Digital Twins in the era of generative AI — Application to **Geological CO₂ Storage**

Abhinav Gahlot², Rafael Orozco¹, Haoyun Li¹, Tuna Erdinc³, Ziyi Yin¹, Mathias Louboutin^{2,5}, Felix J. Herrmann^{1,2,3}

Haliburton – HCMF Seminar Tuesday, February 13, 2024

Georgia Tech College of Computing 2 School of Computational Science and Engineering 3 Georgia Tech College of Sciences 3 School of Earth and Atmospheric Sciences

Georgia Tech College of Engineering School of Electrical and Computer Engineering

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0) Copyright (c) 2024, Felix J. Herrmann (Georgia Tech)

⁵ now at Devito Codes

MI4Seismic

Digital Twins in the era of generative AI — Application to Geological CO₂ Storage

Georgia Institute of Technology

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0) Copyright (c) 2024, Felix J. Herrmann (Georgia Tech)

ML4Seismic

Why Geological Carbon Storage?

Drivers geological CO₂ storage

- To keep temperatures below the 1.5-1.7°C rise, we need to safely store
 - ► 7 8 GtCO₂/ yr by 2050
 - cumulatively 350 1200 GtCO₂ by 2100

- Requires *commissioning* of 7000 8000 offshore "Sleipners", @1 Mt/yr by 2050 deployment of 300 – 400 wells per year
 - monitoring of CO₂ migration to control subsurface distribution & verification
 - assurance of safe operations
 - transfer of liability to national governments at end of life cycle

Risk profiles

Uncertainties & risk storage model

- highest at start
- diminish when more time-lapse data is collected

Containment risk increases

- ▶ w/ amount of CO₂ stored
- ► w/ size area undergoing pressure changes

There can be **NO** lapse in monitoring because

- any lack of *transparency* conformance
- ▶ will lead in loss in *confidence* by the *general* public

High-fidelity time-lapse information needs to be collected regularly over long periods of time!

uncertainty profile

containment risk profile

Wood et. al, Locked away – geological carbon storage, The Royal Society, October 2022 Ringrose, Philip. How to store CO2 underground: Insights from early-mover CCS Projects, 2020.

Challenges monitoring Geological CO₂ Storage in Saline Aquifers

Regulators & general public require transparency & assurances that supercritical CO₂ stays put in the storage complex

- reservoir simulations alone are uncertain due to large variability permeability
- risk profile storage & containment highest at start & at end
- there is a need for reproducibility for transparency

Develop low-cost monitoring & control system for CO₂ plumes

- that is uncertainty aware
- maximally captures information collected over many decades
- attains accuracy needed to detect early onset leakage
- capable of risk mitigation via control

Systematic assessment of risks using techniques from uncertainty quantification.

Digital Twins from concept to reality

spans its lifecycle, is updated from real-time data, and uses simulation, machine learning and reasoning to help decision-making."

Innovation accelerating open-source software platform that

- makes data-informed predictions on future CO₂ plume behavior
- produces time-lapse data-consistent CO₂ predictions
- Is uncertainty aware & allows for scenario testing & control
- Informs on how much & where to collect data, thus reducing CCS monitoring costs

Møyner, O., et.al. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. <u>https://doi.org/10.5281/zenodo.7775759</u> Luporini, F., et. al. 2022. devitocodes/devito: v4.6.2 (v4.6.2). Zenodo. <u>https://doi.org/10.5281/zenodo.6108644</u> Witte, P., et.al. 2020. slimgroup/JUDI.jl: DOI release (v2.0.2). Zenodo. <u>https://doi.org/10.5281/zenodo.3878711</u> Witte, P., et.al. 2021. slimgroup/InvertibleNetworks.jl: v2.1.0 (v2.1.0). Zenodo. <u>https://doi.org/10.5281/zenodo.5761654</u>

Open Source scalable 2/3D code

Flow simulations:

- ► Jutul.jl
- JutulDarcy.jl

Wave simulations & imaging:

- Devito
- ► JUDI.jl

Machine learning:

- InvertibleNetworks.jl
- ► Flux.jl

Jutul JutulDarcy

Digital Twin enabling technologies

Key innovations:

- Learned leakage detection*
- Generative Geostatistical Modeling (GGM)*
- Learned FWI w/ WISE: Full-waveform Inference w/ Subsurface Extensions*
- Learned flow *imaging* via *coupled* flow-seismic*
- Uncertainty-aware Digital Twin that allows for
 - controlled CO₂ injectivity rate
 - optimized CO₂ monitor well placement

*Will be integrated into the Digital Twin for Underground CO₂ Storage

Learned leakage detection

Explainable Leakage Detection simulation-based training deep neural classifier

proxy model wavespeed, density

reservoir model permeability, porosity

class activation mapping

Huseyin Tuna Erdinc, Abhinav P. Gahlot, Ziyi Yin, Mathias Louboutin, and Felix J. Herrmann, "De-risking Carbon Capture and Sequestration with Explainable CO2 Leakage Detection in Time-lapse Seismic Monitoring Images", in AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges, 2022

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "De-risking geological carbon storage from high resolution time-lapse seismic to explainable leakage detection", 2022

CO₂ dynamics time-lapse models wavespeed, density concentration, pressure pressure induced leakage fault regular two-phase flow deep neural classifier time-lapse imaging time-lapse (difference) data

Generative Geostatistical Modeling (GGM)

Learning from examples w/ Generative Al

Training:

Sampling:

Learned Geology from proxy Earth models

Training:

Sampling:

Generative Geostatistical Modeling training data augmentation

after training

Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, "Towards generative seismic kriging with normalizing flows", ML4SEISMIC Partners Meeting. 2023.

observed seismic

0

1

2

3

Lateral position [Km]

5

6

0.0

Learned FWI w/ WISE

Full-waveform inference posterior distribution

velocity model

fails because mapping is too complex

Ziyi Yin, Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, "WISE: Full-waveform Inference with Subsurface Extensions", ML4SEISMIC Partners Meeting. 2023.

observed data

Full-waveform inference posterior w/ physics-based summary statistic

velocity model

migration preserves information as long as migration-velocity model is sufficiently accurate

Rafael Orozco, Ali Siahkoohi, Gabrio Rizzuti, Tristan van Leeuwen, and Felix J. Herrmann, "Adjoint operators enable fast and amortized machine learning based **Bayesian uncertainty guantification**", in SPIE Medical Imaging Conference, 2023.

Full-waveform inference "approximate" posterior

velocity model

Full-waveform inference summary statistics = RTM + subsurface offset

sample velocity model

subsurface offset gathers

Training conditional Normalizing Flow (CNF)

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \frac{1}{N} \sum_{\substack{N=1}}^{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{n=$$

Train *amortized* CNF on N training pairs $\{\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\}_{n=1}^{N}$ with

$$\left(\|f_{\theta}(\mathbf{x}^{(n)};\mathbf{y}^{(n)})\|_{2}^{2} - \log \left|\det \mathbf{J}_{f_{\theta}}\right| \right)$$

Ground-truth velocity model

1000 E N 2000

3000

0

()

1000

2000 3000 4000 5000 6000 X [m]

Posterior samples summary statistics = RTM

Z [m]

layers are inconsistent and disconnected

3000 4000 5000 6000 X [m]

Posterior samples summary statistics = extended RTM w/ 50 offsets layers are more consistent and connected

1000 E N 2000

3000 0

1000

2000 3000 4000 5000 6000 X [m]

Conditional mean *summary* statistics = RTM

3000

0

1000

2000 3000 4000 5000 6000 X [m]

Conditional mean *summary* statistics = *extended* RTM w/ 50 offsets

1000^{-1} Z [m] 2000

3000 0

1000

Uncertainty Quantification standard deviation

1000 Z [m] 2000

3000

()

0

1000 2000

3000

SLIM 🔶 ML4Seismic

Histogram

Forward UQ RTMs from posterior samples migration-velocity models

 1000^{-1} Z [m] 2000^{-1}

0

3000

U

2000 1000

Learned flow imaging via coupled two-phase flow-seismic

minimize Ζ

K

InvertibleNetworks.jl

Li, D., Xu, K., Harris, J. M., & Darve, E. (2020). Coupled time-lapse full-waveform inversion for subsurface flow problems using intrusive automatic differentiation. Water Resources Research, 56, e2019WR027032. Mathias Louboutin, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman, and Felix J. Herrmann, "Learned multiphysics inversion with differentiable programming and machine learning", The Leading Edge, vol. 42, pp. 452–516, 2023.

Ziyi Yin, Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, "Solving multiphysics-based inverse problems with learned surrogates and constraints", Advanced Modeling and Simulation in Engineering Sciences, vol. 10, 2023. Møyner, Olav, Martin Johnsrud, Halvor Møll Nilsen, Xavier Raynaud, Kjetil Olsen Lye, and Ziyi Yin. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759.

 $\|\mathscr{F} \circ \mathscr{R} \circ \mathscr{S}_{\theta^*} \circ \mathscr{G}_{\mathbf{W}^*}(\mathbf{Z}) - \mathbf{d}\|_2^2$

Unseen ground-truth permeability

Z [m] U X [m]

Initial permeability case 1

U

1000

2000 X [m]

Inversion progress

Digital Twin w/ generative Al

Time-lapse data modalities

permeability

seismic images from noisy data w/ SNR 8.0 dB

Møyner, Olav, Martin Johnsrud, Halvor Møll Nilsen, Xavier Raynaud, Kjetil Olsen Lye, and Ziyi Yin. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759.

Time-lapse data modalities $p(\mathbf{K}), p(\mathbf{x}_0)$ **CO**₂ saturation

seismic images + well data

Ardizzone, Lynton, et al. "Conditional Invertible Neural Networks for Guided Image Generation." (2019). Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020) Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. "The frontier of simulation-based inference." Proceedings of the National Academy of Sciences 117.48 (2020): 30055-30062

Simulation-based inference w/ conditional Normalizing Flows (CNFs)

Given simulated training pairs (\mathbf{x}, \mathbf{y})

- \blacktriangleright amortized training of CNFs to sample from the posterior $p(\mathbf{x} \mid \mathbf{y})$ for any \mathbf{y}
- \blacktriangleright when trained, CNFs solve inference problems by generating samples $\mathbf{x} \sim p(\mathbf{x} | \mathbf{y}^*)$
- \blacktriangleright samples are conditioned on observed data, y^*

$\mathbf{X} \sim p(\mathbf{X} \mid \mathbf{y})$

Dynamic simulation-based inference

Sequential Bayesian Inference dynamical model for CO₂ plumes

Approach: sample from posterior at previous time step, k - 1, and use it as a *prior* for the *current* time step, k.

Tatsis, Konstantinos E., Vasilis K. Dertimanis, and Eleni N. Chatzi. "Sequential bayesian inference for uncertain nonlinear dynamic systems: A tutorial." arXiv preprint arXiv:2201.08180 (2022). Kruse, Jakob, et al. "HINT: Hierarchical invertible neural transport for density estimation and Bayesian inference." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 9. 2021

At time index k-1

- $\blacktriangleright \mathbf{X}_{k-1}$ state (CO₂ saturation)
- \blacktriangleright **y**_{k-1} observed time-lapse data
- *M* dynamics operator
- \mathcal{H} observation operator

Learned Sequential Bayesian Inference given \mathbf{y}_{k-1}^* generate training samples $(\mathbf{x}_k, \mathbf{y}_k) \sim p(\mathbf{x}_k, \mathbf{y}_k)$

$\hat{\theta} = \arg\min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \left(\|f_{\theta}(\mathbf{x}_{k}^{(n)}; \mathbf{y}_{k})\|_{n=1}^{N} \right)$

Create training ensemble by sampling

► prev. state
$$\mathbf{x}_{k-1} \sim p(\mathbf{x}_{k-1} | \mathbf{y}_{k-1}^*)$$

• permeability $\mathbf{K} \sim p(\mathbf{K})$

Applying dynamics $\mathbf{x}_k = \mathcal{M}(\mathbf{x}_{k-1}, \mathbf{K})$

Simulating data $\mathbf{y}_k = \mathscr{H}(\mathbf{x}_k)$

$$\sum_{k=1}^{n} |\mathbf{x}_{k}, \mathbf{y}_{k}| \sim p(\mathbf{x}_{k}, \mathbf{y}_{k}) \text{ via}$$

$$\sum_{k=1}^{n} |\mathbf{y}_{k}|^{2} - \log \left| \det \mathbf{J}_{f_{\theta}} \right|$$

Learned Sequential Bayesian Inference sample from posterior $\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{y}_k^*)$

Sample from posterior $\mathbf{x}_k \sim p(\mathbf{x}$ with $\mathbf{z} \sim N(0, I)$.

Note: implicitly sampled from

$$p(\mathbf{x}_k | \mathbf{y}_k, \mathbf{y}_{1:k-1}) = \frac{p(\mathbf{y}_k | \mathbf{x}_k) p(\mathbf{x}_k | \mathbf{y}_{1:k-1})}{p(\mathbf{y}_k | \mathbf{y}_{1:k-1})}$$

 $p(\mathbf{x}_{k} | \mathbf{y}_{1:k-1}) = \mathbb{E}_{\mathbf{x}_{k-1} \sim p(\mathbf{x}_{k-1} | \mathbf{y}_{1:k-1})} \left[p(\mathbf{x}_{k} | \mathbf{x}_{k-1}) \right]$

Marginalizes over

• previous state \mathbf{x}_{k-1}

► permeability K

$$\mathbf{x}_k | \mathbf{y}_k^*$$
) via $\mathbf{x}_k = f_{\hat{\theta}}^{-1}(\mathbf{z}; \mathbf{y}_k^*)$

Example – inference w/ time-lapse seismic images & pressure data

Kruse, Jakob, et al. "HINT: Hierarchical invertible neural transport for density estimation and Bayesian inference." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 35. No. 9. 2021.

Generating ground-truth data for single fixed $\mathbf{K}^* \sim p(\mathbf{K}), \mathbf{x}_0^* \sim p(\mathbf{x}_0)$

Digital Twin inferred CO₂ saturations conditioned on time-lapse well & seismic data

ground truth

error between truth & inferred

inferred mean

3.2Km

inferred variance

More realistic example

Samples permeability distribution

3.2Km

Ground-truth & observations plumes & imaged seismic

ground-truth CO₂ plume

observed seismic

3.2Km

Assimilated plumes ground-truth vs. inferred CO₂ plumes

ground-truth CO₂ plumes

inferred w/ seismic CO₂ plumes

UQ errors & inferred standard deviation

errors w.r.t. ground-truth

inferred standard deviations

Digital shadow

Check also president's column in the Leading Edge, November 2023

Digital Twin w/ controlled injectivity

Fracture risk

- Initial state: DT of 0.05 ± 0.01m³/s injectivity
- leads to over pressure after 1920 days of injection
- rock fractures due to over pressure denoted by red areas
- unacceptable risk

Ringrose, Philip. "How to store CO2 underground: Insights from early-mover CCS projects." (2020): 978-3. Møyner, Olav, Martin Johnsrud, Halvor Møll Nilsen, Xavier Raynaud, Kjetil Olsen Lye, and Ziyi Yin. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/ 10.5281/zenodo.7775759.

Develop a numerical scheme to

- ensure induced reservoir pressure remains below the fracture *pressure* with *high* probability
- adapt the injection rate

Make use of

- Jutul.jl's numerical reservoir simulations
- modern non-convex constrained optimization techniques
- In numerical approximation of the gradient

Reservoir simulations control at timestep k = 3

Add pressure to state $\mathbf{x}_k =$ \mathbf{p}_k

Given injectivity, q_k , simulate state, \mathbf{X}_{k+1} , via

$$\mathbf{x}_{k+1} = \mathscr{M}(\mathbf{x}_k, \mathbf{K}; q_k)$$

for $\mathbf{K} \sim p(\mathbf{K})$

- exceeds fracture pressure regularly at timestep k = 4
- \blacktriangleright need to control injectivity, q_k

Optimized injection rates

Solve

max $q_k \Delta t$ subject to $\mathbf{x}_{k+1}['p'] < \mathbf{p}_{max}$ where $\mathbf{x}_{k+1} = \mathcal{M}(\mathbf{x}_k, \mathbf{K}; q_k)$ q_k with reservoir simulations over time interval $t = k\Delta t$ to $t = (k + 1)\Delta t$ • use finite-differences to approximate $\frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{x}_{k+1}}$ ∂q_k \blacktriangleright impose constraint for fracture pressure, \mathbf{p}_{max} , via log-barrier method

- use Armijo linesearch
- ► solve w/ until tolerance $\epsilon < 10^{-3}$
- requires on average 30 reservoir simulations

Optimized w/o vs. w/ control

Saturation at current time

Difference between pressure at current time and hydro

Difference between pressure at current time and hydro

Is the control beneficial?

Without controlled injection rate:

44.3% of the samples during the next time step fracture

With controlled injection rate:

2.34% of the samples during the next time step fracture

Conclusion: Controlling injection decreases risk of fracture.

Digital Twin w/ optimized well locations

Situation

Two types of time-lapse CO₂ plume observations

direct but local – borehole(s)

Problem

CO₂ project lasts years thus can drill more wells but:

many location options

Operators deciding well locations should be informed by

- Current knowledge of the CO₂ plumes
- physics simulations of plume forecasts

Solution: Bayesian experimental design

- Chose experiment design W that allows for $\ensuremath{\textit{maximal}}$ information gain
 - $\mathbf{y} = \mathbf{W}(\mathbf{u})$
- quantified by the Kullback-Leibler divergence:
 - $D_{KL}(p(\mathbf{x} | \mathbf{y}) | | p(\mathbf{x})).$
- Expected information gain (EIG) averages over all possible designs
 - $EIG(\mathbf{W}) = \mathbb{E}_{p(\mathbf{y}|\mathbf{W})} \left[D_{KL}(p(\mathbf{x}|\mathbf{y}) | | p(\mathbf{x})) \right].$

Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.

Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).

Relation conditional neural density & EIG

Maximizing the expected posterior density is equivalent to maximizing the expected information gain

Thus optimizing under the posterior density objective will increase the EIG!

- $\max_{\mathbf{W}} EIG(\mathbf{W}) = \mathbb{E}_{p(\mathbf{y}|\mathbf{W})} \left[D_{KL}(p_{\theta}(\mathbf{x} | \mathbf{y}, \mathbf{W}) | | p(\mathbf{x})) \right] = \mathbb{E}_{p(\mathbf{y}|\mathbf{W})} \left[\mathbb{E}_{p(\mathbf{x}|\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} | \mathbf{y}) \log p(\mathbf{x}) \right] \right]$
 - $= \mathbb{E}_{p(\mathbf{y}|\mathbf{W})} \left[\mathbb{E}_{p(\mathbf{x}|\mathbf{y})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{y}) \right] \right] \text{ law of total expectation}$
 - = $\mathbb{E}_{p(\mathbf{x},\mathbf{y}|\mathbf{W})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{y}) \right]$ same as neural posterior objective!

Proposed method

As usual, prepare posterior learning algorithm: $\{\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\}_{i=1}^{N}$ Instead of optimizing only network parameters:

$$\hat{\theta} = \arg\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \left(-\|f_{\theta}(\mathbf{x}^{(n)}; \mathbf{y}^{(n)})\|_{2}^{2} + \log \left|\det \mathbf{J}_{f_{\theta}}\right| \right).$$

Jointly optimize experiment design, W, –i.e., by

$$\hat{\theta}, \, \hat{\mathbf{W}} = \underset{\theta, \mathbf{W}}{\operatorname{arg\,max}} \, \frac{1}{N} \sum_{i=1}^{N} \left(-\|f_{\theta}(\mathbf{x}^{(n)}; \mathbf{W} \odot \mathbf{y}^{(n)})\|_{2}^{2} + \log \left| \det \mathbf{J}_{f_{\theta}} \right| \right).$$

Proposed method

Optimize for probability *density* of well placement

- well budget agnostic
- decide number of wells post-hoc
- easier optimization
- stochastic sampling during training avoids local minima

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." *IEEE Transactions on Geoscience and Remote Sensing* 60 (2021) Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation." *arXiv:1308.3432* (2013).

ground-truth CO₂

inference error

inference mean

ground-truth CO₂

inference error

inference mean

ground-truth CO₂

inference error

inference mean

ground-truth CO₂

inference error

inference mean

Improvement on baseline

Our algorithm places wells near or at optimal locations as measured by error

Digital Twin

Acknowledgement

This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic Center and in part by the US National Science Foundation grant OAC 220382.

