate timelapse model : $d\mathbf{m} = \mathbf{m}_2 \mathbf{m}_1$

Watanabe et al., 2004; Denli and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013)

Timelapse FWI approaches Double difference or Differential FWI minimize $\Delta \mathbf{d} := (\mathbf{d}_2 - \mathbf{d}_1) - (\mathcal{F}[\mathbf{m}_2] - \mathcal{F}[\mathbf{m}_1])$

Start with baseline data and initial model: Invert for baseline :

Construct composite data :

Replace \mathbf{d}_2 with \mathbf{d}_2 obtain :

Estimate timelapse model :

- $\mathbf{m}_0, \mathbf{d}_1$ \mathbf{m}_1 $\widetilde{\mathbf{d}_2} = \mathbf{d}_2 - \mathbf{d}_1 + \boldsymbol{\mathcal{F}}[\mathbf{m}_1]$ \mathbf{m}_2 $d\mathbf{m} = \widetilde{\mathbf{m}_2} - \mathbf{m}_1$

Maharramov, M., & Biondi, B. (2015, June)

Timelapse joint FWI approaches Robust joint FWI with TV regularization

$$\begin{split} \mathbf{M}_{2} \mathcal{F}[\mathbf{m}_{2}] - \mathbf{d}_{2} \|_{2}^{2} + & (1) \\ \mathbf{M}_{2} \mathbf{d}_{2} - \mathbf{M}_{1} \mathbf{d}_{1}) \|_{2}^{2} + & (2) \\ (\mathbf{m}_{1} - \mathbf{m}_{1}^{prior}) \|_{1} + & (3) \\ \mathbf{m}_{2} - \mathbf{m}_{2}^{prior}) \|_{1} + & (4) \\ \mathbf{m}_{1} - \Delta \mathbf{m}^{prior}) \|_{1} + & (5) \end{split}$$

Our separate versus joint inversion approach

Full waveform inversion in time-lapse

Independent inversion for i = 1, 2

Objective: Invert for baseline, monitor; difference = baseline-monitor

 $\mathbf{m}_{i}^{k+1} = \mathbf{m}_{i}^{k} + \mathbf{C}^{T} \mathbf{\tilde{x}}_{i}^{k}$

Dror Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Richard G. Baraniuk. An Information-Theoretic Approach to Distributed Compressed Sensing (2005).

Distributed compressive sensing -joint recovery model (JRM)

$\tilde{\mathbf{z}} = \arg\min_{\mathbf{z}} \|\mathbf{z}\|_1$ s.t. $\mathbf{b} = \mathbf{A}\mathbf{z}$

- Decompose vintage into common and innovations
- Timelapse vintages share a lot of common information
- DCS exploits the common or shared information
- Invert for common component and innovations

Previous applications

Missing trace interpolation of time-lapse data NMO Stacking of prestack timelapse data Recovery of time-lapse data from time-jittered marine acquisition FWI of time-lapse data with different acquisition geometry Sparsity promoting least-squares migration of time-lapse data

Joint inversion with distributed compressed sensing

$$\begin{split} \tilde{\mathbf{z}}_k &= \arg\min_{\mathbf{z}_k} \frac{1}{2} \| \mathbf{b}_k - \mathbf{A}_k \mathbf{z}_k \| \\ \mathbf{b}_k &= \begin{bmatrix} \mathbf{d}_1^k - \mathcal{F}(\mathbf{m}_1^k) \\ \mathbf{d}_2^k - \mathcal{F}(\mathbf{m}_2^k) \end{bmatrix} \\ \mathbf{A}_k &= \begin{bmatrix} \nabla \mathcal{F}(\mathbf{m}_1^k) \mathbf{C}^T & \nabla \mathcal{F} \\ \nabla \mathcal{F}(\mathbf{m}_2^k) \mathbf{C}^T \end{bmatrix} \\ \mathbf{z}_k &= \begin{bmatrix} \mathbf{z}_0^k \\ \mathbf{z}_1^k \\ \mathbf{z}_2^k \end{bmatrix} \end{split}$$

 $\mathbf{m}_i^{k+1} = \mathbf{m}_i^k + \mathbf{C}^T (\mathbf{\tilde{z}}_0^k + \mathbf{\tilde{z}}_i^k)$

 $\|_{2}^{2}$ s.t. $\|\mathbf{z}_{k}\|_{1} < \tau^{k}$

$\begin{bmatrix} \mathbf{r}(\mathbf{m}_1^k) \mathbf{C}^T & \mathbf{0} \\ \mathbf{0} & \nabla \mathcal{F}(\mathbf{m}_2^k) \mathbf{C}^T \end{bmatrix}$

Application

Baseline **BG Compass model**

Baseline velocity model Depth (m) 0001 Distance (m)

Monitor BG Compass model

Distance (m)

Timelapse

Starting model

24

Baseline inversion

Modeling parameters

- 113 jittered shots, nominal sampling of 50m
- Co-located sources and receivers
- 80 frequencies from 3 to 22.5Hz

Modified Gauss-Newton

- Assume *good* background velocity model
- Started inversion at 3Hz
- 8 frequencies per band
- 10 Gauss-Newton subproblems per band
- Approximately 10 iterations per subproblem

- Baseline : use few randomly selected shots, with renewal

Monitor inversion

Modeling parameters

- 113 jittered shots, nominal sampling of 50m
- Co-located sources and receivers
- 80 frequencies from 3 to 22.5Hz

Modified Gauss-Newton

- Assume *good* background velocity model (same as baseline starting model)
- Monitor : use few randomly selected shots, with renewal
- Started inversion at 3Hz
- 8 frequencies per band
- 10 Gauss-Newton subproblems per band
- Approximately 10 iterations per subproblem

Recap

Baseline and monitor acquisition are different in source/receiver positions

Same depth for sources/receivers in the baseline and monitor

Same starting model used for baseline and monitor inversions

Equal number of iterations for independent inversions for baseline/ monitor, and the joint inversion

Independent inversion

Velocity (m/s)

Velocity (m/s)

locity (m/s)

Independent inversion

Joint inversion

Model error

33

Distance (m)

Observation

the quality of the time-lapse difference

Artifacts due to acquisition difference are attenuated with the joint inversion

Better image below and above the gas cloud

Differences in acquisition geometry (source/receiver locations) impact

More realistic scenario

Monitor inversion - with acquisition gap

Modeling parameters

sources outside the gap

- Presence of acquisition gap, nominal sampling of 50m for

Monitor inversion - with acquisition gap

Modeling parameters

- sources outside the gap
- Fewer sources/receivers relative to baseline - Co-located sources and receivers - 80 frequencies from 3 to 22.5Hz

Modified Gauss-Newton

- Assume *good* background velocity model (same as baseline starting model)
- Started inversion at 3Hz, 8 frequencies per band
- *Monitor* : use few randomly selected shots, with renewal - 10 Gauss-Newton subproblems per band
- Approximately 10 iterations per subproblem

Acquisition gap of 500m

True monitor

-with 500m gap

Distance (m)

Independent inversion

True monitor

-with 500m gap

Joint inversion

Model error

True timelapse

Independent inversion

True timelapse

Joint inversion

Acquisition gap of 1000m

True monitor

-with 1000m gap

Distance (m)

Independent inversion

True monitor

-with 1000m gap

Joint inversion

Model error

True timelapse

Independent inversion

True timelapse

Joint inversion

Acquisition gap of 1500m

True monitor

-with 1500m gap

Distance (m)

Independent inversion

True monitor

-with 1500m gap

Joint inversion

Model error

True timelapse

Distance (m)

Independent inversion

True timelapse

Distance (m)

Joint inversion

Independent inversion

Joint inversion

250 200 150 100 50 -50 -100 -150 -200 -250

250 200 150

Velocity (m/s)

-250

Conclusions

Independent FWI on time-lapse data is more prone to errors in the time-lapse difference.

Joint inversion with distributed compressed sensing is a more preferable approach, and gives better time-lapse models

with the *joint recovery model*

"The key is in exploiting the shared information".

- Larger acquisition gaps adversely affect the time-lapse difference.
- Significant attenuation of artifacts in time-lapse difference model

Acknowledgements

Thank you for your attention !!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada via the Collaborative Research and Development Grant DNOISEII (375142--08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, ION, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions, Total SA, and Woodside.

