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Seismic monitoring of geological 
carbon storage
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Geological carbon storage (GCS)
Sleipner project

Arts, R. J., et al. "Ten years' experience of monitoring CO2 injection in the Utsira 
Sand at Sleipner, offshore Norway." First break 26.1 (2008).
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Arts, R. J., et al. "Ten years' experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway." First break 26.1 (2008).

Seismic response
Sleipner project
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Motivation
time-lapse monitoring

 Estimate permeability given time-lapse seismic data


‣ end-to-end inversion


‣ Fourier neural operator as cheap surrogate for physics


‣ cheap & reliable uncertainty quantification 

‣ uncertainty-aware CO2 plume forecast

5



ML4Seismic

CO2 plume prediction
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CO2 prediction (correct permeability)
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CO2 prediction (wrong permeability)

fluid-flow 
physics
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CO2 concentration 
c

wrong CO2 plume — wrong lateral extentinjection 
well

injection 
well
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Time-lapse seismic monitoring
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Time-lapse monitoring of carbon storage
Multiphysics modeling
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End-to-end inversion framework

permeability 
K

CO2 concentration 
c

wavespeed 
v

time-lapse data 
d

Li D, Xu K, Harris JM, Darve E. Coupled time‐lapse full‐waveform inversion for subsurface flow problems using intrusive automatic differentiation. Water 
Resources Research. 2020 Aug;56(8):e2019WR027032.

ℱ ∘ ℛ ∘ 𝒮

coupled physics 

End-to-end: “find permeability that matches seismic data”

minimize
K

∥ℱ ∘ ℛ ∘ 𝒮(K) − d∥2
2

?
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Permeability inversion

initial inverted ground truth
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Fourier neural operator surrogate
cheap alternative to numerical simulation

orders of magnitude faster


support surrogate inversion w/ automatic 
differentiation (AD)


scalable to large-scale 4D via domain 
decomposition


benefits:


‣ reduce computational cost


‣ enable uncertainty quantification

Grady II, T., Rishi Khan, Mathias Louboutin, Ziyi Yin, P. Witte, Ranveer Chandra, R. Hewett, and F. Herrman. Model-Parallel Fourier Neural Operators as Learned 
Surrogates for Large-Scale Parametric PDEs. arXiv:2204.01205, 2022.
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Adapted from Li

K c

v

Surrogate Modeling
Fourier neural operators – FNOs

Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

FNO learns mappings on low-frequency modes in Fourier space via


                                              


14



ML4Seismic
Learned end-to-end inversion

ℱ ∘ ℛ ∘ 𝒮θ

coupled physics

 pre-trained FNO: drastically reduce computational cost𝒮θ

?
minimize

K
∥ℱ ∘ ℛ ∘ 𝒮θ(K) − d∥2

2
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16

𝒮(K)

Fourier neural operators learns physics

K
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𝒮(K)

𝒮θ(K)

Fourier neural operators learns physics

K
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𝒮(K)

𝒮θ(K)

error

Fourier neural operators learns physics

K
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Permeability inversion
FNO surrogate
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initial inverted ground truth
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Permeability inversion
physics-based inversion
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initial inverted ground truth
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End-to-end inversion

ground 
truth

initial

CO2 plume
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End-to-end inversion
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physics
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End-to-end inversion
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Uncertainty quantification
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Bayesian Uncertainty Quantification

Bayesian posterior  


                unknown model parameters (permeability)


                 observed data


      data likelihood


           prior


ppost(K |d) ∝ plike(d |K)pprior(K)

K

d

p(d |K)

p(K)
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‣ gradient-based MCMC


‣  step size,  noise


Kk+1 = Kk −
αk

2
∇Klog ppost(K |d) + ηk

αk ηk

Bayesian Uncertainty Quantification
stochastic gradient Langevin dynamics (SGLD)

Max Welling and Yee Whye Teh. “Bayesian Learning via Stochastic Gradient Langevin Dynamics”. In: Proceedings of the 28th International Conference on 
International Conference on Machine Learning. ICML’11. 2011, pp. 681–688. doi: 10.5555/3104482.310456826
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Fast Uncertainty Quantification
learned surrogate & prior

ppost(K |d) ∝ plike(d |K)pprior(K)
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Fast Uncertainty Quantification
learned surrogate & prior

ppost(K |d) ∝ plike(d |K)pprior(K)

Fourier 
neural 

operators
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Fast Uncertainty Quantification
learned surrogate & prior

ppost(K |d) ∝ plike(d |K)pprior(K)

Fourier 
neural 

operators

normalizing 
flows
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x ∼ pX(x)

𝒢−1
w (x)

z ∼ pZ(z)

Normalizing flows (NFs)

𝒢w(z)

z ∼ pZ(z) x ∼ pX(x)

Training:

Sampling:

Kobyzev, Ivan, Simon Prince, and Marcus Brubaker. "Normalizing flows: An introduction and review of current methods." IEEE Transactions on Pattern Analysis 
and Machine Intelligence (2020).30
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Training samples
permeability models
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Generative samples
“fake” permeability models
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Fourier neural operators
likelihood

permeability prediction

ground truth

difference
5 ×

2000 random permeability channels


FNO & NF share the same training samples
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FNO prediction error

real samples generative samples

FNO gives low prediction error on generative samples from NF
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‣ gradient-based MCMC


‣  step size,  noise


Kk+1 = Kk −
αk

2
∇Klog ppost(K |d) + ηk

αk ηk

Bayesian Uncertainty Quantification
stochastic gradient Langevin dynamics (SGLD)

Max Welling and Yee Whye Teh. “Bayesian Learning via Stochastic Gradient Langevin Dynamics”. In: Proceedings of the 28th International Conference on 
International Conference on Machine Learning. ICML’11. 2011, pp. 681–688. doi: 10.5555/3104482.310456835
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‣ gradient-based MCMC


‣  step size,  noise


‣ ,  trained NF,  latent variable


zk+1 = zk−
αk

2
∇zk

log ppost(z |d) + ηk

αk ηk

𝒢(z) = K 𝒢 z

Bayesian Uncertainty Quantification
stochastic gradient Langevin dynamics (SGLD)
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FNO + Normalizing Flow prior
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Numerical experiment
posterior samples
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Numerical experiment
UQ - permeability

ground truth

error

posterior mean

posterior variance

well recovered channel 

error & variance aligned 

higher uncertainty on far end 
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Numerical experiment
UQ - plume

posterior sample 1

posterior sample 2

posterior sample 3

ground truth
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Numerical experiment
UQ - plume

posterior mean

5X error

posterior variance

ground truth higher 
uncertainty


‣ edge


‣ far end of 
the plume


‣ later time 
steps


‣ aligned 
w/ error
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Conclusions

End-to-end inversion


‣ estimate permeability


‣ predict & forecast CO2 plume


Fast & reliable UQ


‣ Fourier neural operators — cheap likelihood


‣ normalizing flows — important prior


‣ FNO + normalizing flows — low FNO error enables fast & reliable UQ
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