Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Stochastic optimization and its application to seismic inversion

Zhilong Fang, and Tim Burgess

University of British Columbia

Outline

- Stochastic optimization
- Stochastic gradient method
- Stochastic average gradient method
- Stochastic gradient method with growing batch size
- Application on seismic inversion

Seismic inversion

3D Model
Size: nx * ny * nz

5D Data
Size: nxsrc * nysrc * nxrec * nyrec * nt

Stochastic optimization

Data fitting problem:

$$\min_{\mathbf{m}} \varphi(\mathbf{m}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{m})$$

Full gradient (FG):

$$\min_{\mathbf{m}} G(\mathbf{m}) = \frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{m})$$

Stochastic optimization

Full gradient method:

$$\mathbf{m}^{k+1} = \mathbf{m}^k - \alpha_k G(\mathbf{m}^k) = \mathbf{m}^k - \frac{\alpha_k}{N} \sum_{i=1}^N g_i(\mathbf{m}^k)$$

Linear convergence rate:

$$\varphi(\mathbf{m}^k) - \varphi(\mathbf{m}^*) = \mathcal{O}(\rho^k)$$

for some $\rho < 1$

[Agarwal *et al.*, 2012]

Stochastic optimization

Stochastic optimization

$$\min_{\mathbf{m}} \overline{\varphi}_k(\mathbf{m}) = \frac{1}{n_{\mathcal{I}_k}} \sum_{i \in \mathcal{I}_k} f_i(\mathbf{m})$$

Stochastic gradient (SG):

$$\overline{G}_k(\mathbf{m}) = \frac{1}{n_{\mathcal{I}_k}} \sum_{i \in \mathcal{I}_k} g_i(\mathbf{m})$$

Stochastic optimization

Stochastic gradient method:

$$\mathbf{m}^{k+1} = \mathbf{m}^k - \alpha_k \overline{G}_k(\mathbf{m}^k)$$

Sublinear convergence rate:

$$\mathbb{E}[\varphi(\mathbf{m}^k)] - \varphi(\mathbf{m}^*) = \mathcal{O}(1/k)$$

FG vs SG

Full gradient method:

Stochastic gradient method:

FG vs SG

Convergence comparison: • FG method has O(N) cost with $\mathcal{O}(\rho^k)$ rate;

- SG method has O(1) cost with O(1/t) rate;

FG vs SG

Convergence comparison: • FG method has O(N) cost with $\mathcal{O}(\rho^k)$ rate;

- SG method has O(1) cost with O(1/t) rate;

Hybrid method:

Stochastic average gradient method

Stochastic average gradient method (SAG):

$$\mathbf{m}^{k+1} = \mathbf{m}^k - \frac{\alpha_k}{n} \sum_{i=1}^N y_i^k$$

where

$$y_i^k = \begin{cases} g_i(\mathbf{m}^k) & \text{if } i = i_k, \\ g_i^{k-1} & \text{otherwise} \end{cases}$$

Stochastic average gradient method

Convergence rate:

Assume f_i is convex, f_i' is L- continuous, φ is μ -strongly convex, with $\alpha_k = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[\varphi(\mathbf{m}^k) - \varphi(\mathbf{m}^*)] \le (1 - \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^k C$$

Stochastic average gradient method

Convergence rate comparison

Number of f_i' evaluations to reach an accuracy of ϵ :

- SG $\mathcal{O}(\frac{L}{\mu}(1/\epsilon))$;
- FG $\mathcal{O}(N \frac{L}{\mu} log(1/\epsilon))$;
- SAG $\mathcal{O}(\max\{N, \frac{L}{\mu}\}log(1/\epsilon))$

Convergence comparison

quantum (n=50000,p=78) and rcv1(n=697641, p=47236)

Stochastic gradient:

$$\overline{G}_k(\mathbf{m}) = \frac{1}{n_{\mathcal{I}_k}} \sum_{i \in \mathcal{I}_k} g_i(\mathbf{m})$$

here, $n_{\mathcal{I}_k} \to N$ slowly.

Sampling strategies:

- Deterministic: pre-determined sample sequence
- Randomized: uniform sampling

Convergence rate:

deterministic –

$$\varphi(\mathbf{m}^k) - \varphi(\mathbf{m}^*) = \mathcal{O}(\rho^k) + \mathcal{O}(\left[\frac{N - n_{\mathcal{I}_k}}{N}\right]^2)$$

sampling w/o replacement –

$$\mathbb{E}[\varphi(\mathbf{m}^k)] - \varphi(\mathbf{m}^*) = \mathcal{O}(\rho^k) + \mathcal{O}(\frac{N - n_{\mathcal{I}_k}}{N} \cdot \frac{1}{n_{\mathcal{I}_k}})$$

sampling w/ replacement -

$$\mathbb{E}[\varphi(\mathbf{m}^k)] - \varphi(\mathbf{m}^*) = \mathcal{O}(\rho^k) + \mathcal{O}(\frac{1}{n_{\mathcal{I}_k}})$$

Binary logistic regression experiments:

data for 141 sources, 281 receivers, 15 Hz Ricker

multi-scale frequency domain inversion: [2.5-20] Hz in 16 bands

traditional L-BFGS
~15 full evaluations per frequency band

hybrid method ~1.5 full evaluations per frequency band

10 x speedup

Conclusion

- Hybrid method and SGA gives both speed-uo of stochastic method and convergence rate of deterministic method.
- Hybrid method can be applied to the seismic inversion and reduce the computational cost.