Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Source estimation for wavefield-reconstruction inversion Zhilong Fang and Felix J. Herrmann

SLIM 🔶 University of British Columbia

Data

Wrong source wavelet

Wrong gradient

Chevron blind test data — Wavefield-reconstruction inversion with source estimation

[Tarantola, 1984]

[J. Virieux and S. Operto, 2009]

Full-waveform inversion

Original problem:

subject to A

where,

- $\mathbf{d}_{k,l}$ Observed data of the kth shot at lth frequency
- $\mathbf{q}_{k,l}$ Source of the kth shot at lth frequency
- $\mathbf{A}_{k,l}$ Helmholtz of the kth shot at lth frequency
- \mathbf{P}_k Receiver projection operator of the kth shot
- m Squared-slowness

$$\left\| \mathbf{P}_k \mathbf{u}_{k,l} - \mathbf{d}_{k,l} \right\|_2^2$$

$$\mathbf{u}_{k,l}(\mathbf{m})\mathbf{u}_{k,l} = \mathbf{q}_{k,l},$$

 $\mathbf{u}_{k,l}$ – Wavefield of the kth shot at lth frequency

[Tarantola, 1984]

[J. Virieux and S. Operto, 2009]

Full-waveform inversion

Reduced/adjoint-state method:

$\underset{\mathbf{m}}{\text{minimize}} \sum_{\mathbf{k}, \mathbf{k}} \|\mathbf{P}_{k} \mathbf{A}_{k,l}(\mathbf{m})^{-1} \mathbf{q}_{k,l} - \mathbf{d}_{k,l}\|_{2}^{2}$

with the gradient given by

 $\mathbf{g} = \sum_{k,l} \mathbf{u}_{k,l}^* rac{\partial \mathbf{A}_{k,l}^*}{\partial \mathbf{m}} \mathbf{v}_{k,l}$ $\mathbf{u}_{k,l} = \mathbf{A}_{k,l}(\mathbf{m})^{-1}\mathbf{q}_{k,l}$ $\mathbf{v}_{k,l} = \mathbf{A}_{k,l}^{-*}(\mathbf{m})\mathbf{P}_k^*\mathbf{r}_{k,l}$ $\mathbf{r}_{k,l} = \mathbf{P}_k \mathbf{A}_{k,l} (\mathbf{m})^{-1} \mathbf{q}_{k,l} - \mathbf{d}_{k,l}$

2 PDE solves are required !

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014] [Golub, G H and Pereyra, V, 1973]

Wavefield-reconstruction inversion

Joint optimization problem:

Eliminating **u** w/variable projection:

$$\overline{\mathbf{u}} = \arg\min_{\mathbf{u}} \sum_{k,l} \|\mathbf{P}_k \mathbf{u}_{k,l} - \mathbf{d}_{k,l}\|_2^2 + \lambda^2 \|\mathbf{A}_{k,l}(\mathbf{m})\mathbf{u}_{k,l} - \mathbf{q}_{k,l}\|_2^2$$

$$\| \mathbf{d}_{k,l} \|_2^2 + \lambda^2 \| \mathbf{A}_{k,l}(\mathbf{m}) \mathbf{u}_{k,l} - \mathbf{q}_{k,l} \|_2^2$$

[van Leeuwen, T and Herrmann, F J, 2013] [Golub, G and Pereyra, V, 1973]

Wavefield-reconstruction inversion

Corresponds to solving the following augmented system:

 $\left(\begin{array}{c} \lambda \mathbf{A}_{k,l} \\ \mathbf{P}_{k} \end{array} \right) \overline{\mathbf{u}}$

with the gradient

$$\bar{\mathbf{i}}_{k,l} = \begin{pmatrix} \lambda \mathbf{q}_{k,l} \\ \mathbf{d}_{k,l} \end{pmatrix}$$

1 augmented system solves is required !

 $\overline{\mathbf{v}}_{k,l} = \mathbf{A}_{k,l}(\mathbf{m})\overline{\mathbf{u}}_{k,l} - \mathbf{q}_{k,l}$

WRI vs. FWI

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014]

True & initial model

Initial model

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014]

FWI vs WRI

Result FWI

Result WRI, $\lambda = 1$

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014]

Triple parameters optimization problem:

[Aravkin, A Y, van Leeuwen, T, Calandra, H, and Herrmann, F J, 2012] [Li, M, Rickett, J, and Abubakar, A, 2013]

FWI with source estimation

Joint optimization problem:

$$\underset{\mathbf{m},\alpha}{\text{minimize}} \sum_{k,l} \|\mathbf{P}_k \mathbf{A}_k\|$$

Eliminate α w/variable projection:

$$\overline{\alpha} = \arg\min_{\alpha} \sum_{k,l} \|\mathbf{P}_k \mathbf{A}_{k,l}(\mathbf{m})^{-1} \alpha_{k,l} \mathbf{e}_{k,l} - \mathbf{d}_{k,l}\|_2^2$$

$\|\mathbf{k}_{k,l}(\mathbf{m})^{-1} \alpha_{k,l} \mathbf{e}_{k,l} - \mathbf{d}_{k,l} \|_{2}^{2}$

Triple parameters optimization problem:

Triple parameters optimization problem:

$$\underset{\mathbf{u},\mathbf{m},\alpha}{\text{minimize}} \sum_{k,l} \|\mathbf{P}_k \mathbf{u}_{k,l} - \mathbf{d}_{k,l}\|_2^2 + \lambda^2 \|\mathbf{A}_{k,l}(\mathbf{m})\mathbf{u}_{k,l} - \alpha_{k,l}\mathbf{e}_{k,l}\|_2^2$$

Eliminate **u** and α jointly w/variable projection:

$$[\overline{\mathbf{u}},\overline{\alpha}] = \arg\min_{\mathbf{u},\alpha} \sum_{k,l} \|\mathbf{P}_k \mathbf{u}_{k,l} - \mathbf{d}_{k,l}\|_2^2 + \lambda^2 \|\mathbf{A}_{k,l}(\mathbf{m})\mathbf{u}_{k,l} - \alpha_{k,l}\mathbf{e}_{k,l}\|_2^2$$

Corresponds to solving the following augmented system:

$$\begin{pmatrix} \lambda \mathbf{A}_{k,l} & -\lambda \mathbf{e}_{k,l} \\ \mathbf{P}_k & 0 \end{pmatrix} \begin{pmatrix} \overline{\mathbf{u}}_{k,l} \\ \overline{\alpha}_{k,l} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{d}_{k,l} \end{pmatrix}$$

Cf. original augmented system:

$$\begin{pmatrix} \lambda \mathbf{A}_{k,l} \\ \mathbf{P}_k \end{pmatrix} \overline{\mathbf{u}}_{k,l} = \begin{pmatrix} \lambda \mathbf{q}_{k,l} \\ \mathbf{d}_{k,l} \end{pmatrix}$$

Full column rank! No additional computational cost!

Synthetic example

True Model

Initial Model

Gradient comparison

Gradient with true source wavelet

Gradient with wrong source wavelet

Gradient comparison

Gradient with true source wavelet

Gradient with estimated source wavelet

BG model

Modeling information: Model size: 2000m x 4500m Source spacing: 50m Receiver spacing: 10m Fixed spread 4.5km Frequency : 2~31 Hz

Inversion information: Optimization Solver: Gauss-Newton Iterations per frequency band: 21 Batch size: 15

Source wavelet

Result with true source wavelet

Depth [m]

U

Result with estimated source wavelet

Depth [m]

U

Relative model-error comparison

_

Source wavelet comparison

Zhilong Fang

Xiang Li

Bas Peters

Brendan Smithyman Mengmeng Yang

Data-set information:

- 1. 1600 shots:
- 3. Maximum offset = 8000 m;
- 4. Record time = 8.0 s, sample rate 4 ms;
- 5. Vp water = constant = 1510 m/s;
- 6. With free surface multiples present in the data;
- 7. Isotropic Elastic.

Inversion strategy:

- 1. Frequency domain WRI with Source estimation;
- 3. Batch sizes of random frequency subsets: 3, 6, 10, 10;
- 4. Batch size of random source subsets: 300;
- 6. 2passes of WRI from frequency 3-11 Hz;
- 7. Grid size: 20m;
- 8. Minimum offset used: 1000m;
- 9. No pre-processing !!!

Data comparison — 3 Hz Data of 800th shot

36

-4

-6

Initial model 8km Depth [km] 3 4

Inversion result

Source wavelet comparison

Kirchhoff migration —Initial model

Kirchhoff migration —Inversion result

Common Image Gather —Initial model

Common Image Gather —Inversion result

Lateral [km]

3700

Well-log comparison

Shot record comparison— Initial model

Shot record comparison— Inversion result

Shot record comparison— Initial model

S

Shot record comparison— Inversion result

Conclusions

1. Using the variable projection method, we can estimate the source wavelet for the WRI. • Synthetic BG model

2. Source estimation enhances the robustness of WRI for field seismic data.

• Chevron blind test data

Acknowledgements

Thank you for your attention !!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada via the Collaborative Research and Development Grant DNOISEII (375142--08). This research was carried out as part of the SINBAD II project which is supported by the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Sub Salt Solutions and Woodside

