Uncertainty-aware time-lapse monitoring of geological carbon storage with learned surrogates

Ziyi Yin, Rafael Orozco, Mathias Louboutin, Ali Siahkoohi, Felix J. Herrmann

Georgia Institute of Technology

Engineering Mechanics Institute Conference 2023 Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). June 7, 2023 Copyright (c) 2023, Ziyi Yin (Georgia Tech) Atlanta, Georgia

IL4Seismic

carbon storage

Geological carbon storage (GCS) **Sleipner project**

Arts, R. J., et al. "Ten years' experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway." First break 26.1 (2008).

Seismic response Sleipner project

4 Arts, R. J., et al. "Ten years' experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway." First break 26.1 (2008).

Motivation time-lapse monitoring

Estimate permeability given time-lapse seismic data

- end-to-end inversion
- Fourier neural operator as cheap surrogate for physics
- Cheap & reliable uncertainty quantification
- uncertainty-aware CO₂ plume forecast

CO₂ plume prediction

CO₂ prediction (correct permeability)

permeability K

CO₂ flows due to high permeability channels & buoyancy

CO₂ prediction (wrong permeability)

Time-lapse seismic monitoring

wavespeed v

seismic data d

Time-lapse monitoring of carbon storage Multiphysics modeling

permeability K

CO₂ concentration

F

wave

End-to-end inversion framework

End-to-end: "find permeability that matches seismic data"

Li D, Xu K, Harris JM, Darve E. Coupled time-lapse full-waveform inversion for subsurface flow problems using intrusive automatic differentiation. Water Resources Research. 2020 Aug;56(8):e2019WR027032. 11

Permeability inversion

Grady II, T., Rishi Khan, Mathias Louboutin, Ziyi Yin, P. Witte, Ranveer Chandra, R. Hewett, and F. Herrman. Model-Parallel Fourier Neural Operators as Learned Surrogates for Large-Scale Parametric PDEs. arXiv:2204.01205, 2022.

Fourier neural operator surrogate cheap alternative to numerical simulation

orders of magnitude faster

support surrogate inversion w/ automatic differentiation (AD)

scalable to large-scale 4D via domain decomposition

benefits:

reduce computational cost

enable uncertainty quantification

Problem Size	OPM Time (s)	FNO Time (s)	Speedup
$60 \times 60 \times 64 \times 30$	312	1.15	271x
$68 \times 118 \times 263 \times 16$	8291	5.98	1386x

Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

Surrogate Modeling Fourier neural operators – FNOs

FNO learns mappings on low-frequency modes in Fourier space via

Fourier neural operators learns physics

Fourier neural operators learns physics

 $\begin{array}{c}
 \end{array}$

Fourier neural operators learns physics

error

Permeability inversion FNO surrogate

N

Permeability inversion physics-based inversion

End-to-end inversion CO₂ plume

End-to-end inversion CO₂ plume

End-to-end inversion CO₂ plume

Uncertainty quantification

Bayesian Uncertainty Quantification

Bayesian posterior $p_{\text{post}}(\mathbf{K} | \mathbf{d}) \propto p_{\text{like}}(\mathbf{d} | \mathbf{K}) p_{\text{prior}}(\mathbf{K})$ Κ unknown model parameters (permeability) d observed data $p(\mathbf{d} | \mathbf{K})$ data likelihood prior $p(\mathbf{K})$

Bayesian Uncertainty Quantification stochastic gradient Langevin dynamics (SGLD)

$$\mathbf{K}_{k+1} = \mathbf{K}_k - \frac{\alpha_k}{2} \nabla_{\mathbf{K}} \log p_{\text{post}}(\mathbf{K} \,|\, \mathbf{d})$$

gradient-based MCMC

• α_k step size, η_k noise

Max Welling and Yee Whye Teh. "Bayesian Learning via Stochastic Gradient Langevin Dynamics". In: Proceedings of the 28th International Conference on ²⁶ International Conference on Machine Learning. ICML'11. 2011, pp. 681–688. doi: 10.5555/3104482.3104568

 $+\eta_k$

Fast Uncertainty Quantification learned surrogate & prior

$p_{\text{post}}(\mathbf{K} | \mathbf{d}) \propto p_{\text{like}}(\mathbf{d} | \mathbf{K}) p_{\text{prior}}(\mathbf{K})$

Fast Uncertainty Quantification learned surrogate & prior

$p_{\text{post}}(\mathbf{K} | \mathbf{d}) \propto p_{\text{like}}(\mathbf{d} | \mathbf{K})p_{\text{prior}}(\mathbf{K})$

Fourier neural operators

Fast Uncertainty Quantification learned surrogate & prior

$p_{\text{post}}(\mathbf{K} | \mathbf{d}) \propto p_{\text{like}}(\mathbf{d} | \mathbf{K})p_{\text{prior}}(\mathbf{K})$

Fourier neural operators

normalizing flows

Normalizing flows (NFs)

Training:

 $\mathbf{x} \sim p_X(\mathbf{x})$

Sampling:

Kobyzev, Ivan, Simon Prince, and Marcus Brubaker. "Normalizing flows: An introduction and review of current methods." IEEE Transactions on Pattern Analysis 30 and Machine Intelligence (2020).

 $\mathbf{x} \sim p_X(\mathbf{x})$

Training samples permeability models

Generative samples "fake" permeability models

Fourier neural operators likelihood

2000 random permeability channels FNO & NF share the same training samples

FNO prediction error

FNO gives low prediction error on generative samples from NF

real samples

generative samples

S M

Bayesian Uncertainty Quantification stochastic gradient Langevin dynamics (SGLD)

$$\mathbf{K}_{k+1} = \mathbf{K}_k - \frac{\alpha_k}{2} \nabla_{\mathbf{K}} \log p_{\text{post}}(\mathbf{K} \,|\, \mathbf{d})$$

gradient-based MCMC

• α_k step size, η_k noise

Max Welling and Yee Whye Teh. "Bayesian Learning via Stochastic Gradient Langevin Dynamics". In: Proceedings of the 28th International Conference on International Conference on Machine Learning. ICML'11. 2011, pp. 681–688. doi: 10.5555/3104482.3104568 35

 $+\eta_k$

Bayesian Uncertainty Quantification stochastic gradient Langevin dynamics (SGLD)

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \frac{\alpha_k}{2} \nabla_{\mathbf{z}_k} \log p_{\text{post}}(\mathbf{z} \mid \mathbf{d}) + \eta_k$$

• gradient-based MCMC
• α_k step size, η_k noise
• $\mathscr{G}(\mathbf{z}) = \mathbf{K}$, \mathscr{G} trained NF, \mathbf{z} latent

k

t variable

FNO + Normalizing Flow prior

Numerical experiment posterior samples

Numerical experiment **UQ - permeability**

well recovered channel

error & variance aligned

higher uncertainty on far end

Numerical experiment UQ - plume

ground truth

posterior sample 1

posterior sample 2

posterior sample 3

Numerical experiment UQ - plume

ground truth

posterior mean

5X error

posterior variance

higher uncertainty

► edge

► far end of the plume

Iater time steps

aligned w/ error

800

800

Conclusions

End-to-end inversion

- estimate permeability
- predict & forecast CO₂ plume
- Fast & reliable UQ
 - Fourier neural operators cheap likelihood
 - normalizing flows important prior

Acknowledgement

We thank Olav Møyner (SINTEF) for constructive discussions.

This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic Center. This work was supported in part by the US National Science Foundation grant OAC 2203821 and the Department of Energy grant No. DE-SC0021515.

