Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Rank minimization based seismic data processing & inversion

Rajiv Kumar

Seismic data Interpolation

Rajiv Kumar

SLIM University of British Columbia

Motivation

- acquisition challenges
 - missing data
 - irregular acquisition grid
- fully sampled data
 - simultaneous shot based FWI & migration
 - estimation of primaries by sparse inversion & SRME
- regularization
 - imaging and inversion algorithm require equi-spaced grid
- exploit low-rank structure of seismic data - SVD-free matrix factorization

[Candes and Plan 2010, Oropeza and Sacchi 2011]

Matrix completion

signal structure

- low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure 2-D acquisition

Singular value decay 2-D acquisition

Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

2-D acquisition uniform-random sampling

acquisition domain

missing columns do not increase rank

transform domain

Low-rank interpolation

recovery [SNR = 2 dB]

Randomized sampling singular value decay

random sampled data

Observations

- sampling become incoherent in "transform" domain
- slow decay of singular values in "transform" domain

Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Rank minimization

• given a set of measurements b, aim is to solve $\min_{\mathbf{X}} \quad \operatorname{rank}(\mathbf{X}) \quad \text{s.t.} \ ||\mathcal{A}(\mathbf{X}) - \mathbf{b}||_2^2 \leq \sigma$ $(BPDN_{\sigma})$

where $rank(\mathbf{X}) = number of singular values of \mathbf{X}$

• \mathcal{A} is the transform-sampling operator defined as $\mathcal{A} = \mathbf{R}\mathbf{M}\mathcal{S}^H$

where

- R: restriction operator M: measurement operator \mathcal{S}^{H} : transform operator

Rank minimization

- prohibitively expensive
 - do not know rank value in advance
 - search over all possible values of rank
- instead solve nuclear-norm minimization
 - convex relaxation of rank-minimization [Recht et. al. 2010]

[Recht et. al. 2010]

Nuclear-norm minimization

we want to solve $\min_{\mathbf{X}} ||\mathbf{X}||_{*} \quad \text{s.t.} \; ||\mathcal{A}(\mathbf{X}) - \mathbf{b}||_{2}^{2} \leq \sigma$ $(BPDN_{\sigma})$ where $\|\mathbf{X}\|_* = \sum_{i=1} \lambda_i = \|\lambda\|_1$

where λ_i are the singular values

Challenges

- requires repeated application of SVD for projections
- expensive to compute for large system - curse of dimensionality
- can we exploit rank structure "SVD free"

[Rennie and Srebro 2005, Lee et. al. 2010, Recht and Re 2011]

Factorized formulation

$\mathbf{X} = \mathbf{L}\mathbf{R}^{H}$

[Berg and Friedlander 2008, Aravkin et al. 2012b] **Factorized formulation**

• reformulate $(BPDN_{\sigma})$ formulation

$$\min_{\mathbf{L},\mathbf{R}} ||\mathbf{L}\mathbf{R}^{H}||_{*} \quad \text{s.t.} ||\mathcal{A}|$$

• approximately solve a series of $LASSO_{\tau}$ formulation

$$v(\tau) = \min_{\mathbf{L},\mathbf{R}} ||\mathcal{A}(\mathbf{L}\mathbf{R}^H) - \mathbf{b}|$$

where \mathcal{T} is a rank regularization parameter

- $4(\mathbf{L}\mathbf{R}^H) \mathbf{b}||_2^2 \le \sigma$
- $\mathbf{p}||_2^2 \quad \text{s.t.} \|\mathbf{L}\mathbf{R}^H\|_* \le \tau$

[Rennie and Srebro 2005]

Factorized formulation

- Upper-bound on nuclear norm is defined as $\|\mathbf{L}\mathbf{R}^{H}\|_{*} \leq \frac{1}{2} \left\| \begin{bmatrix} \mathbf{L} \\ \mathbf{R} \end{bmatrix} \right\|_{F}^{2}$
 - where $\|\cdot\|_F^2$ is sum of squares of all entries
- choose k explicitly & avoid costly SVD's

Computational cost with and without SVD

		50.0%		75.0%	
	σ	0.1	0.1	0.1	0.1
Matrix completion w/ SVD	SNR (dB)	17.3	18.3	11.6	11.5
	time (sec)	812	937	790	765
Matrix completion w/o SVD	SNR (dB)	17.6	18.4	12.6	13.3
	time (sec)	8	10	8	7

Upcoming paper Check <u>https://www.slim.eos.ubc.ca</u> soon!

Computational cost matrix completion v/s curvelet-based methods

		50.0%		75.0%	
	σ	0.1	0.1	0.1	0.1
Matrix completion w/ SVD	SNR (dB)	17.3	18.3	11.6	11.5
	time (sec)	812.0	937.0	790.0	765.0
Matrix completion w/o SVD	SNR (dB)	17.6	18.4	12.6	13.1
	time (sec)	8	10	8	7
Curvelet-based sparsity promotion	SNR (dB)	17.4	18.6	12.5	12.8
	time (sec)	879	989	817	

Observation matrix completion v/s curvelet-based methods

Low-rank

O(*minutes*) computational time

 $k \times (n+m)$ storage

Curvelet

O(hours)

$8 \times nm$

Take-away message

can avoid "SVD"

faster compare to curvelet-based sparsity promotion techniques

memory efficient compare to curvelet-based techniques

Regularization

unstructured acquisition grid

imaging and inversion algorithm
regularly sampled data

binning

- does not preserve the data-structure

Low-rank structure binning, midpoint-offset domain

Regularization matrix completion, midpoint-offset domain

Singular value decay regularization v/s binning

Methodology matrix completion

- transform-sampling operator is redefine as

where

- S^H : transform operator

• given a regularization operator $\mathbf{N}: \mathbb{C}^{n \times m} \to \mathbb{C}^{n \times m}$ so that $\mathbf{N}(\mathbf{X}_r) = (\mathbf{X}_{ir})$,

$\mathcal{A} = \mathbf{R}\mathbf{M}\mathbf{N}^H\mathcal{S}^H$

 \mathbf{R} : restriction operator \mathbf{M} : measurement operator \mathbf{N}^{H} : regularization operator

Theorem matrix completion

Let $\mathbf{X}_r \in \mathbb{C}^{n \times m}$, $\hat{\mathbf{X}}_r \in \mathcal{S}$ and $\mathbf{b} = \mathbf{RM}(\mathbf{X}_{ir}) + e$ with $\|e\| \leq \eta$. Let \mathbf{X} be the solution of BPDN_{σ} , then

$$\left(1 \right) - \mathbf{X}_r$$

Regularization matrix completion

Regularization matrix completion

Regularization binning

Regularization & Interpolation matrix completion

Conclusion

large data

- reconstruction quality is as good as curvelet-based techniques but computationally more feasible then curvelet
- matrix-factorization promise more compact representation

Source separation for simultaneous towedstreamer acquisition - sparsity vs. rank

Collaborators: Haneet Wason and Felix Herrmann

Periodic vs. jittered marine acquisition

periodically sampled spatial grid

*

almost periodically sampled spatial grid (over/under acquisition)

randomly jittered sampled spatial grid (Time-jittered acquisition)

> [Wason and Herrmann, 2013] [Mansour et. al., 2012]

S

Conventional marine acquisition

Blended/Simultaneous marine acquisition

[over/under acquisition]

shot 2

shot 3

Challenges

- Source separation (or deblending) - recover individual datasets
- Shot-time randomness - low

[Candès and Donoho, 2000; Herrmann, 2008]

Compressed sensing

Successful sampling & reconstruction scheme

- exploit structure via sparsifying transform - *fast decay* of "transform domain" coefficients
- sampling
 - randomly blended data *decreases* sparsity in "transform domain"
- optimization
 - via sparsity-promotion

[Candès and Plan, 2010, Oropeza and Sacchi, 2011]

Matrix completion

Successful reconstruction scheme

- exploit structure - *low-rank / fast decay* of singular values
- sampling
 - randomly blended data *increases* rank in "transform domain"
- optimization
 - via rank-minimization (nuclear norm-minimization)

Low-rank structure in which domain? - frequency slice at 5 Hz

midpoint-offset domain (with reciprocity)

Decay of singular values

low-rank in midpoint-offset domain

300 400

How to destroy the structure? - add random time delays

without delays

with random delays (< 1s)

Decay of singular values - midpoint-offset domain

random time delays increase the rank

Rank-minimization

$$\min_{\mathbf{X}} rank(\mathbf{X}) s.t.$$

number of singular values of \mathbf{X}

for blended acquisition:

b : blended data

$\mathcal{A} := \begin{bmatrix} \mathbf{MT_1} \mathbf{S^H} & \mathbf{MT_2} \mathbf{S^H} \end{bmatrix}$ time delay matrices

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \leq \epsilon$

unblended data matrix

Factorized formulation ("SVD-free")

[Rennie and Srebro, 2005; Lee et. al., 2010; Recht and Re, 2011]

Upper-bound on nuclear norm:

$$\|\mathbf{X}\|_* \leq \frac{1}{2} \left\| \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{R}_1 \end{bmatrix} \right\|_F^2 + \frac{1}{2} \left\| \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{R}_1 \end{bmatrix} \right\|_F^2$$

ן ך2 $\begin{bmatrix} \mathbf{L}_2 \\ \mathbf{R}_2 \end{bmatrix} \Big\|_F^2 =: \Phi(\mathbf{L}_1, \mathbf{R}_1, \mathbf{L}_2, \mathbf{R}_2)$

Rank vs. sparsity

rank-minimization (midpoint-offset domain)

sparsity-promotion (source-receiver domain)

Source separation results

Rank-minimization vs. sparsity-promotion

Blended data (w/ delay) - random time delays (< 1 sec) applied to both sources

blended shot

Source separation - rank vs. sparsity

computation time = 5 vs. 62 hours; memory usage = 2.8 vs. 7.0 GB;

source 1

rank (15.0 dB) sparsity (16.7 dB)

Simultaneous long offset acquisition

- adapted from Long, et. al., 2013

A. S. Long, et. al., "Simultaneous long offset (SLO) towed streamer seismic acquisition", presented at the 75th EAGE Conference and Exhibition, June 2013.

Blended data (w/ delay) - random time delays (< 1 sec) applied to both sources

blended shot

6

Rajiv Kumar, Haneet Wason and Felix J. Herrmann, "Source separation for simultaneous towed-streamer marine acquisition---a compressed sensing approach", Geophysics

Summary – time (in hours), memory (in GB), average SNR (in dB)

	Over/under acquisition			Simultaneous long offset acquisition		
	time	memory	SNR*	time	memory	SNR*
sparsity	62	7	17	183	12	32.0, 29.4
rank	5	3	15.0, 14.8	19	6	29.4, 29.0

* average SNR for source 1, source 2

Full-waveform inversion

Ernie Esser, Felix Herrmann

SLIM University of British Columbia

FWI issues

- cycle skipping
- accurate starting model
- longer offsets
- low frequency

van Leeuwen & FJH, 14

WRI

$$\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum_{i}^{n_s} ||P\bar{\mathbf{u}}_i - \sum_{i}^{n_s}||P\bar{\mathbf{u}}_i - \sum_{i}^{n_s}||P\bar{$$

where

$$\bar{\mathbf{u}}_i = \arg\min_{\mathbf{u}_i} \left\| \begin{pmatrix} \lambda A(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u}_i - \begin{pmatrix} \lambda \mathbf{q}_i \\ \mathbf{d}_i \end{pmatrix} \right\|_2$$

$$\|\mathbf{d}_i\|_2^2 + \frac{\lambda^2}{2} \|A(\mathbf{m})\bar{\mathbf{u}}_i - \mathbf{q}_i\|_2^2$$

Low-rank extension

 $\bar{\phi}_{\lambda}(\mathbf{M}) = \frac{1}{2} \sum_{i=1}^{n_s} \|P\bar{\mathbf{u}}_i - \mathbf{d}_i\|_2^2 + \frac{\lambda^2}{2} \|A(\mathbf{M}_i)\bar{\mathbf{u}}_i - \mathbf{q}_i\|_2^2$

 n_s

 $\times n_{\underline{x}}$ n_z

BG Model Example

BG compass model

- 25 frequency batches (20 iterations each)
- 10 simultaneous sources
- receivers 25m sample interval
- different inaccurate initial model

{3 4}, {3.6 4.4}, ..., {17 18} Hertz. Each interval contains 6 frequencies.

Vertical trace

Initial model low-velocity trend

Inverted model low-velocity trend

Initial model high-velocity trend

Inverted model high-velocity trend

Vertical trace

Initial model average-velocity trend

Inverted model average-velocity trend

Low-rank extension

Vertical trace

Inverted model low-rank extension

Inverted model low-rank extension, batch l

Inverted model low-rank extension, data misfit, 5Hz

Inverted model low-rank extension, data misfit, 8Hz

Conclusion

Low-rank extension

- extends the search space
- allows for incorporation of "starting model diversity"
- more robust w.r.t. poor starting models

Computationally feasible

Potentially a cheap way to do in scenarios...

rting model diversity" models

Potentially a cheap way to do incorporate prior knowledge & test

Acknowledgements

Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

