Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Uncertainty Quantification for Wavefield-Reconstruction Inversion

Zhilong Fang, Chia-Ying Lee, Curt Da Silva, Felix J. Herrmann and Rachel Kuske

SLM University of British Columbia

Motivation

Motivation

Motivation

Gauss-Newton Hessian of FWI

Hessian of WRI

[R. Gerhard Pratt, Changsoo Shin and G.J. Hicks, 1998] [van Leeuwen, T and Herrmann, F J, 2013]

Goals

- Set up a reasonable distribution for the model given observed data.
- Derive a practical method to calculate/estimate this distribution.
- Generate different statistical parameters of the model to quantify the uncertainty.

[Tarantola, 1984]

[J. Virieux and S. Operto, 2009]

Full-waveform inversion

Original problem:

subject to A

where,

- $\mathbf{d}_{k,l}$ Observed data of the kth shot at lth frequency
- $\mathbf{q}_{k,l}$ Source of the kth shot at lth frequency
- $\mathbf{A}_{k,l}$ Helmholtz of the kth shot at lth frequency
- \mathbf{P}_k Receiver projection operator of the kth shot
- m Squared-slowness

$$\left\| \mathbf{P}_k \mathbf{u}_{k,l} - \mathbf{d}_{k,l} \right\|_2^2$$

$$\mathbf{u}_{k,l}(\mathbf{m})\mathbf{u}_{k,l} = \mathbf{q}_{k,l},$$

 $\mathbf{u}_{k,l}$ – Wavefield of the kth shot at lth frequency

[van Leeuwen, T and Herrmann, F J, 2013][Peters, B, Herrmann, F J and van Leeuwen, T and , 2014]

Wavefield-Reconstruction Inversion (WRI)

Joint optimization problem:

Eliminating **u** using variable projection:

$$\overline{\mathbf{u}} = \arg\min_{\mathbf{u}} \sum_{k,l} \|\mathbf{P}_k \mathbf{u}_{k,l} - \mathbf{d}_{k,l}\|_2^2 + \lambda^2 \|\mathbf{A}_{k,l}(\mathbf{m})\mathbf{u}_{k,l} - \mathbf{q}_{k,l}\|_2^2$$

$$\| \mathbf{d}_{k,l} \|_2^2 + \lambda^2 \| \mathbf{A}_{k,l}(\mathbf{m}) \mathbf{u}_{k,l} - \mathbf{q}_{k,l} \|_2^2$$

Larger # of degrees of freedom

[van Leeuwen, T and Herrmann, F J , 2013]

"more convex"

Simple test

Data

FWI data with initial model

WRI data with initial model

12

Statistical FWI vs WRI

Full-waveform inversion:

$$-\|\mathbf{m} - \mathbf{m}_{\text{prior}}\|_{\boldsymbol{\Sigma}_{\text{prior}}^{-1}}^{2})$$
 Prior

Posterior distribution of WRI Marginal distribution of **m**: $ho_{ m post}({f m}) \propto \int ho_{ m post}({f m},{f u}) { m d}{f u}$ $= (2\pi)^{N_{\mathbf{u}}/2} |\mathbf{\Sigma}_{\mathbf{u}}|^{1/2} \rho_{\text{post}}(\mathbf{m}, \overline{\mathbf{u}}(\mathbf{m}))$

Here

 $\begin{pmatrix} \lambda \boldsymbol{\Sigma}_{\text{pde}}^{-1/2} \mathbf{A} \\ \boldsymbol{\Sigma}_{\text{poiso}}^{-1/2} \mathbf{P} \end{pmatrix} \overline{\mathbf{u}}(\mathbf{m}) = \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \end{pmatrix} \mathbf{u}(\mathbf{m}) = \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \end{pmatrix} \mathbf{u}(\mathbf{$

$$egin{pmatrix} \lambda \mathbf{\Sigma}_{ ext{pde}}^{-1/2} \mathbf{q} \ \mathbf{\Sigma}_{ ext{noise}}^{-1/2} \mathbf{d}_{ ext{obs}} \end{pmatrix}$$

 $|\Sigma_{\mathbf{u}}| = \det((\lambda^2 \mathbf{A}^T \Sigma_{\text{pde}}^{-1} \mathbf{A} + \mathbf{P}^T \Sigma_{\text{noise}}^{-1} \mathbf{P})^{-1})$ Huge computational cost !!!

Posterior distribution of WRI Approximate the marginal distribution:

$$\rho_{\text{post}}(\mathbf{m}) \propto \int \rho_{\text{post}}(\mathbf{m}, \mathbf{u}) d\mathbf{u}$$
$$= (2\pi)^{N_{\mathbf{u}}/2} |\mathbf{\Sigma}_{\mathbf{u}}|^{1/2} \rho_{\text{p}}$$
$$\approx \mathbf{C} \rho_{\text{post}}(\mathbf{m}, \overline{\mathbf{u}}(\mathbf{m}))$$
$$\propto \rho_{\text{post}}(\mathbf{m}, \overline{\mathbf{u}}(\mathbf{m}))$$

 $\mathbf{p}_{\mathrm{ost}}(\mathbf{m}, \overline{\mathbf{u}}(\mathbf{m}))$

Marginal distribution vs Approximate distribution

Joint distribution

\mathbf{m}

Marginal distribution vs Approximate distribution

Quantify the uncertainty

Solution:

Integrate the posterior distribution

Goal : Quantify the uncertainty based on the posterior distribution $ho_{ m post}({f m})$

Huge computational cost!!!

Quantify the uncertainty

Solution:

- Integrate the posterior distribution
- McMC method to sample the posterior distribution

Goal : Quantify the uncertainty based on the posterior distribution $ho_{ m post}({f m})$

[James Martin et al, 2012]

McMC method

Newton Type McMC: $\tilde{\pi}_k(\mathbf{m}) \backsim \mathcal{N}(\mathbf{m}_k - \mathbf{H}_k^{-1}\mathbf{g}_k, \mathbf{H}_k^{-1})$

Computational cost: 1) Low rank approximation of the Hessian. 2) Number of PDE solvers ~ Number of samples.

Quantify the uncertainty

Solution:

- Integrate the posterior distribution
- McMC method to sample the posterior distribution
 - Advantage: the true uncertainty can be quantified
 - Disadvantage: Huge computational cost

Goal : Quantify the uncertainty based on the posterior distribution $ho_{ m post}({f m})$

Quantify the uncertainty

Solution:

- Integrate the posterior distribution
- McMC method to sample the posterior distribution
 - Advantage: the true uncertainty can be quantified
 - Disadvantage: Huge computational cost
- Use an approximate distribution to quantify the uncertainty

Goal : Quantify the uncertainty based on the posterior distribution $ho_{ m post}({f m})$

Quadratic approximation

$f(\mathbf{m}) \approx f(\mathbf{m}_{\text{MAP}}) + \mathbf{g}^T(\mathbf{m} - \mathbf{m}_{\text{MAP}}) + \frac{1}{2}(\mathbf{m} - \mathbf{m}_{\text{MAP}})^T \mathbf{H}(\mathbf{m} - \mathbf{m}_{\text{MAP}}) := \overline{f}(\mathbf{m})$

Hessian of FWI

Full Hessian of FWI:

$\mathbf{H} = \mathbf{H_{GN}} + \mathbf{H_2}$

Gauss-Newton Hessian of FWI: $H_{GN} = G^T A^{-T} P^T P A^{-1} G$ where $G = \frac{\partial A(m) u}{\partial m}$ sparse

Gauss-Newton Hessian of FWI

[van Leeuwen, T and Herrmann, F J , 2013]

x 100

Quadratic approximation

dm – Different random directions

$f(\mathbf{m}_{MAP} + \alpha \mathrm{d}\mathbf{m})$

Quantify the uncertainty

Solution:

of the Hessian.

Sparse, no additional PDE solves are required!

Goal : Quantify the uncertainty based on the posterior distribution $ho_{ m post}({f m})$

• Use an approximate distribution to quantify the uncertainty. Quantify the uncertainty by estimating the diagonal part of the inverse

Diagonal approximation vs true Hessian

Diagonal approximation

Diagonal part of the true Hessian

Diagonal approximation vs true Hessian – random realizations

Diagonal approximation

28

true Hessian

 $\mathbf{r} \sim \mathcal{N}(0, \mathbf{I})$

Workflow – uncertainty quantification

Compute the Hessian at the MAP estimate and generate the Gaussian distribution.

Quantify the uncertainty of the model.

Numerical experiment

3			
3	-	5	

Model size: 500m x 2000m
Source spacing: 80m
Receiver spacing: 20m
Fixed spread 2km
Frequency: 10-30 Hz
Standard doviation of data r

Standard deviation of data noise: 0.5 3.5 Standard deviation of pde: 0.5 lambda: 1

Simple model

3.5

3 a) Maximum a posteriori estimate 2.5

b) The standard deviation

- 2

- 80.0
- 0.06
- 0.04
- 0.02

Posterior distribution

Maximum a posterior

Posterior distribution

- Lateral [m]
- Maximum a posterior

Five random realizations of data:

$\mathbf{d}_i = \mathbf{F}(\mathbf{m}_t) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

Inversion results corresponds to these data:

 $\mathbf{d}_i
ightarrow \mathbf{m}_{\mathrm{i}}$

4.5 4 **Model size:** 2000m x 4500m 3.5 Source spacing: 50m 3 Receiver spacing: 10m 2.5 Fixed spread 4.5km 2 1.5 Frequency: 5~31 Hz

Standard deviation of data noise: 0.5 Standard deviation of pde: 0.5 lambda: 1

4.5 4 3.5 3 2.5 2

Maximum a posterior

Posterior distribution

Maximum a posterior

Posterior distribution vs Prior distribution

44

Summary

- feasible manner
 - No extra PDE solves are required
- true Hessian to quantify the uncertainty.
- This gives us confidence in our confidence intervals

• We can approximate the marginal distribution in a computationally

• The approximate diagonal Hessian is a good approximation of the

• The results of inverting noisy data still lie in the confidence intervals

Acknowledgements

Thank you for your attention !!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada via the Collaborative Research and Development Grant DNOISEII (375142--08). This research was carried out as part of the SINBAD II project which is supported by the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Sub Salt Solutions and Woodside

