Tim Lin, Brazil IIP FWI Workshop

SLM@

University of British Columbia

currently, we program in MATLAB, but our
abstraction for distributed computation is based on

Parallel Matlab (PCT) pSPOT

4 A

- N Computer Cluster
Desktop
MATLAB Distributed
Parallel Computing Computing Server
Toolbox
_ "Pardllel Matlab” e
Officially another “toolbox” on top
of Matlab, called “Parallel T
Computing Toolbox™ or PCT o

Scheduler

S J_

Two components:

e The “toolbox” itself, which provides the parallelization code and can
spawn local workers

e The “Distributed Compute Server” (MDCS) which allows spawning
workers on external nodes in a cluster
e can bring own scheduler, i.e., SLIM uses Torque, SENAI uses Slurm

_ Matlab PCT operation

Always assumes a “master” supervisor for a pool of workers

Each worker (and master) are independent, complete Matlab
processes, and communicate via a MPI-based backend

Workers form a “pool” that can be provisioned and released
interactively from the command line

Local workers free, individual licensing price for remote workers

Distributed arrays

Emulates a normal numeric array
e by default distributed evenly across the last dimension
¢ APIs to change underlying distribution
¢ can be constructed in many ways... from simple to complex
e easy way to learn about shared-memory/NUMA type architecture

Killer Feature: overloading of many Matlab functions on local
numeric arrays to distributed arrays

_ SPOT/pSPOT built on distributed array

A way to encapsulate kernel computations of linear operations
into something that “looks like a matrix”

F = opDFT(512)
X = randn(512,1);
F * X

»3
Hh
i

F' * xf;

Inherently express the notion of multilinear transformations on
tensors into Kronecker products

FK = opKron(opDFT(300), opDFT(512))
X = randn(512,300);

x fk = FK * x(:);

x2 = FK' * x fk;

_ SPOT/pSPOT built on distributed array

Extends to distributed paradigm (implicitly performs transpose)

F = opDFT(1024);

F2D = opKron(F,F);

F4D = oppKron2Lo(F2D,F2D);

F5D = oppKron2Lo(F2D,opKron(F,F,F));

X = distributed.randn(1024*1024*1024,1024*1024);
xf = F5D * x(:);

Non-separable example

Frequency-dependent filtering

A = oppDistFun(f,@filter) l

f is (distributed) array of frequencies
@filter(x,f) performs filter on x based on frequency f

Slice-wise matrix-matrix multiply

A = oppDistFun(MAT, @matmult) l

MAT is 3D array distributed over the “slice” dim
@matmult(x,mat) performs mat-mult between x and mat

SLIM software releases
Organizational overview

10

Software versioned and managed using Git

Internal in-development code lives on private Git-Lab server
Public code (software release, SPOT/pSPOT, etc) lives on GitHub

Curt Da Silva

SLM@

University of British Columbia

12

A new 3D FWI framework

modularizes relevant subsystems

e helmholtz discretization, linear solves, computing gradients,
hessians, etc.

software hierarchy manages complexity

east to test individual modules + ensure correctness/efficiency
easy to extend

easy to parallelize

lower level performance improvements (linear solves, etc.)
propagate to entire framework

13

Software organization

Software hierarchy manages complexity
¢ human brains have very limited working memory

e if a particular part of a program only has one function, people
using/debugging it only have to think about that one function

e f software is easier to reason about -> it’s easier to work with,
easier to test

14

Software organization

Software hierarchy manages complexity

e we don’t have to sacrifice performance
e lowest level operations implemented in C w/multithreading

¢ hiding irrelevant details at each level

o hig?fer level functions don’t have any idea about C/fortran/that gross
stu

15

Software organization

Anything that we do that isn’t solving PDEs is essentially irrelevant,
computation time-wise

e advantageous, for designing our software, because any overhead
introduced is negligible compared to solving PDEs

e improvements in solving PDEs quickly propagate to the whole FWI
framework

3D FWI

16

Our problem:
min > || Prtts (m) = Dy o

such that H,(m)us ,(m) = gs..

e we have separability over sources/frequencies
e objective, gradient, hessian, GN hessian, etc.

e informs our later design decisions

17

Software organization

Lowest level: opBandStorage

e SPOT operator, stores necessary information for Helmholtz
multiplications, wavefield solves, preconditioners

o \Writing

U=HN\ Q i;

calls the specified solver with the appropriate preconditioner,
tolerance, parameters, etc.

18

Software organization

opBandStorage

® agnostic to its entries

o 7 pt, 27 pt stencils, all treated in the same manner

e acoustic, constant density kernel currently
e easy to integrate anisotropy, varying density in to FWI framework

¢ stores minimal amount of information for specific applications

e e.g., if no adjoint multiplications/divisions are needed, adjoint
coefficients are not stored

19

Software organization
opBandStorage
e sweeping Kaczmarz preconditioner (CRMN)

e (multithreaded) sweeps implemented in C

e matrix-vector products implemented in C (also multithreaded)

e 3s far as iterative solvers are concerned, the helmholtz operator is
just another matrix (SPOT paradigm)

20

A new 3D FWI framework

opBandStorage (Helmholtz)

Modeling matrix :
multiplication/division

21

A new 3D FWI framework

PDEfunc3D

opBandStorage (Helmholtz)

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

22

Software organization

PDEfunc3D

e computes various quantities (objective + gradient, migration/
demigration, gauss-newton hessian, hessian) based on solutions of the
helmholtz equation

e serial code that calls (multi-threaded over number of RHS implicitly)
U=H\ Q;

e function that is tested + satisfies Taylor error estimates, adjoint tests, etc.

23

Software organization

PDEfunc3D receives a list of (src x, src y, freq)indices
e for each frequency J, gets the (src x, src y)indices corresponding

tof

¢ each Helmholtz matrix can solve Ncompsrc sources efficiently in
parallel via multi-threading (user defined)

e the source indices are chunked up in to batches of size Ncompsre,
each batch is processed sequentially

24

Software organization

PDEfunc3D - at this level in the hierarchy

e \We care about

e arranging the ‘pieces’ of wavefields in the right way
e processing wavefield solves in efficient chunks

e we don’t care about

e how exactly the linear solve is performed
e what the helmholtz matrix looks like
e parallelization

25

A new 3D FWI framework

PDEfunc3D

opBandStorage (Helmholtz)

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

26

A new 3D FWI framework

PDEfunc3D dist

PDEfunc3D

opBandStorage (Helmholtz)

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

27

Data volume

NxrecTlyrec

NxsrcMysrc Mxsrcllysrc

NxsrcTlysrc

28

Software organization

Each column of this matrix is independent
¢ split up + compute these in parallel

Manifested as a sum structure, e.g., for the objective function
f(m) = Z fsw(m)
S, W

which is also computed in parallel over source, freg

29

Software organization

PDEfunc3D dist
¢ manages the computation of PDEfunc3D in parallel

¢ responsible for no actual computation, merely distributing + calling
PDEfunc3D in parallel with the correct source/frequency indices

e separating parallelization from computation

30

A new 3D FWI framework

PDEfunc3D dist

PDEfunc3D

opBandStorage (Helmholtz)

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

31

A new 3D FWI framework

Forward modeling Migration/Demigration

F3d oppDF3d

oppHGN3d

PDEfunc3D dist

PDEfunc3D

opBandStorage (Helmholtz)

Gauss-Newton Hessian Full Hessian

oppH3d

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

32

Software organization

F3d, oppDF3d, oppHGN3d, oppH3d
e essentially shallow wrappers around PDEfunc3D dist

e building blocks for setting up an FWI optimization scheme

e oood for operations using all of the data at once

33

Software organization

F3d, oppDF3d, oppHGN3d, oppH3d

¢ using these functions, not a straightforward way to set up
simultaneous sources, frequency batching, frequency-based model

subsampling, etc.

e don’t use these functions for production-level problems

® instead...

34

A new 3D FWI framework

Forward modeling Migration/Demigration

F3d oppDF3d

Gauss-Newton Hessian Full Hessian

oppHGN3d

PDEfunc3D dist

PDEfunc3D

opBandStorage (Helmholtz)

oppH3d

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

35

A new 3D FWI framework

misfit setup3d

PDEfunc3D dist

PDEfunc3D

opBandStorage (Helmholtz)

FWI objective setup

PDE-related quantities
Distributed version

PDE-related quantities
Serial version

Modeling matrix :
multiplication/division

36

Software organization

misfit_setup3d
e outputs an FWI objective function handle according to the
specified options

* sim. sources, subsampled sources/freqs, model decimation, GN or full
Hessian, etc.

e function handle can be minimized with a black-box optimization
routine, no knowledge of the underlying problem required

e parallelization, data movement, etc. handled automatically due to this
software design

37

Very simple example

Transmission experiment - edam model

2 sources in x-y plane at the top of the model

Dense receiver sampling at bottom of the model

3 frequencies, 2Hz - 4Hz

2000m/s background velocity + 2200m/s perturbation
10 LBFGS iterations per frequency

38

Example 3D FWI script - easy frequency continuation

% Work on a single frequency at a time
freq batch = num2cell(l:nfreq,[1l,nfreq]);

vest = v0;
opts.subsample model = true;

for j=l:length(freq batch)
% Select only sources at this frequency batch

srcfregmask = false(nsrc,nfreq);
srcfreqmask(:,freq batch{j}) = true;

opts.srcfregmask = srcfregmask;
[ob]j,vest sub,comp grid] = misfit setup3d(vest,Q,Dobs,model,opts);

% Optimization on coarser grid
vest sub = minConf TMP(obj,vest sub,vlow,vhi,minfunc opts);
vest = comp grid.to fine*vest sub;

end

Output of previous code

0 - 0 -
500 4 500 4
E 1000 4 E 1000 4
N 1500 - N 1500 -
2000 - 2000 -
2500 4 2500 4
3000 J 3000 J

3000 3000

2000
1000
y [m] 1000
O 0 X [m]
True model Initial model

39

Output of previous code

0 - 0 -
500 4 500 4
E 1000 4 E 1000 4
N 1500 - N 1500 -
2000 - 2000 -
2500 4 2500 4
3000 J 3000 J

3000 3000

2000
1000
y [m] 1000
0O o0 X [m]
True model Inverted model

40

_ Chdllenges

41

Managing parameters at different levels in the hierarchy
e ton of options to specify for the whole FWI process
e some are only used at certain parts of the hierarchy
e consistent naming, referencing, etc.

42

Software organization

We now have an FWI framework that

manages complexity/is easy to reason about
is fully tested
scales efficiently

is extendable

easy to do frequency continuation, randomized source/freq
subsampling

43

Software organization

Future extensions

e anisotropic/varying density Helmholtz
e 3DWRI

Future demonstrations
e realistic examples
¢ randomized source-frequency subsampling
e demonstration of curvelet-based FWI/least squares migration for 3D

