Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Software and workflows at SLIM/SINBAD

Tim Lin, Brazil IIP FWI Workshop

University of British Columbia

currently, we program in MATLAB, but our abstraction for distributed computation is based on

Parallel Matlab (PCT) pSPOT

"Parallel Matlab"

Officially another "toolbox" on top of Matlab, called "Parallel Computing Toolbox" or PCT

Two components:

- The "toolbox" itself, which provides the parallelization code and can spawn local workers
- The "Distributed Compute Server" (MDCS) which allows spawning workers on external nodes in a cluster
 - can bring own scheduler, i.e., SLIM uses Torque, SENAI uses Slurm

Matlab PCT operation

Always assumes a "master" supervisor for a pool of workers

Each worker (and master) are independent, complete Matlab processes, and communicate via a MPI-based backend

Workers form a "pool" that can be provisioned and released interactively from the command line

Local workers free, individual licensing price for remote workers

Distributed arrays

Emulates a normal numeric array

- by default distributed evenly across the last dimension
- APIs to change underlying distribution
- can be constructed in many ways... from simple to complex
- easy way to learn about shared-memory/NUMA type architecture

Killer Feature: overloading of many Matlab functions on local numeric arrays to distributed arrays

SPOT/pSPOT built on distributed array

A way to encapsulate kernel computations of linear operations into something that "looks like a matrix"

```
F = opDFT(512)

x = randn(512,1);

xf = F * x;

x2 = F' * xf;
```

Inherently express the notion of multilinear transformations on tensors into Kronecker products

```
FK = opKron(opDFT(300), opDFT(512))
x = randn(512,300);
x_fk = FK * x(:);
x2 = FK' * x_fk;
```


SPOT/pSPOT built on distributed array

Extends to distributed paradigm (implicitly performs transpose)

```
F = opDFT(1024);
F2D = opKron(F,F);
F4D = oppKron2Lo(F2D,F2D);
F5D = oppKron2Lo(F2D,opKron(F,F,F));

x = distributed.randn(1024*1024*1024,1024*1024);
xf = F5D * x(:);
```


Non-separable example

Frequency-dependent filtering

```
A = oppDistFun(f,@filter)
```

is (distributed) array of frequencies

@filter(x,f) performs filter on x based on frequency f

Slice-wise matrix-matrix multiply

```
A = oppDistFun(MAT,@matmult)
```

is 3D array distributed over the "slice" dim @matmult(x,mat) performs mat-mult between x and mat

SLIM software releases

Organizational overview

Software versioned and managed using Git

Internal in-development code lives on **private Git-Lab** server *Public code* (software release, SPOT/pSPOT, etc) lives on **GitHub**

A new software organization for 3D FWI Curt Da Silva

University of British Columbia

modularizes relevant subsystems

- helmholtz discretization, linear solves, computing gradients, hessians, etc.
- software hierarchy manages complexity
- east to test individual modules + ensure correctness/efficiency
- easy to extend
- easy to parallelize
- lower level performance improvements (linear solves, etc.) propagate to entire framework

Software hierarchy manages complexity

- human brains have very limited working memory
- if a particular part of a program only has one function, people using/debugging it only have to think about that one function
- if software is easier to reason about -> it's easier to work with, easier to test

Software hierarchy manages complexity

- we don't have to sacrifice performance
 - lowest level operations implemented in C w/multithreading
- hiding irrelevant details at each level
 - higher level functions don't have any idea about C/fortran/that gross stuff

Anything that we do that isn't solving PDEs is essentially irrelevant, computation time-wise

- advantageous, for designing our software, because any overhead introduced is negligible compared to solving PDEs
- improvements in solving PDEs quickly propagate to the whole FWI framework

3D FWI

Our problem:

$$\min_{m} \sum_{s,\omega} \|P_r u_{s,\omega}(m) - D_{s,\omega}\|_2^2$$

such that
$$H_{\omega}(m)u_{s,\omega}(m) = q_{s,\omega}$$

- we have *separability* over sources/frequencies
 - objective, gradient, hessian, GN hessian, etc.
- informs our later design decisions

Lowest level: opBandStorage

- SPOT operator, stores necessary information for Helmholtz multiplications, wavefield solves, preconditioners
- Writing

$$U = H \setminus Q_i;$$

calls the specified solver with the appropriate preconditioner, tolerance, parameters, etc.

opBandStorage

- agnostic to its entries
 - 7 pt, 27 pt stencils, all treated in the same manner
 - acoustic, constant density kernel currently
 - easy to integrate anisotropy, varying density in to FWI framework
- stores minimal amount of information for specific applications
 - e.g., if no adjoint multiplications/divisions are needed, adjoint coefficients are not stored

opBandStorage

- sweeping Kaczmarz preconditioner (CRMN)
 - (multithreaded) sweeps implemented in C
- matrix-vector products implemented in C (also multithreaded)
- as far as iterative solvers are concerned, the helmholtz operator is just another matrix (SPOT paradigm)

opBandStorage (Helmholtz)

Modeling matrix : multiplication/division

PDE-related quantities
Serial version

Modeling matrix : multiplication/division

PDEfunc3D

- computes various quantities (objective + gradient, migration/ demigration, gauss-newton hessian, hessian) based on solutions of the helmholtz equation
- serial code that calls (multi-threaded over number of RHS implicitly)

$$U = H \setminus Q;$$

• function that is tested + satisfies Taylor error estimates, adjoint tests, etc.

PDEfunc3D receives a list of (src x, src y, freq) indices

- for each frequency f, gets the $(\operatorname{src} x, \operatorname{src} y)$ indices corresponding to f
- each Helmholtz matrix can solve $n_{\rm compsrc}$ sources efficiently in parallel via multi-threading (user defined)
- the source indices are chunked up in to batches of size $n_{
 m compsrc}$, each batch is processed sequentially

PDEfunc3D - at this level in the hierarchy

- we care about
 - arranging the 'pieces' of wavefields in the right way
 - processing wavefield solves in efficient chunks
- we don't care about
 - how exactly the linear solve is performed
 - what the helmholtz matrix looks like
 - parallelization

PDE-related quantities
Serial version

Modeling matrix : multiplication/division

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix : multiplication/division

Data volume

$n_{ m xrec}n_{ m yrec}$	$\omega = \omega_1$	$\omega=\omega_2$	$\omega=\omega_{n_f}$
	$n_{ m xsrc} n_{ m ysrc}$	$n_{ m xsrc} n_{ m ysrc}$	$n_{ m xsrc} n_{ m ysrc}$

Each column of this matrix is independent

• split up + compute these in parallel

Manifested as a sum structure, e.g., for the objective function

$$f(m) = \sum_{s,\omega} f_{s,\omega}(m)$$

which is also computed in parallel over source, freq

PDEfunc3D_dist

- manages the computation of PDEfunc3D in parallel
- responsible for no actual computation, merely distributing + calling
 PDEfunc3D in parallel with the correct source/frequency indices
- separating parallelization from computation

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix : multiplication/division

F3d, oppDF3d, oppHGN3d, oppH3d

- essentially shallow wrappers around PDEfunc3D_dist
- building blocks for setting up an FWI optimization scheme
- good for operations using all of the data at once

F3d, oppDF3d, oppHGN3d, oppH3d

- using these functions, not a straightforward way to set up simultaneous sources, frequency batching, frequency-based model subsampling, etc.
- don't use these functions for production-level problems
- instead...

misfit_setup3d

- outputs an FWI objective function handle according to the specified options
 - sim. sources, subsampled sources/freqs, model decimation, GN or full Hessian, etc.

- function handle can be minimized with a black-box optimization routine, no knowledge of the underlying problem required
 - parallelization, data movement, etc. handled automatically due to this software design

Very simple example

Transmission experiment - edam model

- 2 sources in x-y plane at the top of the model
- Dense receiver sampling at bottom of the model
- 3 frequencies, 2Hz 4Hz
- 2000m/s background velocity + 2200m/s perturbation
- 10 LBFGS iterations per frequency

Example 3D FWI script - easy frequency continuation

```
% Work on a single frequency at a time
freq batch = num2cell(1:nfreq,[1,nfreq]);
vest = v0;
opts.subsample model = true;
for j=1:length(freq batch)
    % Select only sources at this frequency batch
    srcfreqmask = false(nsrc,nfreq);
    srcfreqmask(:,freq batch{j}) = true;
    opts.srcfreqmask = srcfreqmask;
    [obj,vest sub,comp grid] = misfit setup3d(vest,Q,Dobs,model,opts);
    % Optimization on coarser grid
    vest sub = minConf TMP(obj,vest sub,vlow,vhi,minfunc_opts);
    vest = comp grid.to fine*vest sub;
end
```


Output of previous code

True model Initial model

Output of previous code

True model Inverted model

Challenges

Managing parameters at different levels in the hierarchy

- ton of options to specify for the whole FWI process
- some are only used at certain parts of the hierarchy
- consistent naming, referencing, etc.

We now have an FWI framework that

- manages complexity/is easy to reason about
- is fully tested
- scales efficiently
- is extendable
- easy to do frequency continuation, randomized source/freq subsampling

Future extensions

- anisotropic/varying density Helmholtz
- 3DWRI

Future demonstrations

- realistic examples
- randomized source-frequency subsampling
- demonstration of curvelet-based FWI/least squares migration for 3D