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Motivation

Wave-equation based inversions are non-convex & suffer from local minima
(cycle skips)
» for poor starting models

» especially detrimental for high-contrast & high-velocity unconformities
(salt & basalt)

Borrow ideas from
» wave-equation based inversions w/ extensions

» edge-preserving regularization in image processing & compressive sensing
» hinge-loss functions in machine learning

» continuation strategies from (convex) constrained optimization




Wavefield Reconstruction Inversion (WRI)
- poor starting model
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Example from [peters et al. 2013)
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WRI results w/o TV ‘;?'_ :

after one cycle through the after two cycles through the after three cycles through the
frequencies frequencies frequencies
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Results w/ TV

after one cycle through the after two cycles through the after three cycles through the
frequencies frequencies frequencies
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_ Strategy

Extend the search space
» “less” nonlinear (bi-convex)
» ensures data fit & avoids cycle skips

“Squeeze” the extension by
» enforcing the wave equation to compute model updates
» imposing asymmetric convex constraints that encode “rudimentary”
properties of the geology
» relaxing the convex constraints starts while stressing wave physics

Leverage frequency continuation & warm starts where
» sparsity-promoting asymmetric convex constraints limit adverse affects of
local minima
» there is hope as long progress towards the solution is made in each sweep




Waveform inversion

Retrieve the medium parameters from partial measurements of

the solution of the wave-equation: A(m)u; = q;

qg; Pf,;llf,;




X wavefield = source

wave-equation

versus

wave-equation

sampling operator

source

X wavefield = ( ......................
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[van Leeuwen & FJH, 2013]

WRI - Wavefield Reconsiruction Inversion

For m fixed, reconstruct wavefields by jointly fitting observed shots
Pu;, ~ d,;
and wave-equations
A(m)u; ~ q;

via least-squares solutions of the data-augmented wave-equation

min (Aib) w ~ (3) 2

followed by fixing u;and solving

min [[A(m)u; — aill3




[Heinkenschloss, ‘98 , Haber, '00]

Wavefield-reconstruction Inversion — WRI

Replace PDE-constrained formulation for FWI:

simulated data simulated wavefield

] |
min Z —||Pug, — dg,||* such that A,(m)ug, = qs,
m,u )
SV I A I
observed data source
Helmholtz equation

» avoids having to solve the PDE explicitly

» sparse (GN) Hessian

» requires storing all variables (m,u)

» does not scale to industry-scale seismic problems




[Tarantola '84; Pratt, '98; Plessix, '06]

Adjoint-state/reduced-space formulation

by eliminating the constraint

Min breq (M Z | PiAi(m)~ q; — di|3

» no need to store all wavefields (block-elimination)

» suitable for black-box optimization (e.g., |-BFGS)

» need to solve forward & adjoint PDEs

» very non-linear dependence on earth model (m)

» dense (GN) Hessian, involves additional PDE solves

» reliance on accurate starting models to avoid cycle skipping




_  WRI

[Bertsekas, '96; Wright, '00; van Leeuwen & FJH, '13, ’15]

or by a penalty formulation

] A°
min » o Py = dal|? + T [ Au(m)us — g

and solve at the nt" iteration for proxy wavefields (for fixed m")
_ 1 \? N
Uiy, = arg min — || Pug, — dgyl|* - 5 1A, (M™)Ugy — Qs ||?

followed by computing the gradient for the model

g’ = Z Re {)\Qw% diag(tisy)” (Av(m”)ﬁsv = qsv)}




Ernie Esser, Lluis Guasch, Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Total variation regularization strategies in full waveform

inversion for improving robustness to noise. limited data and poor initializations”. 2015.

_  WRI

and reduced diagonal Gauss-Newton Hessian

H! =~ Z Re {)\zwfj diag(tis, (m™))* diag(tis, (m") }

to minimize the reduced objective

B(m) = 37 7 Pityy (m) — | -

SU

via scaled gradient descents [Bertsekas "99]
1
Am = argmin Am” g" + —Am’ H"Am + ¢, Am’ Am
AmeRN 2
m” ! = m" + Am with ¢, > 0

)\2
2

|Ay(m)ug, (m) — qs, H2
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WRI - outer iterations

WRI method

for each source i

solve (
g =g+ \w leag (W,

Y

Heony = Hany + Mwdiag
end

I — 11

A

- N\

— a8

m) )“

u; ) *dlag (u;)

(qu)

)* uz)\ _qz)
(

p
dlagonal Hessian

L pseudo Hessian

~

Conventional method

%

replace by inner
loop that imposes

\CO nvex constraints y

for each source i
solve A(m)u;
solve A(m)*v

— (3

g =g+ wzdiag(ui)*vi

end
m=m — Qg

-

\_

dense Hessian
&
too expensive

~

%




Waveform inversion - poor starting model

True model

Result FWI
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Example from [peters et al. 2013)



Tristan van Leeuwen and Felix J. Herrmann, “A penalty method for PDE-constrained optimization in inverse problems”. 2015. Abstract

A note on choosing )\
Low-noise case:

A~ pi(A7*P*PA™Y)

High-noise case:

Select by striking a balance between

» sufficient data fit to avoid cycle skipping
» sufficient “smoothing” to avoid fitting the noise

WRI’s penalty formulation can be interpreted as a “denoiser”...
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Noisy data
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Including convex constraints

Wave-equation based inversions call for regularization, e.g. via convex
constraints

1
Am = argmin Am” g" + —Am’ H"Am + ¢, Am’ Am
Amec RN 2

such that m" + Am € C

» guarantees m"*! e C

» more difficult to compute

» feasible if it is easy to project onto

» naive projections m™ 1t = Il (m" — (H”)_lg")are not
guaranteed to converge [Bertsekas '99]




Scaled Gradient Projections

Algorithm 1 A Scaled Gradient Projection Algorithm

n=0;m’eC;p>0;¢>0;0¢€(0,1];
H symmetric with eigenvalues between )\Iﬁ}in and A%
E&1>1; & > 15 cg > max(0, p — NH™);

Im” —m™ ]

while n = 0 or T > €
Am = arg minamec—mn Am VE(m™) + s Am* (H" 4 ¢,,I)Am
if F(m™+ Am) — F(m") > oc(Am*VE(m") + sAm’ (H™ + ¢,1)Am)
— SZCn

else
m"t = m" + Am

Cn Cn, __\Inin
(o =la if 2= > max(0,p — Ag™")
c, otherwise

Define H"™! to be symmetric Hessian approximation
with eigenvalues between AH™ and N5~
n=n-4+1
end if
end while




Bound consiraints
- via scaled gradient projections

For strictly positive diagonal Gauss-Newton Hessians:

1
Am = arg IEin Am” g" - QAmT(H” + ¢, I)Am

subject to m? + Am,; € [B:,B¥], i=1---N

for which there exists a closed form solution

Am,; = max (Bi — m, , min (B;f” —m;, —[(H" + Cnf)_lg ]Z))

that is computationally affordable.



[Oldenburg '83; Akcelik '08; Anagaw "11; Maharramov '14; Esser & FIH "14]

Total-variation regularization
- w/ bound consiraints

Promote models w/ sharp boundaries via

m" ™ =m"” + Am subject to m" ! e Cpo N Cry

where Crv = {m: |m|rv < 7} and

1
|mllzy =) ﬁ\/(mm,j = M)+ (M1 —mi ;)7
i]

-y L (ma g1 — my )
= bl L1 — M)

N
= |Dmlly 2 := > [[(Dm)]| .

[=1




[Oldenburg '83; Akcelik '08; Anagaw "11; Maharramov '14; Esser & FIH "14]

Projections onto convex sets
Umin = 1500, Umax = 5500, and 7 = {0.379, 0.6}

1

[Ic(mg) = arg min §Hm —mygl||* subject to m; € [B;, BY] and |m]|ry < T
1041

Original Marmousi model Constrained to have .3 times original TV Constrained to have .6 times original TV
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Proposed algorithm

Solve
minimize ®(m) subject to m" "' € Cpox N Cry
by iterating
- T _n 1 1 n
Am = argIEmAm g 2Am (H" + ¢, ])Am

subject to m? 4+ Am,; € [B), B"] and |m"Aml|;y < 7

m"”" ! =m"” + Am



Solving the convex subproblems

Find saddle point of

1
L(Am,p) = Am’ g" 1 zAmT(H” + ¢, ])Am + gg(m" + Am)
+p' D(m" + Am) — 7||p||cc,2
with indicator functions for

Bound constraint TV-norm constraint

sup+p’ D(m"™ + Am) — 7(|p||o,2

o0  otherwise —

P
gp(m) = {o if ||D(m"™ + Am)||; 2 < 7

o0  otherwise



Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A General Frame- work for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging
Science. SIAM Journal on Imaging Sciences, 3(4):1015-1046, 2010.

Iterations - N

projection onto

— primal dual hybrid gradient (PDHG) TV ball
p"™ =p" +D(m" + Am") — H|-1,2<75(4L 6D(m" + Am"))

Am”® ! = max ((B,f —m;), Bi)

1

mk
B: = min ((B;Ju B m:),)7 [(H'n 4 (Cn 4 é)l)—l(_gn | Aa DT(Zpk—I—l — pk)]z>

for steplengths ad < qprpy and o = ey

» do not involve solutions of (data-augmented) wave equations
» allows for data-dependent stepsizes



True velocity & poor starting model
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__ _BP model

® nhumber of sources: 126

e number of receivers: 299

e frequency continuation over 3-20Hz in overlapping batches of 2

e maximum number of outer iterations per frequency batch: 25

® maximum number of inner iterations for convex subproblems: 2000
e known Ricker wavelet sources with 15Hz peak frequency

e two simultaneous shots with Gaussian weights w/ redraws

e no added noise




after one cycle through the after two cycles through the after three cycles through the
frequencies frequencies frequencies
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Results w/ TV

after one cycle through the after two cycles through the after three cycles through the
frequencies frequencies frequencies
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Joint work w/ Sub Salt Solutions Ltd. Patent filed GB1509337.0

Hinge loss
- one-sided TV constraint

Mitigate erroneous velocity model updates by using the fact that
» vertical slowness profiles tend to decrease w/ depth
» makes it less probable that velocities jump down along the vertical

Mathematically expressed as the one-norm of a hinge-loss function
H max((), Dzm)Hl S f

» for & small slowness is unlikely to step up
» extended to a weighted directional gradient
» combined w/ omni-directional TV and bound constraints




Ernie Esser, Lluis Guasch, Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Total variation regularization strategies in full waveform
inversion for improving robustness to noise. limited data and poor initializations”. 2015.

Scaled-gradient projections
- w/ convex total-variation, box, & hinge-loss consiraints

Solve for given u

min ¢(m, ty) subject to m|rv <7
1041

with

N L] [(m e — M )
lmlpv =) -
i

and

|m||Hinge = || max (0, D-m) |3
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Ernie Esser, Lluis Guasch, Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Total variation regularization strategies in full
waveform inversion for improving robustness to noise. limited data and poor initializations”. 2015.

Proposed algorithm

Solve

minimize ®(m) subject to m"T' € Chox N Crv N Chinge

by iterating

pit! =pi +0D(m" + Am"*) — 1T, ,<,s(P} + 0D(m" + Am"))
ps ' =p5+ 0D, (m" + Am") — IT| nax(0.)],<¢5(P5 + 6D, (m™ + Am"))

By = win (B —ml), [(H" + (e + )17 (8" + o — DT(2p*1 — pb) — DI 204" — p)L)

Am; " = max ((B} — m}'), B;)

(
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Results w/ hinge loss continuation
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Results w/ hinge loss continuation —

= {.15, .20, .25}
gtrue
after four cycles through the after five cycles through the after six cycles through the
frequencies frequencies frequencies
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WRI

w/ or w/o TV-norm & hinge-loss projections & poor starting model

velocity estimate after 0 frequency batches velocity estimate after 0 frequency batches, £=15.5333e-09
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Relative model errors

w/o TV w/ TV & hinge

27 i 1.2

—renormalized each pass —renormalized each pass
— normalized using starting model — normalized using starting model
""""""" Xi constraint as fraction of true value

||||||||||||||||||||||

0 5 10 16 20 25 30 35 0 50 100 160




Adjoint-state w/o TV
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Adjoint-state w/ hinge loss continuation
¢
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Adjoint-state w/ hinge loss continuation
¢

= {.15, .20, .25}
gtrue
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Adjoint-state FWI

w/ or w/o TV-norm & hinge-loss projections & poor starting model

velocity estimate after 0 frequency batches velocity estimate after 0 frequency batches, £ = 5.5333e-009
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WRI vs adjoint-state

initial model WRI adjoint-state
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__ Why may this work?

Combination of
» multiscale frequency sweeps
» relaxation of the (asymmetric) convex constraints
work when
» progress is made during previous sweep
» adverse affects local minima are controlled by convex constraints
» “fine-scales” contribute to “coarse-scales” of the next sweep

Sounds like multi-level optimization...




Conclusions

New method for regularizing wave-equation based inversion benefits from
» combination of convex constraints
» multiple frequency sweeps w/ warm starts & relaxing of the constraints
» a hinge-loss function, which plays a critical role

Works for both WRI & adjoint-state FWI

Development of automatic continuation strategies for relaxing the
constraints Is ongoing.

Candidate for “automatic” salt flooding...
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