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Full Waveform Inversion

e The Full Waveform Inversion (FWI) problem is to estimate subsurface

velocity parameters for which solutions to the corresponding Helmholtz PDE
best match data from source experiments.

H,[m]u = [w?m + V?]u

e Problems are very large: billions of variables and terabytes of data.

e FWIis typically formulated as a Nonlinear Least Squares (NLLS) problem
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Single source monochromatic:

1
min §|]Pu —do||5 subject to Hy[m]u = qq

m,u

Variable | Type | Dimension Description

m R NN, Model (slowness squared)
H,, [m] C ngN, X nyn, | Discrete Helmholz with boundary

P R Ny X Ny Sampling operator
d, C N, Data vector
o C NN Source
u C NN Wavetield

. 1 -
i o(m) = 5 [PHy [m]~a, — do
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Evaluating the gradient: just PDE solves

® Adjoint formulation using the Lagrangian

1 X
L(v,u,m) = [Pu—d|} + v (Hmu - q

® Gradient of the Lagrangian:

OvL = Hm|u — q
Oul = PY(Pu—d)+ H[m]*v

® Evaluate last term at particular 1 , Vv

u H[m] !q

—H[m]*P!(Pa —d)

.\_’.
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Multi-source, single-frequency FWI

1
min §H’Pf(U) — D, ||% subject to H,[m]U = Q,

m. U
Variable | Type | Dimension Description
H,, [m] C NpNy X NpN, Discrete Helmholz with boundary for w
D, C Ny X Ng Data vector for w
P R NNy X Mg — Ny X Nig Sampling operator
Qo C NN, X Ng Source for frequency w
U, C NN, X Mg Wayvefield for frequency w

1
min ¢(m) := §H’Pf(Hw m]™'Q.) — Do |7
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Multi-source, multi-frequency FWI

1
min §HP(U) — DJ|% subject to H[m]U = Q

m. U
Variable | Type | Dimension Description
H[m] C nf(Ngny X Ngny) diag|H,, [m], ..., H,, [m)]]
D C ne(ny X ng) stack| Dy, , ..., Dwnf]
P R n¢(ngn, X ng) — ng(n, X ng) | Applies P to each frequency
Q C nf(ngn, X ng) stack|Q,,,, - - - anf]
U C nf(Ngn, X Ng) stack|Uy,,, ..., anf]

min  ¢(m) := _ | P(H[m]~'Q) D}

Flm, Q]
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Difficulties with NLLS

e The size of FWI requires algorithms that reduce computation time, e.g. by
working on reduced data volumes.

e In addition to size, there are problems with the NLLS formulation:
1) Local minima (missing low frequency information, model misspecification, cycle skipping)

2) Insufficient data (multiple models fit the same data)
3) Inadequate data (data not in the range of modeling operator)

4) Sensitivity - small changes in data yield large changes in the model estimate

e Here we focus on sparse formulations to address some of these problems.

[Virieux '09; Symes '09; Symes '08]
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e Velocity models are compressible in Curvelets.

Compressibility in Curvelefs

e Geophysical images are layered, and may me modeled as objects with edges.

Curvelets provide sparse representations for such images.

[Candes ’'00]
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1% of coeff.
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5% of coeff.
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FWI: Sparsity Regularization

Sparsity-promoting formulations:

1: “QP” min [D — F[C*x: Q)% + Ax[
2: “Lasso” min|D—F[C "x; Q|7 st x| <7

3: “BPDN” min|x[; st [D-F[C'x;Q]|r <o

X

BPDN formulation looks promising from a scientific standpoint, but Lasso
formulation is easier to optimize.
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Algorithms |

For now we focus on the nonlinear LASSO formulation:

min |D — F[C*'x; Q][I st. [x[i <7

A Limited Memory Projected Quasi-Newton method has recently been
proposed for optimization problems of the form

m}%n f(x) st. xeC [Schmidt et al. '09]

Matlab code is available from
http://www.cs.ubc.ca/~schmidtm/Software/PQN.html
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Proof of Concept

e We consider a model that is sparse in physical domain: sparse
perturbation of constant background velocity (2km/s)

e Cross-well setting, 101 sources and receivers in vertical wells 800 m. apart

e 9 pt. discretization of Helmholtz operator with absorbing boundary; 10 m.
spacing on grid

o Sample of Frequencies [5.0, 6.0, 11.5, 14.0, 15.5, 17.5, 23.5] Hz

e We consider full inversion, and subsampling with 5 sim. shots
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Geometric Setup

TRUE MODEL INITIAL MODEL

TRUE L1-NORM: 5.7
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Least Squares Results:

FuLL MODEL, LBFGS (500) 5 SHOTs, LBFGS (200)

L1-NORM: 19.2 L1-NORM: 22.7
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Lasso Results

5 SHOTSs, SPG (400)

LASSO FORMULATION

min D — Flmo +m: QJ|/}

s.t. lm|, <7

LT1-NORM: 5.7
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Marmoussi Example

e We consider a subset of the Marmoussi model
e 151 shots, 301 receivers

e 9 pt. discretization of Helmholtz operator with absorbing boundary; 10 m.
spacing on grid

o Sample of Frequencies [5.0, 6.0, 11.5, 14.0, 15.5, 17.5, 23.5] Hz

e We consider subsampling with 5 sim. shots
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Curvelet Example

TRUE REFLECTIVITY

CURVELET LASSO FORMULATION
I

. ~ =
min D — Flmo + C*x: Q][

s.t. |x|. <7
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Curvelet Resulis

CURVELET LASSO FORMULATION
I

_ ~ =
min D — Flmo + C*x: Q][

s.t. |x|. <7
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Curvelet Resulis

CURVELET LASSO FORMULATION
I

. ~ =
min D — Flmo + C*x: Q][

s.t. |x|. <7
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Curvelet Resulis

CURVELET LASSO FORMULATION
I

. ~ =
min D — Flmo + C*x: Q][

s.t. x| <7

Sunday, July 24, 2011



Curvelet Resulis

CURVELET LASSO FORMULATION
I

. ~ =
min D — Flmo + C*x: Q][

s.t. x| <7
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Curvelet Resulis

CURVELET LASSO FORMULATION
I

. ~ =
min D — Flmo + C*x: Q][

s.t. x| <7
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Curvelet Resulis

CURVELET LASSO FORMULATION
I

. ~ =
min D — Flmo + C*x: Q][

s.t. x| <7
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Curvelet Resulis

LBFGS

STANDARD FWI

min | D — Flmg + m; Q)|
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MODEL ERROR

Model
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Data Error vs. Tau
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Pareto Trade-Off Curve

bll, 7 min ||b— Ax
H ”2\ in | l2 Lasso
20— S.1. |X||1 S T

two—norm of residual

one—-norm of solution
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Basis Pursuit Denoise

H HQ\ min | X2 |asso  [van den Berg '08]

st. x| <7

two—norm of residual

one—-norm of solution
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DATA ERROR

Nonline

ar Lasso

1o .
0.9/
.s. ¢ NONLINEAR LASSO
o7 1 min |D-FCxQl}
o6 ' st x|l <7
0.5
0.4t
0.2}
0.1 l
% 200 a0 T 600
T
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DATA ERROR

Nonlinear BPDN

0.9/

osl © NONLINEAR LASSO
07 . min [[D-FlC'xqQ]}
oe 3 ot xh=r INONLINEAR
NI | BPDN
0.4 !

\ min 1[4
0.3t =1 X
0.27 \\ / 5.t ||D _F[C*X; Q]H% <o
O 0.1 ‘-,\\
0 ' \‘- ---------------
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Conclusions

o Exploiting sparsity is a promising direction for
modeling/regularization of FWI

e Preliminary results are promising: we can improve
recovery from insufficient data with sparsity
promotion.

e Understanding trade-off between NONLINEAR
least-squares and model sparsity is our current
focus in this work.
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