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Why Geological Carbon Storage?
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Drivers
geological CO2 storage

To keep temperatures below the 1.5-1.7°C rise, we need to safely store 


‣ 7 – 8 GtCO2/ yr by 2050 


‣  cumulatively 350 – 1200 GtCO2 by 2100


Requires commissioning of 7000 – 8000 offshore “Sleipners”, @1 Mt/yr by 2050


‣ deployment of 300 – 400 wells per year


‣monitoring of CO2 migration to control subsurface distribution & verification


‣ assurance of safe operations


‣ transfer of liability to national governments at end of life cycle

Wood et. al, Locked away – geological carbon storage, The Royal Society, October 2022

https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/geological-carbon-storage/


ML4Seismic

Risk profiles

Uncertainties & risk storage model 

‣ highest at start


‣ diminish when more time-lapse data is collected


Containment risk increases 

‣w/ amount of CO2 stored


‣w/ size area undergoing pressure changes


There can be NO lapse in monitoring because 


‣ any lack of transparency conformance 


‣will lead in loss in confidence by the general public


High-fidelity time-lapse information needs to be 
collected regularly over long periods of time!

UK Government publication “Deep Geological Storage of CO2 on the UK Continental Shelf: Containment Certainty” 

Deep Geological Storage of CO2 on the UK Continental Shelf: Containment Certainty 
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Geological Containment Risk Profile 
There are containment risks associated with injecting and storing CO2 in a deep geological 
storage site. These risks will not remain constant throughout storage site life, but, as the 
amount of CO2 injected increases the pressure changes, and the CO2 plume migrates during 
injection, so the containment risk of a site changes through the operational life and beyond.  

 
Figure 9. Schematic of likely geological containment risk over time for a CO2 storage 
complex, based on Benson 2007 [40]  

Figure 9 provides an example of how geological containment risks might vary for one storage 
complex. For a leak to occur there must be an erroneous assumption relating to an uncertainty 
at some location within the complex, or a lack of integrity within a well. The geological 
containment risk profile starts at zero as captured CO2 could not leak from the storage complex 
prior to being injected. As increasing amounts of CO2 are injected, the pressure increases and 
the containment risk increases (the probability and severity of a leak both increase), being 
greatest towards the end of operations and for a while after operations. This coincides with the 
highest pressures, highest concentrated free phase CO2 (CO2 that is free to flow) and while the 
plume is reaching its widest extent.  

Data collected during injection will improve understanding of the behaviour of the site, 
improving the accuracy of the forecast and ways to manage and reduce the risk associated 
with greater amounts of CO2 within the storage site and greater plume extent [7]. These data 
could alternatively indicate that an assumption that was important in deriving the containment 
risk profile was incorrect to the extent that the risk is higher than previously identified. This 
could have consequences for the operational life of the storage site. However, the forecast 
modelling will mean that this is likely to be identified as an issue prior to any leakage. After CO2 
is injected, the pressure in the reservoir will begin to equilibrate with the surrounding geology 
and any free CO2 will become more securely trapped (see discussion of trapping mechanisms 
in Section 2.2). 

Deep Geological Storage of CO2 on the UK Continental Shelf: Containment Certainty 
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3.1.4 Risk and Uncertainty Profiles of a Storage Site 

The CO2 containment risk assessment of a geological storage complex will reflect an 
evaluation of the probability of any kind of unplanned release of CO2 from the complex and the 
severity of that release. Risk is quantified in this instance as the product of probability of 
occurrence and severity of occurrence. This section considers how these risks might vary 
through time, and also considers how uncertainty might vary through time. 

Section 3.3 of this report considers the magnitude of the probability and severity of a number of 
potential well and geological leakage pathways, based on the amount of CO2 leaked from a 
notional typical storage complex during injection operations and for 100 years after closure.  

The outcomes and probabilities of a particular occurrence, or risk, are known and can be 
mitigated with appropriate measures. Uncertainty applies to a situation where the status, 
outcomes and probabilities are not known and cannot be quantified. 

Uncertainty Profile 
Uncertainties relating to the storage site will decrease with time as knowledge of the site 
increases, through data gathered during the pre-permit site characterisation phase, and 
knowledge gained through injection operations, including from the operational and post-closure 
monitoring of the site (see Figure 8). Generally, saline aquifer storage sites are likely to have 
more initial uncertainty related to fluid flow than depleted fields, as saline aquifer sites do not 
have a history of production from the site, which will translate to the crossover point in Figure 8 
being further to the left in a depleted field (i.e. it will be reached sooner). 

 

Figure 8. Illustration of uncertainty levels through the stages of a CO2 storage site (from 
Pawar et al., 2015 [39]) 

uncertainty profile

containment risk profile

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1134212/ukcs-co2-containment-certainty-report.pdf


ML4Seismic

Challenges
monitoring Geological CO2 Storage in Saline Aquifers

Regulators & general public require transparency & assurances that 
supercritical CO2 stays put in the storage complex 

‣ reservoir simulations alone are uncertain due to large variability 
permeability


‣ risk profile storage & containment highest at start & at end


‣ there is a need for reproducibility for transparency


Develop low-cost monitoring & control system for CO2 plumes  

‣ that is uncertainty aware


‣maximally captures information collected over many decades


‣ attains accuracy needed to detect early onset leakage 

‣ capable of risk mitigation via control


Systematic assessment of risks using techniques from uncertainty 
quantification.

Wood et. al, Locked away – geological carbon storage, The Royal Society, October 2022 
Ringrose, Philip. How to store CO2 underground: Insights from early-mover CCS Projects, 2020.

3.3 Framework for Managing the Storage Site 93
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Fig. 3.4 Illustration of what is meant by the storage complex (for an offshore storage setting).
Leakage concerns CO2 flux out of the storage complex, while migration refers to CO2 fluxes within
the storage complex

A major difference between CO2 injection projects and gas or oil production
projects, is that for CO2 storage there is generally much less well control (e.g. 1
or 2 injection wells) and yet there needs to be some level of confidence about the
CO2 remaining within the storage domain (well away from the wells). In some of
the early research pilot projects, such as Otway in Australia (Sharma et al. 2011;
Jenkins et al, 2017) and Ketzin in Germany (Ivanova et al. 2012; Martens et al.
2014), dedicated monitoring wells were drilled to check how the CO2 behaved in the
subsurface. However, in general and for large-scale commercial projects wewill need
to minimize the drilling of observation wells and mainly rely on remote detection
and modelling approaches. That is to say, a combination of fluid flow modelling and
geophysical/geochemical monitoring will need to be sufficient to have confidence
about the site. In the next section we will focus on monitoring approaches, and here
we will briefly cover the practices needed to model and understand the CO2 plume
and associated pressure footprint.

from Ringrose

https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/geological-carbon-storage/
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Digital Twins
from concept to reality

According to IBM, “A digital twin is a virtual representation of an object or system that 
spans its lifecycle, is updated from real-time data, and uses simulation, machine 
learning and reasoning to help decision-making.” 

Innovation accelerating open-source software platform that 

‣makes data-informed predictions on future CO2 plume behavior


‣ produces time-lapse data-consistent CO2 predictions 


‣ is uncertainty aware & allows for scenario testing & control


‣ informs on how much & where to collect data, thus reducing CCS monitoring costs



scalable 2/3D code
Open source

Flow simulations: 

‣ Jutul.jl


‣ JutulDarcy.jl


Wave simulations & imaging: 

‣ Devito


‣ JUDI.jl


Machine learning: 

‣ InvertibleNetworks.jl


‣ Flux.jl

Møyner, O., et.al. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759

Luporini, F., et. al. 2022. devitocodes/devito: v4.6.2 (v4.6.2). Zenodo. https://doi.org/10.5281/zenodo.6108644 
Witte, P., et.al. 2020. slimgroup/JUDI.jl: DOI release (v2.0.2). Zenodo. https://doi.org/10.5281/zenodo.3878711

Witte, P., et.al. 2021. slimgroup/InvertibleNetworks.jl: v2.1.0 (v2.1.0). Zenodo. https://doi.org/10.5281/zenodo.5761654

https://doi.org/10.5281/zenodo.7775759
https://doi.org/10.5281/zenodo.6108644
https://doi.org/10.5281/zenodo.3878711
https://doi.org/10.5281/zenodo.5761654


Digital Twin
enabling technologies

Key innovations: 

‣ Learned leakage detection*  

‣Generative Geostatistical Modeling (GGM)*


‣ Learned FWI w/ WISE: Full-waveform Inference w/ Subsurface Extensions*


‣ Learned flow imaging via coupled flow-seismic*


‣Uncertainty-aware Digital Twin that allows for


- controlled CO2 injectivity rate


- optimized CO2 monitor well placement


*will be integrated into the Digital Twin for Underground CO2 Storage
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Learned leakage detection



proxy model 
wavespeed, density

reservoir model 
permeability, porosity

leakage

regular

CO2 dynamics 
concentration, pressure

time-lapse models 
wavespeed, density

time-lapse (difference) datatime-lapse imagingdeep neural classifierclass activation  
mapping

Explainable Leakage Detection
simulation-based training deep neural classifier

leakage

regular

two-phase flow

pressure induced  
fault

Huseyin Tuna Erdinc, Abhinav P. Gahlot, Ziyi Yin, Mathias Louboutin, and 
Felix J. Herrmann, “De-risking Carbon Capture and Sequestration with 
Explainable CO2 Leakage Detection in Time-lapse Seismic Monitoring Images”, 
in AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate 
Challenges, 2022 
Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, 
and Felix J. Herrmann, “De-risking geological carbon storage from high 
resolution time-lapse seismic to explainable leakage detection”, 2022

accuracy = 86.29%

https://github.com/slimgroup/GCS-CAM

https://slim.gatech.edu/biblio?f%5Bauthor%5D=202
https://slim.gatech.edu/biblio?f%5Bauthor%5D=201
https://slim.gatech.edu/biblio?f%5Bauthor%5D=183
https://slim.gatech.edu/biblio?f%5Bauthor%5D=1
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/de-risking-carbon-capture-and-sequestration-explainable-co2-leakage-detection-time-lapse
https://slim.gatech.edu/content/de-risking-carbon-capture-and-sequestration-explainable-co2-leakage-detection-time-lapse
https://slim.gatech.edu/biblio?f%5Bauthor%5D=183
https://slim.gatech.edu/biblio?f%5Bauthor%5D=202
https://slim.gatech.edu/biblio?f%5Bauthor%5D=207
https://slim.gatech.edu/biblio?f%5Bauthor%5D=1
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/de-risking-geological-carbon-storage-high-resolution-time-lapse-seismic-explainable-leakage
https://slim.gatech.edu/content/de-risking-geological-carbon-storage-high-resolution-time-lapse-seismic-explainable-leakage
https://slim.gatech.edu/content/de-risking-geological-carbon-storage-high-resolution-time-lapse-seismic-explainable-leakage
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Generative Geostatistical 
Modeling (GGM)
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Learning from examples
w/ Generative AI

Training:

Sampling:



ML4Seismic

Learned Geology
from proxy Earth models

Training:

Sampling:



Generative Geostatistical Modeling 
training data augmentation

fθ( ; )  ⊙ −∥ ∥2
2

Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, “Towards generative 
seismic kriging with normalizing flows”, ML4SEISMIC Partners Meeting. 2023.

after training

observed seismic observed wells

https://slim.gatech.edu/biblio?f%5Bauthor%5D=184
https://slim.gatech.edu/biblio?f%5Bauthor%5D=1
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/towards-generative-seismic-kriging-normalizing-flows
https://slim.gatech.edu/content/towards-generative-seismic-kriging-normalizing-flows
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Learned FWI w/ WISE
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p( | )

Full-waveform inference
posterior distribution

velocity model observed data

‣ fails because mapping is too complex 

Ziyi Yin, Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, “WISE: Full-waveform 
Inference with Subsurface Extensions”, ML4SEISMIC Partners Meeting. 2023.

https://slim.gatech.edu/biblio?f%5Bauthor%5D=183
https://slim.gatech.edu/biblio?f%5Bauthor%5D=184
https://slim.gatech.edu/biblio?f%5Bauthor%5D=1
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/wise-full-waveform-inference-subsurface-extensions
https://slim.gatech.edu/content/wise-full-waveform-inference-subsurface-extensions
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p( | )
velocity model RTM

Full-waveform inference
posterior w/ physics-based summary statistic

Rafael Orozco, Ali Siahkoohi, Gabrio Rizzuti, Tristan van Leeuwen, and Felix J. 
Herrmann, “Adjoint operators enable fast and amortized machine learning based 
Bayesian uncertainty quantification”, in SPIE Medical Imaging Conference, 2023.

‣migration preserves information as long as migration-velocity model is 
sufficiently accurate 

https://slim.gatech.edu/biblio?f%5Bauthor%5D=184
https://slim.gatech.edu/biblio?f%5Bauthor%5D=13
https://slim.gatech.edu/biblio?f%5Bauthor%5D=174
https://slim.gatech.edu/biblio?f%5Bauthor%5D=16
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/adjoint-operators-enable-fast-and-amortized-machine-learning-based-bayesian-uncertainty
https://slim.gatech.edu/content/adjoint-operators-enable-fast-and-amortized-machine-learning-based-bayesian-uncertainty
https://slim.gatech.edu/content/adjoint-operators-enable-fast-and-amortized-machine-learning-based-bayesian-uncertainty
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p( | )
velocity model RTM

Full-waveform inference
“approximate” posterior

Fails when migration-velocity model is poor!
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p( | )
sample velocity 

model
subsurface  

offset gathers

Full-waveform inference
summary statistics = RTM + subsurface offset

Information resides in  offsets!≠ 0
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Training
conditional Normalizing Flow (CNF)

Train amortized CNF on  training pairs  with


           

N {x(n), y(n)}N
n=1

̂θ = arg min
θ

1
N

N

∑
n=1

(∥fθ(x(n); y(n))∥2
2 − log det Jfθ )
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Ground-truth velocity model
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Posterior samples
summary statistics = RTM

layers are inconsistent and disconnected
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Posterior samples
summary statistics = extended RTM w/ 50 offsets

layers are more consistent and connected
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Conditional mean
summary statistics = RTM



ML4Seismic
Conditional mean
summary statistics = extended RTM w/ 50 offsets
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Uncertainty Quantification
standard deviation
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Histogram
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Forward UQ
RTMs from posterior samples migration-velocity models
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Learned flow imaging via 
coupled two-phase flow-seismic
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𝒮θ*

FNO

ℛ

rock 
physics

wave 
physics

ℱ𝒢w*

NF

minimize
z

∥ℱ ∘ ℛ ∘ 𝒮θ* ∘ 𝒢w*(z)−d∥2
2

permeability 
K

CO2 concentration 
c = {ck}

nv
k=1

wavespeed 
v = {vk}

nv
k=1

seismic data 
d = {dk}

nv
k=1

latent variable 
z

Permeability inversion  
from time-lapse seismic data

Seis4CCS.jl JUDI.jlFNO4CO2.jlInvertibleNetworks.jl

Li, D., Xu, K., Harris, J. M., & Darve, E. (2020). Coupled time-lapse full-waveform inversion for subsurface flow problems 
using intrusive automatic differentiation. Water Resources Research, 56, e2019WR027032. 
Mathias Louboutin, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, 
Gerard J. Gorman, and Felix J. Herrmann, “Learned multiphysics inversion with differentiable programming and machine 
learning”, The Leading Edge, vol. 42, pp. 452-516, 2023.
Ziyi Yin, Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, “Solving multiphysics-based inverse problems with 
learned surrogates and constraints”, Advanced Modeling and Simulation in Engineering Sciences, vol. 10, 2023.
Møyner, Olav, Martin Johnsrud, Halvor Møll Nilsen, Xavier Raynaud, Kjetil Olsen Lye, and Ziyi Yin. 2023. Sintefmath/Jutul.jl: 
V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759.

https://github.com/slimgroup/Seis4CCS.jl
https://github.com/slimgroup/JUDI.jl
https://github.com/slimgroup/FNO4CO2
https://github.com/slimgroup/InvertibleNetworks.jl
https://slim.gatech.edu/biblio?f%5Bauthor%5D=1
https://slim.gatech.edu/biblio?f%5Bauthor%5D=183
https://slim.gatech.edu/biblio?f%5Bauthor%5D=184
https://slim.gatech.edu/biblio?f%5Bauthor%5D=195
https://slim.gatech.edu/biblio?f%5Bauthor%5D=13
https://slim.gatech.edu/biblio?f%5Bauthor%5D=174
https://slim.gatech.edu/biblio?f%5Bauthor%5D=2
https://slim.gatech.edu/biblio?f%5Bauthor%5D=211
https://slim.gatech.edu/biblio?f%5Bauthor%5D=9
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/learned-multiphysics-inversion-differentiable-programming-and-machine-learning
https://slim.gatech.edu/content/learned-multiphysics-inversion-differentiable-programming-and-machine-learning
https://slim.gatech.edu/biblio?f%5Bauthor%5D=183
https://slim.gatech.edu/biblio?f%5Bauthor%5D=184
https://slim.gatech.edu/biblio?f%5Bauthor%5D=1
https://slim.gatech.edu/biblio?f%5Bauthor%5D=7
https://slim.gatech.edu/content/solving-multiphysics-based-inverse-problems-learned-surrogates-and-constraints
https://slim.gatech.edu/content/solving-multiphysics-based-inverse-problems-learned-surrogates-and-constraints
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Unseen ground-truth permeability



ML4Seismic
Initial permeability
case 1
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Inversion progress

permeability update

saturation update

contour of CO2 plume

contour of CO2 plume



ML4Seismic

Digital Twin w/ generative AI



modalities
Time-lapse data

fluid-flow 
physics

seismic  
imaging

permeability CO2 saturation 

seismic images 
from noisy data 
w/ SNR  8.0 dB

x y



modalities
Time-lapse data

fluid-flow 
physics

seismic  
imaging

 p(K), p(x0) CO2 saturation 

x y

seismic images 
+ 

well data

Møyner, Olav, Martin Johnsrud, Halvor Møll Nilsen, Xavier Raynaud, Kjetil Olsen Lye, and Ziyi Yin. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759.

https://doi.org/10.5281/zenodo.7775759
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Simulation-based inference
w/ conditional Normalizing Flows (CNFs)

Given simulated training pairs 


‣ amortized training of CNFs to sample from the posterior  for any 


‣when trained, CNFs solve inference problems by generating samples  


‣ samples are conditioned on observed data, 

(x, y)

p(x |y) y

x ∼ p(x |y*)

y*

x ∼ p( x | y )

Ardizzone, Lynton, et al. "Conditional Invertible Neural Networks for Guided Image Generation." (2019).

Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020)

Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. "The frontier of simulation-based inference." Proceedings of the National Academy of Sciences 117.48 (2020): 30055-30062
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Dynamic simulation-based 
inference
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Approach: sample from posterior at previous time step, ,  
and use it as a prior for the current time step, .

k − 1
k

Tatsis, Konstantinos E., Vasilis K. Dertimanis, and Eleni N. Chatzi. "Sequential bayesian inference for uncertain nonlinear dynamic 
systems: A tutorial." arXiv preprint arXiv:2201.08180 (2022). 

Kruse, Jakob, et al. "HINT: Hierarchical invertible neural transport for density estimation and Bayesian inference." Proceedings of the 
AAAI Conference on Artificial Intelligence. Vol. 35. No. 9. 2021

At time index 


‣  state (CO2 saturation)


‣  observed time-lapse data


 dynamics operator


 observation operator

k − 1

xk−1

yk−1

ℳ

ℋ

xk−1 xk

yk−1 yk

............

ℳ

ℋ ℋ

Sequential Bayesian Inference
dynamical model for CO2 plumes



ML4SeismicLearned Sequential Bayesian Inference

Train conditional NF on samples  via (xk, yk) ∼ p(xk, yk)

̂θ = arg min
θ

1
N

N

∑
n=1

(∥fθ(x(n)
k ; y(n)

k )∥2
2 − log det Jfθ )

xk−1 xk

y*k−1
yk

............

given generate training samples y*k−1 (xk, yk) ∼ p(xk, yk)

Create training ensemble by sampling 


‣ prev. state 


‣ permeability 


Applying dynamics 


Simulating data 

xk−1 ∼ p(xk−1 |y*k−1)

K ∼ p(K)

xk = ℳ(xk−1, K)

yk = ℋ(xk)

xk = ℳ(xk−1, K)

yk = ℋ(xk)



ML4SeismicLearned Sequential Bayesian Inference

xk−1 xk

y*k−1 y*k

............

sample from posterior xk ∼ p(xk |y*k )
Note: implicitly sampled from








Marginalizes over 


‣ previous state 


‣ permeability 

p(xk |yk, y1:k−1) =
p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)

p(xk |y1:k−1) = 𝔼xk−1∼p(xk−1 ∣ y1:k−1) [p (xk ∣ xk−1)]

xk−1

K

Sample from posterior  via  

with . 

xk ∼ p(xk |y*k ) xk = f −1
̂θ

(z; yk*)
z ∼ N(0,I)

xk ∼ p(xk |y*k )
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Example – inference w/ time-lapse 
seismic images & pressure data
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CNF training block k=1

x0 ∼ p(x0)

...
 256 samples of  

seismic images :y1

ℋ Conditional Normalizing 
Flow (CNF) {x, y}

pθ(x1 |y1) ≈ p(x1 |y1)

Field 
Observation

y*1

...
 

Posterior 
samples

x1 ∼ p(x1 |y1 = y*1 )

256 samples of  
CO2 Saturation :x1

...
 

256 samples
...

 
...

 

K ∼ p(K)
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Conditioned – sequential Bayesian 
k=1

CNF Training 
Block 

CNF Training 
Block 

CNF Training 
Block 

......

k=2 k=3

x0

P(x0)

x1 x2 x3

Kruse, Jakob, et al. "HINT: Hierarchical invertible neural transport for density estimation and Bayesian inference." Proceedings of the 
AAAI Conference on Artificial Intelligence. Vol. 35. No. 9. 2021.

x1 ∼ p( ⋅ ∣ y*1 ) x2 ∼ p( ⋅ ∣ y*2 ) x3 ∼ p( ⋅ ∣ y*3 )



ML4SeismicGenerating ground-truth data

x*1 x*2 x*3 x*4 x*5

ℋ “observed” time-lapse seismic 
images

k = 1 k = 3 k = 5k = 0 k = 5k = 3

x*0 ∼ p(x0)

y*1 y*2 y*3 y*4 y*5

for single fixed K* ∼ p(K), x*0 ∼ p(x0)
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predict CO2 plume k=5

X

X

x

y
Conditioned on wells & seismic data

Time-lapse data 

X

X

X

Wells 

RTM 

Wells & RTM 
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Digital Twin
inferred CO2 saturations conditioned on time-lapse well & seismic data

ground truth inferred mean

error between truth & inferred inferred variance
3.2Km1Km0Km



ML4Seismic

More realistic example
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Samples
permeability distribution

3.2Km0Km
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Ground-truth & observations
plumes & imaged seismic

ground-truth CO2 plume observed seismic

3.2Km1.5Km0Km
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Assimilated plumes
ground-truth vs. inferred CO2 plumes

ground-truth CO2 plumes inferred w/ seismic CO2 plumes

3.2Km1.5Km0Km
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UQ
errors & inferred standard deviation

errors w.r.t. ground-truth inferred standard deviations

3.2Km1.5Km0Km
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Digital shadow
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Digital Twin w/ controlled 
injectivity
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Fracture risk

‣ Initial state: DT of 
 

injectivity


‣ leads to over pressure 
after 1920 days of 
injection


‣ rock fractures due to over 
pressure denoted by red 
areas


‣ unacceptable risk

0.05 ± 0.01m3/s
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Approach

Develop a numerical scheme to


‣ ensure induced reservoir pressure remains 
below the fracture pressure with high probability


‣ adapt the injection rate 


Make use of 


‣ Jutul.jl’s numerical reservoir simulations


‣modern non-convex constrained optimization 
techniques


‣ numerical approximation of the gradient

Ringrose, Philip. "How to store CO2 underground: Insights from early-mover CCS projects." (2020): 978-3.

Møyner, Olav, Martin Johnsrud, Halvor Møll Nilsen, Xavier Raynaud, Kjetil Olsen Lye, and Ziyi Yin. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/
10.5281/zenodo.7775759.
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Reservoir simulations
control at timestep k = 3

Add pressure to state 


Given injectivity,  ,simulate state, , via





for 


‣ exceeds fracture pressure regularly at 
timestep 


‣ need to control injectivity, 

xk = [ck
pk]

qk xk+1

xk+1 = ℳ(xk, K; qk)

K ∼ p(K)

k = 4

qk
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Optimized
injection rates

Solve


with reservoir simulations over time interval  to 


‣ use finite-differences to approximate


‣ impose constraint for fracture pressure, , via log-barrier method


‣ use Armijo linesearch


‣ solve w/ until tolerance 


‣ requires on average 30 reservoir simulations

t = kΔt t = (k + 1)Δt

pmax

ϵ < 10−3

Numerical Optimization (Jorge Nocedal and Stephen J. Wright), Springer, 2006.

max
qk

qkΔt subject to xk+1[′￼p′￼] < pmax where xk+1 = ℳ(xk, K; qk)

∂xk+1

∂qk



Optimized
w/o vs. w/ control
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Is the control beneficial?

Without controlled injection rate: 

‣ 44.3% of the samples during the next time step fracture  

With controlled injection rate: 

‣ 2.34% of the samples during the next time step fracture 

Conclusion: Controlling injection decreases risk of fracture. 
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Digital Twin w/ optimized well 
locations



ML4SeismicSituation
Two types of time-lapse CO2 plume observations


‣direct but local – borehole(s)


‣indirect but global – seismic
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Problem
CO2 project lasts years thus can drill more wells but:


‣many location options


‣expensive


Operators deciding well locations should be informed by


‣current knowledge of the CO2 plumes 


‣physics simulations of plume forecasts 
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Solution: Bayesian experimental design
Chose experiment design  that allows for maximal information gain


quantified by the Kullback-Leibler divergence:


Expected information gain (EIG) averages over all possible designs 


W
y = W(u)

DKL(p(x |y) | |p(x)) .

EIG(W) = 𝔼p(y|W) [DKL(p(x |y) | |p(x))] .

Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.
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Relation
conditional neural density & EIG

Maximizing the expected posterior density is equivalent to maximizing the 
expected information gain


Thus optimizing under the posterior density objective will increase the EIG!

Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv 
preprint arXiv:2206.02340 (2022).

max
W

EIG(W) = 𝔼p(y|W) [DKL(pθ(x |y, W) | | p(x))] = 𝔼p(y|W) [ 𝔼p(x|y) [log pθ(x |y) − log p(x)]]
= 𝔼p(y|W) [ 𝔼p(x|y) [log pθ(x |y)]]
= 𝔼p(x,y|W) [log pθ(x |y)] same as neural posterior objective!

law of total expectation
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Proposed method

As usual, prepare posterior learning algorithm: 


Instead of optimizing only network parameters:


Jointly optimize experiment design, , –i.e., by


{x(n), y(n)}N
i=1

W

̂θ = arg max
θ

1
N

N

∑
n=1

(−∥fθ(x(n); y(n))∥2
2 + log det Jfθ ) .

̂θ, Ŵ = arg max
θ, W

1
N

N

∑
i=1

(−∥fθ(x(n); W ⊙ y(n))∥2
2 + log det Jfθ ) .



Proposed method

Optimize for probability density of well 
placement


‣well budget agnostic


‣ decide number of wells post-hoc


‣ easier optimization 


‣ stochastic sampling during training 
avoids local minima

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A 
linearized approach." IEEE Transactions on Geoscience and Remote Sensing 60 (2021)
Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional 
computation.” arXiv:1308.3432 (2013).



Monitor 1



Monitor 2



Monitor 3



Monitor 4



Monitor 1

inference varianceinference error

inference meanground-truth CO2



Monitor 2

inference varianceinference error

inference meanground-truth CO2



Monitor 3

inference varianceinference error

inference meanground-truth CO2



Monitor 4

inference varianceinference error

inference meanground-truth CO2



Our algorithm places wells near or at optimal locations as measured by error


inference variance

Improvement on baseline
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Digital Twin

injectivity 
optimization loop

well-placement 
optimization loop
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