Uncertainty-aware time-lapse monitoring of geological carbon storage with learned surrogates

Ziyi Yin, Rafael Orozco, Mathias Louboutin, Ali Siahkoohi, Felix J. Herrmann

SLIM
Georgia Institute of Technology

ML4Seismic

Engineering Mechanics Institute Conference 2023
June 7, 2023
Atlanta, Georgia

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2023, Ziyi Yin (Georgia Tech)
Seismic monitoring of geological carbon storage
Geological carbon storage (GCS)

Sleipner project

Seismic response
Sleipner project

Motivation

time-lapse monitoring

Estimate permeability given time-lapse seismic data

- end-to-end inversion
- Fourier neural operator as cheap surrogate for physics
- cheap & reliable uncertainty quantification
- uncertainty-aware CO$_2$ plume forecast
CO₂ plume prediction
CO₂ prediction (correct permeability)

Permeability K

CO₂ concentration c

Time

Fluid-flow physics

Injection well

CO₂ flows due to high permeability channels & buoyancy
CO\textsubscript{2} prediction (wrong permeability)

permeability K

\mathcal{S} fluid-flow physics

CO\textsubscript{2} concentration c

injection well

injection well

wrong CO\textsubscript{2} plume — wrong lateral extent

time
Time-lapse seismic monitoring

wavespeed v

seismic data d

wave physics
Time-lapse monitoring of carbon storage
Multiphysics modeling

permeability K

CO$_2$ concentration c

wavespeed v

time-lapse data d

fluid-flow physics \mathcal{S}

rock physics \mathcal{R}

wave physics \mathcal{F}
End-to-end inversion framework

End-to-end: “find permeability that matches seismic data”

\[
\text{minimize } K \| \mathcal{F} \circ \mathcal{R} \circ \mathcal{S}(K) - d \|^2_2
\]

- **Permeability**: K
- **CO$_2$ concentration**: c
- **Wavespeed**: v
- **Time-lapse data**: d

Permeability inversion

initial

inverted

ground truth
Fourier neural operator surrogate
cheap alternative to numerical simulation

orders of magnitude faster

support surrogate inversion w/ automatic differentiation (AD)

scalable to large-scale 4D via domain decomposition

benefits:

- reduce computational cost
- enable uncertainty quantification

Surrogate Modeling

Fourier neural operators – FNOs

FNO learns mappings on low-frequency modes in Fourier space via

Learned end-to-end inversion

\[\mathcal{F} \circ \mathcal{R} \circ \mathcal{S}_\theta \] coupled physics

\[\min_{\mathbf{K}} \| \mathcal{F} \circ \mathcal{R} \circ \mathcal{S}_\theta(\mathbf{K}) - \mathbf{d} \|_2^2 \]

\[\mathcal{S}_\theta \text{ pre-trained FNO: drastically reduce computational cost} \]
Fourier neural operators learns physics

\(\mathcal{S}(K) \)
Fourier neural operators learns physics

$\mathcal{S}(K)$

$\mathcal{S}_\theta(K)$
Fourier neural operators learns physics
Permeability inversion
FNO surrogate

initial

inverted

ground truth
Permeability inversion
physics-based inversion

initial

inverted

ground truth
End-to-end inversion
CO$_2$ plume

<table>
<thead>
<tr>
<th>monitor</th>
<th>now</th>
<th>forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>year 10</td>
<td>year 15</td>
<td>year 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>year 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>year 18</td>
</tr>
</tbody>
</table>

ground truth

initial
End-to-end inversion

CO₂ plume

<table>
<thead>
<tr>
<th>monitor</th>
<th>now</th>
<th>forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>year 10</td>
<td>year 15</td>
<td>year 16</td>
</tr>
<tr>
<td>year 16</td>
<td>year 17</td>
<td>year 18</td>
</tr>
</tbody>
</table>

- **ground truth**
- **initial**
- **physics**
End-to-end inversion
CO$_2$ plume

<table>
<thead>
<tr>
<th></th>
<th>monitor</th>
<th>now</th>
<th>forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>year 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ground truth**
- **initial**
- **physics**
- **surrogate**
Uncertainty quantification
Bayesian Uncertainty Quantification

Bayesian posterior \(p_{\text{post}}(K \mid d) \propto p_{\text{like}}(d \mid K)p_{\text{prior}}(K) \)

\(K \) unknown model parameters (permeability)
\(d \) observed data
\(p(d \mid K) \) data likelihood
\(p(K) \) prior
Bayesian Uncertainty Quantification
stochastic gradient Langevin dynamics (SGLD)

\[K_{k+1} = K_k - \frac{\alpha_k}{2} \nabla_K \log p_{\text{post}}(K | d) + \eta_k \]

- gradient-based MCMC
- \(\alpha_k\) step size, \(\eta_k\) noise

Fast Uncertainty Quantification
learned surrogate & prior

\[p_{\text{post}}(K \mid d) \propto p_{\text{like}}(d \mid K)p_{\text{prior}}(K) \]
Fast Uncertainty Quantification
learned surrogate & prior

\[p_{post}(K \mid d) \propto p_{like}(d \mid K)p_{prior}(K) \]

Fourier neural operators
Fast Uncertainty Quantification
learned surrogate & prior

\[p_{\text{post}}(K \mid d) \propto p_{\text{like}}(d \mid K)p_{\text{prior}}(K) \]

Fourier neural operators

normalizing flows
Normalizing flows (NFs)

Training:

\[x \sim p_X(x) \quad \xrightarrow{G_w^{-1}(x)} \quad z \sim p_Z(z) \]

Sampling:

\[z \sim p_Z(z) \quad \xrightarrow{G_w(z)} \quad x \sim p_X(x) \]

Training samples
permeability models
Generative samples
“fake” permeability models
Fourier neural operators
likelihood

2000 random permeability channels
FNO & NF share the same training samples
FNO gives low prediction error on generative samples from NF

- **real samples**
- **generative samples**
Bayesian Uncertainty Quantification

stochastic gradient Langevin dynamics (SGLD)

\[K_{k+1} = K_k - \frac{\alpha_k}{2} \nabla K \log p_{\text{post}}(K | d) + \eta_k \]

- gradient-based MCMC
- \(\alpha_k \) step size, \(\eta_k \) noise

Bayesian Uncertainty Quantification
stochastic gradient Langevin dynamics (SGLD)

\[z_{k+1} = z_k - \frac{\alpha_k}{2} \nabla_{z_k} \log p_{\text{post}}(z | d) + \eta_k \]

- gradient-based MCMC
- \(\alpha_k \) step size, \(\eta_k \) noise
- \(\mathcal{G}(z) = K \), \(\mathcal{G} \) trained NF, \(z \) latent variable
FNO + Normalizing Flow prior
Numerical experiment
posterior samples
Numerical experiment
UQ - permeability

well recovered channel
error & variance aligned
higher uncertainty on far end
Numerical experiment
UQ - plume

ground truth

posterior sample 1

posterior sample 2

posterior sample 3
Numerical experiment
UQ - plume

ground truth

posterior mean

5X error

posterior variance

higher uncertainty
► edge
► far end of the plume
► later time steps
► aligned w/ error
Conclusions

End-to-end inversion

- estimate permeability
- predict & forecast CO₂ plume

Fast & reliable UQ

- Fourier neural operators — cheap likelihood
- normalizing flows — important prior
- FNO + normalizing flows — low FNO error enables fast & reliable UQ
Acknowledgement

We thank Olav Møyner (SINTEF) for constructive discussions.

This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic Center. This work was supported in part by the US National Science Foundation grant OAC 2203821 and the Department of Energy grant No. DE-SC0021515.