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Today’'s agenda

Goals are to
» introduce of fast simulation & optimization framework

» borrow ideas from theoretical computer science
(machine learning & stochastic optimization)

» to limit IO, which is bound to become the bottle neck
» come up with approaches that are agnostic to type of wave-equation based inversions

» integrate these into a versatile computational FWI framework that spends your
computational resources only when needed...



Disclaimer

This tutorial

does not address ill-conditioning issues of full-waveform inversion

IS not about compressive sensing

describes work in progress that remains to be tested on field data in 3D
codes are not yet optimized

based on time-harmonic formulation but does not rely on it
statements only valid to 8Hz or so

vV ¥V VvV VvV VvV V9

Lots of room for improvements...
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= Affordable full subsurface image volume—an application to WEMVA Conference (EAGE Workshop on
Upcoming events Wave Equation based Migration Velocity Analysis, Madrid)

Mon, Aug 31st, 2015 = Irregular grid tensor completion Conference (Workshop on Low-rank Optimization and Applications,

Inaugural Full-Waveform University of Bonn, Germany)

Inversion Workshop, Brazil = Wavefield-denoising and source encoding Conference (SIAM Conference on Mathematical and
Wed, Sep 9th, 2015 Computational Issues in the Geosciences, Stanford University, California)
Hansruedi Maurer, ETH Zurich = Sparsity promoting seismic imaging and full-waveform inversion Thesis (PhD)

"The curse of dimensionality in
exploring the subsurface" 4:00

PM, ESB 5104 - 2207 Main
Mall, UBC Campus = Sparse least-squares seismic imaging with source estimation utilizing multiples Conference (PIMS

Workshop on Advances in Seismic Imaging and Inversion, University of Alberta, Edmonton)

= Total variation regularization strategies in full waveform inversion for improving robustness to noise,
limited data and poor initializations Tech Report

= A new take on compressive time-lapse seismic acquisition, imaging and inversion Conference (PIMS
SINBAD Consortium Meeting Workshop on Advances in Seismic Imaging and Inversion, University of Alberta, Edmonton)

= Compressive time-lapse seismic data processing using shared information Conference (CSEG,
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3D Frequency-domain FWI with batching: results

Contents

¢ CARP-CG
o FWI

CARP-CG

Here we present some results of the Helmholtz solver on the overthrust model. The model and a wavefield for 2 Hz are shown below.

y [km] 0 g % [kri] ¥ [kl 0 0 x [km]

We compute the wavefield for various frequencies with a fixed number of gridpoints per wavelength. The convergence histories are shown below

f=05Hz |
f=1Hz.




Introduction to full-waveform inversion

Tristan van Leeuwen and Felix J. Herrmann, “Fast waveform inversion without source encoding’, Geophysical
Prospecting, vol. 61, p. 10-19, 2013.

Tristan van Leeuwen and Felix J. Herrmann, “3D frequency-domain seismic inversion with controlled
sloppiness”, SIAM Journal on Scientific Computing, vol. 36, p. S192-S217, 2014.
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Infer 3D velocity model from multi-experiment data:
» 0(10”) unknowns

» 0(10*°)datapoints

» propagate ©(10°%) wavelengths
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Waveform inversion

Retrieve the medium parameters from partial measurements of

the solution of the wave-equation: A(m)u; = q;

qg; Pf,;llf,;




Discretize then optimize

Discretize time-harmonic wave equation

-V - Vi]ulw,r) =q(w,z) + b.c.'s,

into system of equations

Au =q




Computational costs

Processing
Accuracy

Model accurately reproduces
Earth properties

Model reproduces amplitude and
phase of field data

Model reproduces phase of
all field data

Model reproduces phase of high angle
seismic data and full electric field

Model reproduces phase of high
angle field data

Model reproduces 1D sparse
spike representation of field data

Megaflop (10°)

Interpretation of
structural model an
QI products used to

build reservoir model
with simple 1D
inversions for simple

geology

Direct input of rock
properties to
reservoir model,
build static models
at seismic lateral
resolution

¢ Visco-elastic aniso waveform
inversion and CSEM inversion (2018)

« Visco-elastic anisotropic
waveform inversion (2016)

« Elastic anisotropic waveform
tomography (2013)

« Joint Acoustic anisotropic
waveform tomography and
CSEM inversion (2011)

« Acoustic anisotropic
waveform tomography (2009)

» Reverse time migration (2006)

Gigaflop (109)

o Kirchhoff PreSTM (1995)

» WX Post Stack Mig (1990)
Interpretation of
structural model

Data Size

Teraflop (1072) Petaflop (1019)

courtesy. BG Group



_ Chadllenges

Computational costs increase
» linearly w/ # of sources
» exponentially with sample density, frequency & survey area

Move to 3D elastic
» sky rocketing costs (X 1000)
» can no longer be met by Moore’s law...




Fast randomized optimization

10 x speedup

—e—Dbatching
——full

rel. model error
= o
N o 0
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# passes through data X [km]

[van Leeuwen & FJH '11]
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All Shots

Total NO. Shots = 1749 Gradient
All shots selected




Fixed-increment sampling

Total NO. Shots =1749 Gradient
Periodic W/ inc 3 NO. Shots =584 5367 5367 5367 5367 5367 5367 5367 5367 5367 5367 5367 5367 5

201 251 301 351 401 451 501 551 601 651 701 751 8



Random-batch sampling 1

Total NO. Shots =1749 Gradient
BatCh 1 NO. ShOtS =612 5367 B36B7 5367 5367 5367 5367 5367 5367 536?536? 5367 53B7 5

201 251 301 351 401 451 501 551 601 651 701 751 8



Random-batch sampling 2

Total NO. Shots = 1749 Gradient
Batch 2 NO. Shots =604




__Industry uptake

Has resulted in 4X—7X in crease computational efficiency

Is making the difference between rendering a service w/ or w/o a profit




[Heinkenschloss, ‘98 , Haber, '00]

PDE-constrained oeﬁmizaﬁon

all-at-once full-space approac

simulated data simulated wavefield

| |

M
ISIBZ |Piw; —difl3 st Aj(m)u; = q

=

observed data source
Helmholtz equation

» avoids having to solve the PDE explicitly

» sparse (GN) Hessian

» requires storing all variables (m,u)

» does not scale to industry-scale seismic problems




4 )

misfit
functionalj
Lagrangian M“
V
Solve min Z p(sz@uz — dz) S.t. A(m)uz — {;
YR i

M
by forming L(m,w,u,v) = Zp(wiP@-ui — di) + v, (A(m)ui — qz-)
i=1

and elimination of the wavelet and state variables from

Vv, L = A(m)u; — qy,

M
me — ZG(m, ui)*vi,
1=1



Unconstrained reduced formulation
by solving
A(m)ui — (3

A(III)HVZ — PZT(dZ — lelz)

Ww; = argminp(sz-u@- — di).

vielding the reduced objective and its gradient

p(m) = Z ¢i(m), ¢i(m) = p(w; Pu; — d;)

Vo(m) = Z Vo, (m), Vo;(m) = wdiag(u;)*v;



[Tarantola '84; Pratt, '98; Plessix, '06]

Adjoint-state/reduced-space formulation

Eliminated the constraint

Min breq (M Z | PiAi(m)~ q; — di|3

» no need to store all wavefields (block-elimination)

» suitable for black-box optimization (e.g., |-BFGS)

» need to solve forward & adjoint PDEs

» very non-linear dependence on earth model (m)

» dense (GN) Hessian, involves additional PDE solves

» reliance on accurate starting models to avoid cycle skipping
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Frugal optimization

Challenge: Computational costs of FWI scale w/ # of sources

Strategy:
» reduce costs by working w/ random subsets of sources

» allow for inaccurate physics (e.g., PDE solves)
» convergence guarantees via dynamic accuracy control

» dynamic increase size subsets & accuracy PDE solves

Outcome:
» computationally affordable scheme for FWI




Framework

Iterative Helmholtz solver:
» w/low memory imprint & computational overhead, e.g. setup costs
» converges w/o model-dependent tuning

Practical stopping criterion:
» avoid accurate solutions when when model iterate far from true solution

Stochastic optimization strategy:
» exploit separable structure by working w/ small subsets of RHS’s
» adaptively grows sample-size} as the optimization proceeds, and

Exploit parallelism:
» model-space via domain decomposition
» data-space parallelism via loops over frequency and/or RHS’s




_ Frugal FWI

i = = = = = = = = =N =N = = = =H =N = N = = =N N O N OH =N N N E N BN

min p(F'(m) — d)

' A(m)u =q
robUSlt versatile
formulation modelling

.

M1 = My + Sk
fast optimization strategies

computational framework

'-----------
QY = = =B =E E B B I O I O O O N N N N .




Versatile modelling

Challenge:
» FWI modelling problems are large (~ 10?) gridpoints
» time-harmonic systems are increasingly indefinite for high frequencies

Strategy:
» avoid large setup, memory costs & tuning parameters

» offer control on precision wave simulations

» by increasing number of iterations indirect Krylov solvers

Outcomes:
» scalable parallel wave simulations w/ prescribed tolerance
» simple preconditioner that works for different WE’s




simple, robust, ...

fast, complicated,..



Kaczmarz

The Kaczmarz method solves a system Ax =b

by successive row projections

X = X HazH% (bi_a@' X) A

with relaxation parameter 0 < ), < 2

[Kaczmarz, '37]



Kaczmarz
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Kaczmarz

rewrite:
A\ A\
X = (I - Qaia?) X - Qbiai
|a;||5 |a;||5
\—,—/
Q)

a double sweep vyields

A = (QlQQQnQan)X+()b

N—— ——
Q R



Kaczmarz

Find a fixed point by solving
(I — Q)x = Rb

where I — Q is symmetric and positive
semidefinite, so we can use CG (CGMN).

[Bjork & Elfving, '79]



Gordon & Gordon '11-'12
van Leeuwen et. al. "12

_ CGMN & CARP-BCG

CGMN: use simple Kaczmarz row projections

u:=u-+v(g—a u)a;/||a;ll5, i=1...N,
or

u = Q;u + vq;a;/||ai|5

to form a preconditioner deriving from

u .= Qu—l—RthereQ:QlQQ...QNQN...Ql

with double sweeps that
» deals with multiple right-hand-sides simultaneously
» is parallelizible by projecting row blocks independently
» can be accelerated w/ CG




Bjork 79

Preconditioned sysiem

Use CG to invert positive semi-definite system of equations

(I —Q)u=Rq
equivalent to SSOR on the normal equation AA™
Q=1—-—A"HA
R=A"H
with

H=x(2-7)(D+~yL*)" D(D+~L)"

D and L contain the diagonal and lower triangular elements of AA*



Double sweeps <=> u:= Qu+ Rs

Algorithm 1 DKSWP(A,u,s,v) Performs a forward and backward Kaczmarz
sweep on the matrix A

// forward sweep
for:=1to N do

u:=u+ (g — az-*u)az-/Ha@'H%
end for

// backward sweep
for =N to 1l do

u:=u+ (g — ai*u)az-/HaiH%
end for
return u




Matrix-free formulation

Simple algorithm
» low setup costs
matrix-free implementation
extends to different physics (e.g. Virieux uses this for elastic FWI)
different discretizations
on the fly generation of stencils

vV VvV vV V9V

Extensions
» block
» CRMN
» multilevel




Overtrust model

27 point stencil
10 pts per wavelength
PML

5km X 5km X 2.5Km

2These experiments were done on a cluster with 36 IBM x3550 nodes, each with 2 quad-core 2.6
GHz. Intel CPUs and 16 GB memory, connected through a Voltaire Infiniband network. Whenever

possible we used a maximum of 2 cores per node to avoid cache conflicts. Timings for more than 64
CPUs may therefore be suboptimal.




comparison Bigstab, GMRES(5), CGMN

CGMN

0.5,1,2, 4.5 Hz

non-optimized
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Convergence histories for BICGstab (black), GMRES(5) (blue) and CGMN (red)

for various frequencies: (a) .5 Hz, (b) 1 Hz, (c) 2 Hz and (d) 4 Hz. These plots clearly illustrate
the convergence behaviour of the different methods; BiCGstab converges very irrequlary, and both

GMRES and CGMN decrease the residual monotonically.




CGMN
05,1,2, 4Hz
non-optimized

f [Hz] N CGMN | BiCGs | GMRES(5)
0.5  23276.0 | 308.0 | 81.0 112.0
1.0 186208.0 | 564.0 | 150.0 425.0
2.0  1455808.0 | 960.0 | 911.0 963.0
4.0  11646464.0 | 2123.0 * *

1ADLE 4.1
Iteration counts for CGMN, BiCGstab and GMRES for different frequencies (using a constant
number of gridpoints per wavelength). Here, N denotes the total number of unknowns and * indicates
that the method did not converge to the desired tolerance of € = 10~% within 5000 iterations.




Algorithm 1 BCGMN(A, Uy, S, 7, €) Block-CG algorithm on system (I —Q)U =
RS, using DKSWP to perform the matrix-vector multiplications
Py = Ry = DKSWP(A, Uy, S,v) — Uy
while ||Ry||r > €||B||r do
Qk — Pk — DKSWP(A, Pk, O,’Y)
ar = (P Q)" (Ri" Ry)
Uk+1 = U + Proy,
Ri4+1 = Ry — Qrag
Br = (Rx"Ri) ' (Rge1" Ri11)
P11 = R + POk
Ek=k+1
end while




Block CG

0.5,1,2 Hz
sources selected randomly

multiple right-hand-sides

10° . . 10° . . 10° ' '
—Dblocksize = 1 -blocksize = 1 -blocksize = 1
—Dblocksize = 2 blocksize = 5 -blocksize = 10
—Dblocksize = 5 -blocksize = 10 -blocksize = 50
—blocksize = 10 blocksize = 50 ‘blocksize = 100
1072 - 1072 | 107
© © ©
o o -
S S O
n ()] wn
o o o
107"} 107"} 107"}
107 ' ' ' ' 107 ' ' ' ' 107 ' ' '
0 50 100 150 200 250 300 0 100 200 300 400 500 0 200 400 600 800 1000
iteration iteration iteration

Fia. 4.3. Convergence histories for block-CGMN with various block-sizes for frequencies (a)
.5 Hz, (b) 1 Hz and (c) 2 Hz. Interestingly, the convergence is not sped up uniformly; for the first
100 - 200 iterations, all block-sizes yield the same result. FEspecially the largest block-sizes show
super-linear convergence after a certain number of iterations.



Block CG

0.5,1, 2 Hz
sources selected randomly
f [Hz] N blocksize iter time [s]
0.9 23276 1 291 39.9
2 278 43.3
D 200 29.7
10 115 15.2
1.0 186208 1 484 28959.9
5 477 2419.8
10 456 2279.7
50 220 1067.7
2.0 1455808 1 828 125358.2
10 811  122732.7
50 (16 109424.7
100 509  82938.2




Gordon & Gordon '11-'12

CARP-CG

parallel over blocks of rows
averaging guarantees convergence

multiple cores
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Fic. 4.4. (a) Number of iterations as a function of the number of processors for CARP-CG.
Ideally, the number of iterations should be independent of the number of domains (processors), but
the method becomes slightly less effective when the domains become very small. (b) CPU time per
iteration as a function of the number of processors for CARP-CG for various frequencies. The
dashed line indicates the theoretical CPU time in case of linear speedup.




Rafael Lago, Art Petrenko, Zhilong Fang, and Felix J. Herrmann, “Fast solution of time-harmonic wave-equation
for full-waveform inversion”, in EAGE Annual Conference Proceedings, 2014.

CRMN as a smoother
Algorithm 2: CRMN

Input x¢,bc C?, A cC**"
I'o :DKSWP(A, b,X()) — X0 and Po — I'p
Arg =1y - DKSWP(A,0,ry) and Ap, = Arg
for 7 = 0.. until convergence do
_ rfArj
ApJHApj

Xj+1 = Xj + ;P
rji1:=1r; — Q;Ap,;
AI‘j_|_1 — rj41 - DKSWP(A, O, I‘j_|_1)
g riy AT
g rflArj

Pj+1 = Tj+1 — 5P,

Ap; = Arj — BjAp;
end for

Oéj!
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H. Calandra, S. Gratton, R. Lago, X. Pinel, and X. Vasseur. Two-level pre- Henri Calandra, Serge Gratton, Xavier Pinel, and Xavier Vasseur. An

conditioned Krylov subspace methods for the solution of three-dimensional improved two-grid preconditioner for the solution of three-dimensional
heterogeneous Helmholtz problems in seismics. Numerical Analysis and Helmholtz problems in heterogeneous media. Numerical Linear Algebra
Applications, 5:175-181, 2012. with Applications, 2013. to appear.

Three-grid preconditioner

Helmholtz operator Complex Shifted Laplacian operator
GMRES(2) GMRES(2)
Q o T +Jacobi2) | ------- +Jacobi(2) f-—= == - - m e e e e e m e m e m——— -
w=0.8 w=0.8
Restriction Prolongation
[0 T FGMRES(10) |- - o oo . Jacobi(2) (_ ______. Jacobi(2) (____
2h 2 cycles w=0.8 w=0.8

< AN /

Restriction Umlongation

GMRES(10)

__________________________________________ + Jacobi(2) e e e e oo
Q 4h w=0.2

Figure 1: Representation of the two nested multigrid V-cycle scheme of the Tay pre-
conditioner.




Multi-level iterative methods for time-harmonic wave propagation with applications to FWI. Rafael Lago, FJH, in preparation

Three-grid preconditioner

Helmholtz operator Complex Shifted Laplacian operator

o T CRMN | __ CRMN |_

h 1 iteration 1 iteration

Restriction Prolongation

[0 T FGMRES(10) | _ _ o o e . CRMN |_______. CRMN |____

2h 1 cycle 1 iteration 1 iteration

Restriction Prolongation

3Py CRMN f----oeomem-

4h 5 iterations

Figure 2: Representation of the two nested multigrid V-cycle scheme of the ML-CRMN
preconditioner.
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Figure 4: Relative residual for Tov, ML-CRMN and their variants. Test performed in
MATLAB for SEG/EAGE Owverthrust (top images) and Salt Dome (bottom images)
velocity model, solved at §8Hz discretized. Discrete operators obtained with a 7 (left)
and 27 (right) points stencil.




SEG/EAGE Overthrust || SEG/EAGE Salt Dome
It [ T(m) [ M(GiB) || It [ T(m) [ M(GiB)

Tov | 20 | 158.0 30.09 33 | 411.7 36.0
} Tov (1) | 33 | 241.0 30.09 41 | 343.3 36.0
& ML-CRMN | 20 | 108.5 36.50 37 | 248.4 43.7
ML-CGMN | 22 | 133.6 34.34 38 | 251.0 41.2
ML-CGMN(2) | 17 | 123.9 34.34 35 | 271.7 41.2
Tov | - - 6.57 - - 7.9
. Tov(1) | - - 6.57 - - 7.9
& ML-CRMN | 16 | 41.3 7.91 26 | 75.2 9.5
~ ML-CGMN | 18 | 45.2 7.44 28 | 80.5 8.9
ML-CGMN(2) | 16 | 50.2 7.44 33 | 118.2 8.9

Table 2: Comparison between the different preconditioners for SEG /EAGE Quverthrust
(left) and Salt Dome (right) velocity models at 8Hz for both 7 and 27 points stencil.
Tivme 1s given wn minutes and memory 1s given wn GiB. The system matrix for the
Overthrust model (all levels) requires 2.39 and 13.98 GiB respectively for the 7 (diag-

onal only) and 27 points stencil. For Salt Dome, the system matriz requires 2.86 and
16.73 GiB for 7 and 27 points stencils respectively.



Versatile modelling

Framework:
» preconditioners based on Kaczmarz sweeps are flexible w.r.t.
- underlying physics
- discretization
» produce smooth errors as a function of # of iterations
- allows for dynamic precision control

» can handle multiple right-hand-sides & easily parallelizable
- scales to 3D FWI

Challenge:

» translate into practice when errors & convergence unknown




_ Frugal FWI

min p(F(m) — d)

robust

formulation
My 1 = My + Sk

fast optimization strategies

A(m)u=q

versatile
modelling

computational framework




Dimensionality reduction

Tristan van Leeuwen and Felix J. Herrmann, “3D frequency-domain seismic inversion with controlled sloppiness”, SIAM
Journal on Scientific Computing, vol. 36, p. S192-S217, 2014.

Tristan van Leeuwen and Felix J. Herrmann, “Fast waveform inversion without source encoding”, Geophysical Prospecting,
vol. 61, p. 10-19, 2018.

Aleksandr Y. Aravkin, Michael P. Friedlander, Felix J. Herrmann, and Tristan van Leeuwen, “Robust inversion. dimensionality
reduction. and randomized sampling”, Mathematical Programming, vol. 134, p. 101-125, 2012.

Eldad Haber, Matthias Chung, and Felix J. Herrmann, “An effective method for parameter estimation with PDE constraints
with multiple right hand sides”, SIAM Journal on Optimization, vol. 22, 2012.

Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Seismic waveform inversion by stochastic
optimization”, International Journal of Geophysics, vol. 2011, 2011.
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Leverage structure

4 ) 4 )
.. : misfit residual
Objective function: functional L y
\ -
M N
V /_/%
O(m) = Z ¢;(m), ¢i(m) =p | Fi(m)q; —d;
i=1

Reduced costs via
» batching — selecting subsets of sources F;(m) = P;A~! and p(-) arbitarry
» source encoding — forming source aggregates F;(m) = PA~! and p(-) = || - ||5



Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Seismic waveform inversion by stochastic
optimization”, International Journal of Geophysics, vol. 2011, 2011.

_____ Baiching

Approximate the sum—i.e., compute sample average

b~ b \I\Z@ with ZC{1,2,...,M} and K=|I|< M
1€L

» leads to errors that decay as batch/sample size K increases
» when sampled uniformly

E(¢(m)) = ¢(m) and B (Vé(m)) = Vo(m)

» can lead to dimensionality reduction
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_____ Baiching

Difference between sampling with or without replacement determines
» how the variance of the sample average decreases as K increases
» both cases depend on the sample variance

M
1 2
9T A1 — 1 ; Vo, — Vol

but lead to different decay for variance of the sample averaged gradients
» expectation error without replacement

1 K
E(lleal?) = % (1- 37 ) o

1
E(|ller]l2) = =04

» or with replacement




Batchin

—increasing %e sample size

Select sources , M — K M ( |
e in a pre-scribed order /worstcase  E/(|||e — ( ) — max(Vo;, —
 random without replacement (llenll2) M(M-1)) K Pi— ¢

e random with replacement / amplitude source encoding
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Source encoding

When all sources see the same receivers and LS misfit

Fi(m) = PA™" and p(-) = || - [3
we can form source aggregates or supershots w/ simultaneous sources
M
q = sz‘% = Qw with Q= |qi---qu]
i=1

vielding N
6=FE(¢(m)), ¢(m)=PA" (m)gq-d

when covariance 1




Stylized example
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Gradients

Search direction for increasing batch size K:

z [km]
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Avron, Haim, and Sivan Toledo. "Randomized algorithms for estimating the trace of an implicit symmetric positive semi-
definite matrix." Journal of the ACM (JACM) 58.2 (2011):

F. Roosta-Khorasani and U. Ascher, J. Found. of Comp. Math. (2014), DOI: 10.1007/s10208-014-9220-1 arXiv1308.2475:
Improved bounds on sample size for implicit matrix trace estimators

Random-trace estimation
1 K
T o T DT’ ~ , 2
trace (R" R) = E (w' R" Rw) =~ I ;:1 | Rw; |5

~ HPA_lQW — DWH%

» valid for arbitrary normalized W
P accuracy estimates exist

Ty — T )
Pr( <e|l>1-0.
T



http://arxiv.org/abs/1308.2475
http://arxiv.org/abs/1308.2475
http://www.cs.ubc.ca/spider/ascher/papers/roas.pdf
http://www.cs.ubc.ca/spider/ascher/papers/roas.pdf

Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Seismic waveform inversion by stochastic
optimization”, International Journal of Geophysics, vol. 2011, 2011.

Random-trace estimation

TaBLE 1: Summary of bounds, adapted from Avron and Toledo [14].

Estimator Distribution of w Variance of one sample Bound on K for (€, 9) bound
Hutchinson

Hx = (1/K) Zﬁl w; Aw; Pr(w; = £1) = 1/2 2([|A]l5 — ZﬁilAé 6€ *In(2rank(A)/d)
Gaussian

Gk = (I/K) 3, w] Aw; w; € N(0,1) 21| Allz 20€21n(2/9)

Phase encoded
Lx = (N/K) Zi; wf?A?ij w; drawn uniformly from {e;,...,ex} n/a 2€7?1n(4n?/8) In(4/6)



https://www.slim.eos.ubc.ca/biblio/author/120
https://www.slim.eos.ubc.ca/biblio/author/120
https://www.slim.eos.ubc.ca/biblio/author/207
https://www.slim.eos.ubc.ca/biblio/author/207
https://www.slim.eos.ubc.ca/biblio/author/275
https://www.slim.eos.ubc.ca/biblio/author/275
https://www.slim.eos.ubc.ca/content/seismic-waveform-inversion-stochastic-optimization
https://www.slim.eos.ubc.ca/content/seismic-waveform-inversion-stochastic-optimization
https://www.slim.eos.ubc.ca/content/seismic-waveform-inversion-stochastic-optimization
https://www.slim.eos.ubc.ca/content/seismic-waveform-inversion-stochastic-optimization

Samplings

- Gaussian vs unit vectors
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Figure 2: Covariance matrix: K} Zfi . w;w; for random Gaussian vectors (top) and
random unit vectors (bottom) for K = {1,10,100} (left to right)




Samplings

- Gaussian vs unit vectors

Gaussian vectors:
» reduce errors in random-trace estimates
» lead to noisy crosstalk
» corresponds to sampling with replacement

Unit vectors:
» establishes link w/ batching
» can be done with and without replacement
» applies to marine sampling & different misfit functionals

In both cases errors are created that may effect optimization...




Stochastic optimization

Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Seismic waveform inversion by stochastic optimization”,

International Journal of Geophysics, vol. 2011, 2011.

Eldad Haber, Matthias Chung, and Felix J. Herrmann, “An effective method for parameter estimation with PDE constraints

with multiple right hand sides”, SIAM Journal on Optimization, vol. 22, 2012.
Aleksandr Y. Aravkin, Michael P. Friedlander, Felix J. Herrmann, and Tristan van Leeuwen, “Robust inversion. dimensionality

reduction. and randomized sampling”, Mathematical Programming, vol. 134, p. 101-125, 2012.
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— SAA

Stochastic-average approximation (SAA):

Solves

min{f(x) = Ey (F(x, w))}
via Sy 1 -

m}én{f(X) = I ;F(Xawi)}

» keeps “batch” fixed
» converges w/ probability 1
p select K'large enough to control error but suffers from bias




_  SA

Stochastic approximation (SA):
» remove bias by drawing independent source weights at every iteration
» can be done for w's w/ >1 encodings

» convergence proofs are technical & mostly limited to first-order methods
- gradient descent
- no Newton or quasi-Newton

» needs specialized step lengths or averaging that lead to loss of fast
convergence

» under certain conditions show to have sublinear error decay after k
iterations in expectation of |




Algorithm 1: Stochastic gradient descent

Result: Output estimate for the model m
m <— myg; k<— 0 // initial model
while not converged do

(d*,q*) +— {DwF, Qw*} with w¥ € N(0,1); // draw sim. exp.
gh +— VF*[mF! Nk](dk FlmkF—1, §~]) ; // gradient
m"t! «— m" —4"g" ; // update
In]ﬁL1 — lerl (Zle mi —I-mk+1); // average
k<+— k+ 1;

end
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Observations

Stochastic-average approximation (SAA)‘s error
» decays slowly as a function of K
» is fixed throughout the iterations

Stochastic approximation (SA)

» converges slowly (sub linearly) as a function of k
» may become unstable when data is noisy

Combine deterministic full-gradient with stochastic techniques to get

best of both worlds
» fast convergence in the beginning

» control over error by increasing the batch/sample size K guarantee
convergence




Hybrid optimization

Michael P. Friedlander and Mark Schmidt, “Hybrid deterministic-stochastic methods for data fitting”, SIAM Journal on
Scientific Computing, vol. 34, p. A1380-A1405, 2012.

Tristan van Leeuwen and Felix J. Herrmann, “Fast waveform inversion without source encoding”, Geophysical Prospecting,

vol. 61, p. 10-19, 2013.
Aleksandr Y. Aravkin, Michael P. Friedlander, Felix J. Herrmann, and Tristan van Leeuwen, “Robust inversion. dimensionality

reduction. and randomized sampling”, Mathematical Programming, vol. 134, p. 101-125, 2012.
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Errors & convergence - N

search
Consider steepest descent—i.e, ;irectiog
my 1 = My + VxS where s = —Vo(my)

has linear convergence rate
|p(my) — p(m.)|3 =O(c"), 0<c<1

When error in search directions s = —V¢(myg) + ex we have
lo(my,) — ¢p(m,) |3 = O(max{c”,|lex]|3}), 0<c<1

Have fast (= linear) convergence as long we control the error...




Hybrid optimization

Linear converge rate when we choose a batching strategy so that

E(llex]2) =O(c"), 0<c<1

error
o

misfit
o

0 2|O 4|0 6|O 8|0 100 0 5|O 1 60 150
batch size cost
(a) (b)

Figure 1: (a) Asymptotic behaviour of the error between the approximate and true gradient:
worst-case batching (blue), average batching (green), source encoding (red). (b) Asymptotic

convergence rate for different optimization strategies: conventional (green), stochastic (blue)
and hybrid (red).




Observations

Scheme that interpolates between stochastic gradient & full gradient.

If we want to design optimization scheme w/ linear convergence rate

» batch size needs to grow such that F(||ex, ||5 )decreases with at least that rate
» no benefit to increase batch size at a rate faster then the rate of the original
problem—i.e., when problem is ill conditioned so L ( Lipschitz constant) is small

IVo(r) =Vo(y)ll2 < Lilz —yll2 for allzandy

Since this rate is unknown in practice “How to choose the rate of increase of
the batch-size in practice is an open problem...”




Fast optimization

10 x speedup

—e—Dbatching
——full

rel. model error
= o
N o 0
@) oo @)

I
~

100 200 300 400 500 | 5 T4 5
# passes through data X [km]

[van Leeuwen & FJH'11]



FWI

w/ controlled sloppiness

min p(F(m) — d)
o robust
formulation

\

M1 = Mg + Sk
fast optimization strategies

A(m)u =q
versatile
modelling

computational framework




K. van den Doel and U. Ascher, SIAM J. Scient. Comput. (2012), DOI: 10.1137/110826692:
Adaptive and stochastic algorithms for EIT and DC resistivity problems with piecewise constant solutions and many measurements.

_ Frugal FWI

Van der Doel proposes to use cross validation

» introduces too much overhead
» exponential increase un batch size

Come up w/ a more practical heuristic approach...



http://www.cs.ubc.ca/spider/ascher/papers/doas2.pdf
http://www.cs.ubc.ca/spider/ascher/papers/doas2.pdf

Frugal misfit

w/ approximate PDE solves

Heuristic based on behavior of the misfit as a function of €
¢i(m, €) = p(Pu;(e) — d;)

by solving PDEs to tolerance €.

Ideally find € by guaranteeing

¢i(m, €) — ¢;(m, 0)] < neg;(m,0)

for some fraction 7).

[van Leeuwen & FJH "13]



Frugal misfit

w/ approximate PDE solves
Instead find k such that

¢;(m, ae) — ¢;(m, a"Te)| < nei(m, " e) 0<a<1

by increasing the precision, i.e., € — «e, if this inequality does not hold.




Algorithm 1 {f, g} = misfit(m,Z, n)

1: € = 1074, @ = 0.5// Initialization

2: for 2 €7 do

3: for k=0—=10do

4 solve A(m)u = q; up to € // solve forward equation
5 rr = p(P;u —d;) // compute residual

6 if |rp —rp_1| < nrp then

7 break

8: else

9 € = Qe

0 end if

1: end for

2:  solve A(m)*v = P,"Vp(P,u—d;) up to ¢

3 f — f + L _1,0(P7;U. — dz) // misfit
4: g=g+|Z|7'G(m,u)*v // gradient
15: end for




Stochastic Quasi-Newton

Final algorithm has the following key ingredients:

» draws independent random subsets for each misfit & gradient calculation
» decreases fraction 1 +— 1/2 when Wolfe linesearch fails
» increases sample size when average objective does not decrease—i.e, if

(fer1 + fea1) = (e + f1)

» Quasi-Newton Hessian w/ |I-BFGS requires a single extra gradient
calculation ensuring the same sample




Algorithm 1 Stochastic L-BFGS method

:1n=01,b=1, =1, bpax = M // Initialize

2: choose 7y C {1,2,..., M} s.t. |Zp| =b

3: {fo,80} = misfit(mg, Zp,n) // frugal misfit & gradient at initial guess
4: while not converged do

5. 0my = Ibfgs(—gk, {ti}7_._. {yi}r_,_. ) // low-rank inverse Hessian
6 {mk+1, fk+17 gk—l—l} — Iinesearch(fk, g, 5mk)

7. 1if linesearch successtull then

8 tpi1 =mgy — Mg, Y1 = 8ra1 — 8k // update L-BFGS vectors
9 choose 7.1 C {1,2,..., M} s.t. |Zp 1| = b // draw new sample

0 Ufhy8pyy b = misfit(my 1, Zy1,n) // misfit & gradient new sample
0 A (fir 4 flan) = (fi+ /1) then

12: b= min(b+ 3, bmax) // increase batch

13 end if

4 froe1 = fii1) 8k+1 = 81, K=k +1 // Use new misfit & gradient
5: else

6 n =mn/2 // narrow tolerenance

7
|8:

end if

end while




Edam model

Modelling:

» Spherical anomaly w/ constant velocity of 2500 m/s in constant
background of 2000 m/s.

» The modelis 1 km in each direction and is discretized with 20 m
gridspacing and 10 points are added on each side for the PML layer, leading
to a total gridsize of 71 X 71 X 71.

» "Observed” data are generated by solving the Helmholtz equation upto € = 107°
for 9 sources (y=0m), 2601 receivers (y=1000m plane) and 3 frequencies 5,
10 and 15 Hz.

Inversion:
» Use all sources & frequencies forn = {0.1,0.05,0.01}
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Fic. 4.5. Convergence in terms of the (a) misfit and (b) rel. model error for the Edam model.
The average (over all sources and frequencies) tolerance used by CGMN for each outer iteration is
shown in (c) while (d) shows the corresponding number of CGMN iterations required. Using more
accurate PDFE solves (smaller n) yields results closer to the baseline result n = 0 as can be seen from
(a) and (b). The tolerance used for the PDE solves (c) automatically decreases but stays well above
the baseline tolerance of 107°. Consequently, the number of CGMN iterations required is much
lower as can be seen in (d).
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Fi1Gc. 4.8. (The true velocity model used for the Edam experiment is shown in (a). The Re-
constructed models using (b) n = 0.1, (¢c) n = 0.05, (d) n = 0.01 and (e) n = 0 are also shown
on the same colorscale. All the reconstructions are very reasonable when compared to the baseline
result (e). Using more accurate solves n = 0.01 (d) yields less artifacts and is almost identical to
the baseline result, however, the computational cost of the baseline was roughly twice as high.
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F1G. 4.6. Convergence in terms of the (a) misfit and (b) rel. model error for the Edam model
using noisy data (5 % noise). The average (over all sources and frequencies) tolerance used by
CGMN for each outer iteration is shown in (c) while (d) shows the corresponding number of CGMN
iterations required. Using more accurate PDE solves (smaller n) yields results closer to the baseline
result n = 0 as can be seen from (a) and (b). The tolerance used for the PDFE solves (c) automatically
decreases but stays well above the baseline tolerance of 107°%. Consequently, the number of CGMN
iterations required is much lower as can be seen in (d).
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Fic. 4.7. Convergence in terms of the (a) misfit and (b) rel. model error for the Edam model
using noisy data (10 % noise). The average (over all sources and frequencies) tolerance used by
CGMN for each outer iteration is shown in (c) while (d) shows the corresponding number of CGMN
iterations required. Using more accurate PDE solves (smaller n) yields results closer to the baseline
result 1 = 0 as can be seen from (a) and (b). The tolerance used for the PDFE solves (c) automatically
decreases but stays well above the baseline tolerance of 107°%. Consequently, the number of CGMN

iterations required is much lower as can be seen in (d).
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Overthrust model

Modellling:
» We generate data using iWAVE, an open-source time-domain finite-

difference code
» fora5km x5 km central part of a well-known this benchmark model at

50m gridspacing
» Atotal of 121 sources and 2601 receivers (both regularly spaced) cover the
top of the model




Overthrust model

frue model
5km X 5km X 2.5Km
121 sources & 2601 receivers
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Overthrust model
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Overthrust model

Experiment I:
» invert single frequency of 4Hz

» 100m grid size leading to 36 X 61 X 61
» batch sizes are b = {1,20, 50,121}

Experiment Il:
» multiscale inversion f = {4, 6,8} Hz. consecutively using a gridspacing of
» 100 m, 66.67 m and 50 m, respectively
» gridsizes of 36 X61 X 61,48 X86 X86,and 61 X111 X111
» We use either fixed number of b=1 and b=121 sources or an increasing
number of sources, starting from b=1.
» For all cases we perform 2 passes through the data for each frequency.
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F1G. 4.10. Convergence in terms of the (a) misfit and (b) rel. model error for the first Ouver-

thrust experiment. The average (over all sources) tolerance used by CGMN for each outer iteration
s shown in (c¢) while (d) shows the corresponding number of CGMN iterations required. All results
are shown as a function of the effective number of complete passes through the data, and hence have

the same computational cost. The sample-size 1s shown in (e).



Performance

misfit & relative model error

misfit model error
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accuracy # of iterations

107 . . . . . _ 250
@ 2007
T v— S
"l WT TR Y NATH Z 150+
I =
A | 5
@
5
# 100
10” ' ' ' ' ' 50 ' ' ' ' '
0 1 2 3 4 5 5 0 1 2 3 4 5 6

passes passes



Performance

sample size

sample size
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Z [km]

Overthrust model

recovered model w/ b=1
2 passes through data for each (4,6,8) Hz
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Z [km]

Overthrust model

recovered model w/ b=121
2 passes through data for each (4,6,8) Hz
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Overthrust model

growing sample size
2 passes through data for each (4,6,8) Hz

z=1.25km

2500
y = 2502.5 km 2501 | X = 2502.5 km

= 2502
3
> 2503

2500 2502 2504 2504 | ‘j 2500 2502 2504

. .
X [km] 2505 | y [km]

2500 2502 2504
x [km]



z [km]

Overthrust model

growing sample size
10 passes through data for each (4,6,8) Hz
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Observations

Able to carry out 3-D FWI with dynamic
» growth of sample size
» tolerance PDE solves

Model error decays much faster compared to working with all data




Summary

Main ingredients for a scalable approach to 3D FWI:

» iterative Helmholtz solver w/ little memory imprint,
computational overhead, and model-dependent tuning

» practical stopping criterion for wave simulator

» (stochastic) optimization technique that exploits the
separable structure of FWI by working w/ small subsets

» strategy to increase sample size and accuracy as needed




Future plans

Use the same heuristic
» FWI w/ penalty method

» WEMVA w/ random probing

Incorporate composite shots from sim. marine

Build in adaptive (stratified) sampling




Carry home message

Insisting on working w/
» all data

» full accuracy

can be detrimental to FWI because you can not get there.
When ill-conditioned use less rather than more data & accuracy.
Better to call for more data & accuracy only when strictly needed.

Less can be really more...




SLM@

University of British Columbia
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MAP estimation

measurement model:
posterior likelihood:

K
Tpost (m) ~ H 7-‘-noise(};’i(rn) — dz’)’ﬂ'prior(m)
1=1



MAP estimation

Maximization of the likelihood

max Mpest (M)
11l

IS equivalent to

min — log (7post (M))



MAP estimation

For Gaussian noise we have

7Tnoise(r) ~ €XP (_HrH%)

which leads to the usual least-squares
formulation

min Y ||Fi(m) — dj[3



MAP estimation

The use of alternative penalties can be
interpreted as using a different noise model

mrjln Z p(F;(m) —d;)



MAP estimation

densities & penalties

Gaussian, Laplace and Students T



MAP estimation

data with 50% “bad traces”

true model histogram of true noise

0.1

|
cJQCD
o
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MAP estimation

least-squares penalty

0.1

recovered model __ histogram of residual

— (-



MAP estimation

Huber penalty

W recovered histogram of residual

— -



MAP estimation

Students T penalty

recovered model histogram of residual

0.1




MAP estimation

» Noise does not come from Students T
distribution

e Use of Students T penalty may still be
beneficial

» Noise has to be spiky



Outliers

What is an outlier?
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Outliers

What is an outlier?
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Outliers

Measure the misfit in a domain that sparsifies
the noise

mrian (B (F;(m) —d;))

e.g., Fourier, Radon, Curvelets,...



Students T

The penalty is given by
p(r) = log(1+|r;]*/o?)
j

where is a sgale parameter. The
corresponding adjoint source is given by




Students T

Scale parameter is used to separate outliers
from good data

— O residual O —0 residual o



Students T

o scale parameter controls which residuals are
ignored

e sSimilar to a weighted least-squares approach

» how should we choose o ?

e What about source estimation?



Source estimation

Use variable projection approach on
min » p (B (w;F;(m) — d;))

solve source-weights as

min p (B (w; F;(m) — d;))

Wy



Auto-tuning

Extended Students T penalty:

D(24L)

(5)V0?

" N
+ 1
) | ’ 5 E log(1+7“]2-/02)

g=1

po(r) = —N log (F

find optimal o for a given residual by solving

min p,(r)



Workflow

1.Forward modeling d’? = F;(my,)
2.Estimate source weight (scalar optimization)
3.Compute residual r;, — widfred — d;

4.Estimate scale (scalar optimization)
5.Compute adjoint source r; = B*w!Vp(Br;)

7.Compute gradient g = Z VE;(mg)*r;

9.update My, = my — \g




Results 1

e Marmousi model with periodic noise.
e inversion of single frequency (4 Hz) with 20

Iterations
e Misfit measured in (fx) or (fk).




Results 1

no noise:




Results 2

Acoustic Inversion
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Results 2

Variable density data, no noise

least-squares Students T (f,x)

vp [km/s] vp [km/s]




Results 2

Data with bad traces

least-squares Students T (f,x)

Vp [km/s] vp [km/s]




Results 2

Elastic data

least-squares Students T (f,k)

vp [km/s] vp [km/s]
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Questions

Questions
1 .Comparing with the CRMN, how much speed up the ML-CRMN can achieve ?

2.Why when the bolck-sizes 1s bigger, better convergence rate that block CG can
achieve?

3.Except uniform sampling and Gaussian sampling, what kind of other sampling
strategies can we use ?

4. How much speed up can we obtain using the frugal FWI compared to the
conventional FWI?

5.What does the smart averaging means?

6.Does students t only works for the data that has bad traces?




