Accelerating ideation & innovation cheaply in the Cloud
the power of abstraction, collaboration & reproducibility

Felix J. Herrmann

4th EAGE Workshop on High-performance Computing
Dubai, October 8, 2019
Accelerating ideation & innovation cheaply in the Cloud
the power of abstraction, collaboration & reproducibility

Charles Jones✉, Gerard Gorman†, Jan Hückelheim†, Keegan Lensink★, Paul Kelly†,
Navjot Kukreja†, Henryk Modzelewski★, Michael Lange†, Mathias Louboutin♛, Fabio
Luporini†, James Selvages✉, Phillipp Witte♛
Accelerating ideation & innovation cheaply in the Cloud
the power of abstraction, collaboration & reproducibility

Charles Jones*, Gerard Gorman†, Jan Hückelheim†, Keegan Lensink★, Paul Kelly†,
Navjot Kukreja†, Henryk Modzelewski★, Michael Lange†, Mathias Louboutin★, Fabio
Luporini†, James Selvages*, Phillipp Witte★

Georgia Institute of Technology

SLIM

Microsoft Azure

Amazon Web Services

Google Cloud Platform

UBC
THE UNIVERSITY
OF BRITISH COLUMBIA

osokey

Imperial College
London

Georgia Tech
Disclaimer

We worked w/ Google Cloud Computing Services, Amazon Web Services (AWS) and Microsoft Azure. We therefore refer to services & product names related to these platforms.

Technology presented is not tied to one specific Cloud provider and has been replicated on all major cloud platforms (AWS, Azure, Google Cloud)

I am not trying to sell anything... I am talking from the perspective of an entrepreneurial academician who wants to

- drive innovations more rapidly
- bring codes close to at scale technology validation
- deal w/ intermittent workloads
Early attempt — 1 y ago

```
for j=1:n
    r = J*x - d_obs
    g = J'*r
    x = x - alpha*g
end
```

Julia code

Google Cloud Platform
Early attempt

Seismic imaging on GCP: Fall 2018

- Lift & shift approach
- 2D LS-RTM on BP Synthetic 2004 model
- 32,000 cores on 1000 nodes
- Parallel pool using Ethernet
- SLURM + parallel Julia session
- 2 hours to launch pool
- Frequent interruptions and restarts of pool

- **Total cost in 10 days: 170,000$**
- **But we were able to hack something in a matter of weeks...**
Tiny marmousi
62k gridpoints
1.5MFlop/time-step
10^{-8}/time-step $\Rightarrow < $10

Sigsbee
2.2M gridpoints
56MFlop/time-step
4×10^{-7}/time-step $\Rightarrow < $100

3D overthrust
222M gridpoints
6GFlop/time-step
4×10^{-5}/time-step
$\Rightarrow $3000

Full marmousi
640k gridpoints
15MFlop/time-step
10^{-7}/time-step $\Rightarrow < $20

SEAM elastic
5.3G gridpoints
2.8TFlop/time-step
0.02/time-step $\Rightarrow $14M
full azimuth 35k shots

Cloud
\times
Recent success

ML & AI have been responsible for major breakthroughs
- rapid rate of innovation & radical performance improvements
- sharing of ideas & code
- modern abstracted code bases & tools

HPC developments in Oil & Gas
- relatively slow
- proprietary attitudes
- too small a community

We are lagging behind & operating at too high costs!
Rapid developments

Training Resnet-50 on Imagenet

<table>
<thead>
<tr>
<th></th>
<th>Facebook Caffe2</th>
<th>UC Berkeley, TACC, UC Davis Tensorflow</th>
<th>Preferred Network ChainerMN</th>
<th>Tencent TensorFlow</th>
<th>Sony Neural Network Library (NNL)</th>
<th>Fujitsu MXNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 hour</td>
<td>31 mins</td>
<td>15 mins</td>
<td>6.6 mins</td>
<td>2.0 mins</td>
<td>1.2 mins</td>
</tr>
<tr>
<td>GPU Configuration</td>
<td>Tesla P100 x 256</td>
<td>1,600 CPUs</td>
<td>Tesla P100 x 1,024</td>
<td>Tesla P40 x 2,048</td>
<td>Tesla V100 x 3,456</td>
<td>Tesla V100 x 2,048</td>
</tr>
<tr>
<td>Date</td>
<td>Apr</td>
<td>Sept</td>
<td>Nov</td>
<td>July</td>
<td>Nov</td>
<td>Apr</td>
</tr>
<tr>
<td>Year</td>
<td>2017</td>
<td>2017</td>
<td></td>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
</tbody>
</table>

- short development cycle
- almost exclusively 2D

Thanks to Azure
So far

Our successes in FWI & RTM relied on hand code for
- FD stencils on CPUs/GPUs
- sensitivities & “adjoints”
- memory & IO handling

Remarkable achievement RTM/FWI=DCNN w/ 10k layers on $1k^3$ grids

Unfortunately, this approach
- does not scale very well to different wave physics
- is error prone, and
- impedes rapid innovation
Research questions

“How can we exploit ML & JIT compiler technology in the Cloud?”

- manage complexities of often monolithic code bases
- be more agile, reduce development time & (running) costs
- use serverless technology that removes need to touch all data all the time

Today’s agenda:

- abstractions for FD-based FWI & RTM w/ Devito* + Judi*
- serverless implementations* in the Cloud
- case study & road ahead

Not a lift & shift solution!

*open source under MIT license
Our approach

Create performant open source platform in the Cloud

<table>
<thead>
<tr>
<th></th>
<th>modeling</th>
<th>Q</th>
<th>gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D acoustic</td>
<td>✔️</td>
<td>✘</td>
<td>✔️</td>
</tr>
<tr>
<td>3D acoustic TTI</td>
<td>✔️</td>
<td>✘</td>
<td>✔️</td>
</tr>
<tr>
<td>3D elastic</td>
<td>✔️</td>
<td>✔️</td>
<td>✘</td>
</tr>
<tr>
<td>3D elastic TTI</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
</tr>
</tbody>
</table>

Will be finalized next months
Solution

DEVITO – Domain specific language for stencil-based finite difference code generation for PDEs w/ explicit time stepping in Python using SymPy.

https://www.devitoproject.org
Open-source software

Devito:

- Open-source MIT license
- High-level Python interface for discretization of ODEs + PDEs using finite differences
- Automatic performance optimization and JIT code generation
- https://github.com/opesci/devito
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

```c
void kernel(...) {
    ...
    <impenetrable code with crazy performance optimizations>
    ...
}
```
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

void kernel(...) {
 ...
 impenetrable code with crazy performance optimizations>
 ...
}
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

eqn = m * u.dt2 + eta * u.dt - u.laplace
solve(eqn, u.forward)
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

```cpp
void kernel(...) { ... }
```

```cpp
eqn = m * u.dt2 + eta * u.dt - u.laplace
solve(eqn, u.forward)
```
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

Devito

```python
eqn = m * u.dt2 + eta * u.dt - u.laplace
solve(eqn, u.forward)

void kernel(...) { ... }
```
u = TimeFunction(..., space_order=so)

```
for (int time = time_m, t0 = (time + 1)%(3), t1 = (time + 2)%(3); time <= time_M; time += 1, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time + 2)%(3)) {
    for (int y = y_m; y <= y_M; y += 1) {
        for (int x = x_m; x <= x_M; x += 1) {
            eqn = m * u.dt2 + eta * u.dt - u.laplace
        }
    }
}
```

```
for (int x = x_m; x <= x_M; x += 1) {
    for (int y = y_m; y <= y_M; y += 1) {
        for (int z = z_m; z <= z_M; z += 1) {
            u[t1][x + 4][y + 4][z + 4] = 2*pow(dt, 3)*(-2.08333333333333e-4F*u[t0][x + 2][y + 4][z + 4] + 3.33333333333333e-3F*u[t0][x + 3][y + 4][z + 4] - 2.08333333333333e-4F*u[t0][x + 4][y + 2][z + 4] + 3.33333333333333e-3F*u[t0][x + 4][y + 3][z + 4] - 2.08333333333333e-4F*u[t0][x + 4][y + 4][z + 2] + 3.33333333333333e-3F*u[t0][x + 4][y + 4][z + 3] - 1.875e-2F*u[t0][x + 4][y + 4][z + 4] + 3.33333333333333e-3F*u[t0][x + 4][y + 4][z + 5] - 2.08333333333333e-4F*u[t0][x + 4][y + 4][z + 6] + 3.33333333333333e-3F*u[t0][x + 4][y + 5][z + 4] - 2.08333333333333e-4F*u[t0][x + 4][y + 6][z + 4])/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]) + pow(dt, 2)*damp[x + 1][y + 1][z + 1]*u[t2][x + 4][y + 4][z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]) + 4*dt*m[x + 4][y + 4][z + 4]*u[t0][x + 4][y + 4][z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]) - 2*dt*m[x + 4][y + 4][z + 4]*u[t2][x + 4][y + 4][z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]));
    }
}
```

For time discretization:

- `so=4`: Using a time step of `dt=1` and spatial steps of `x_M, y_M, z_M`.

For space discretization:

- `so=12`: Using a time step of `dt=1` and spatial steps of `x_M, y_M, z_M`.

Flexibility in space/time discretization.
OMP/MPI scaling
Setup

- 300 x 300 x 300 grid
- 16th order FD
- 100 Time-steps
- Xeon E5-2670 8C
- Single socket for OMP scaling
- one MPI rank per socket per node for MPI scaling
Strong scaling OMP threads – near optimal
Strong scaling MPI – TTI compute bound

GFlops/s scaling according to node number

- Acoustic
- Optimal
- Viscoelastic
- Elastic
- TTI

Normalized GFlops/s

Number of nodes

2^0, 2^1, 2^2, 2^3
Setup

• 512 x 512 x 512 grid
• varying FD order
• 1000ms modeling
• Intel Skylake 8180
• Single socket, OMP only
20 X flop reduction

<table>
<thead>
<tr>
<th>FD order</th>
<th>Flops noop</th>
<th>Flops basic</th>
<th>Flops advanced</th>
<th>Flops aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>501</td>
<td>217</td>
<td>175</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>539</td>
<td>301</td>
<td>238</td>
<td>102</td>
</tr>
<tr>
<td>8</td>
<td>1613</td>
<td>860</td>
<td>653</td>
<td>160</td>
</tr>
<tr>
<td>16</td>
<td>5489</td>
<td>2839</td>
<td>2131</td>
<td>276</td>
</tr>
</tbody>
</table>
produces C code
compiled w/ -O3 + standard flags
Single-socket — TTI on Skylake 8180

TTI<grid=[512,512,512], TO=[2], sim=1000ms>, varying<dse>, arch<skl8180>, backend<core>

- <basic>
- <advanced>
- <aggressive>

Trend: fewer flops (higher OI), better runtime

Best speedup: ~3x aggressive vs basic

- 4th order FD
- 8th order FD
- 12th order FD
- 16th order FD
3D TTI performance:
- 768x768x768 grid points
- 1000ms propagation (416 time steps)

Scales linearly!

512³ → 768³
3.4 X larger grid

Order 16:
72s → 287s
3.9 X slower

Order 8:
93s → 292s
3.2 X slower
Solution

JUDI – Domain specific language for linear algebra abstractions, data parallelism & meta data in Julia

https://github.com/slimgroup/JUDI.jl
Open-source software

Julia Devito Inversion framework:
- JUDI.jl - MIT license
- Abstract linear operators and objective functions for FWI + LS-RTM
- Parallel out-of-core SEG-Y reader interface
- Interface to ML library Flux.jl
- URL: https://github.com/slimgroup/JUDI.jl
JUDI — true vertical integration

- **Julia**
 - Linear operators, data containers, IO
 - Parallel modeling function
 - Parallelization: distribute sources, data
 - Serial modeling function
 - Interface to Devito (Python)

- **Python**
 - Devito: symbolic definition of PDE
 - Automatic code generation and JIT compilation

- **C**
 - Solve PDE w/ OpenMP parallelism

- Students
 - Math/optimizers/cs/
 - Seismic practitioners

- Students
 - CS/math/physics
 - People

- Polyhydral compiler
 - People
Algorithm 1 Preconditioned LS-RTM with SGD

for \(j = 1 \) to \(n \) do

\[
\begin{align*}
\mathbf{r}_j &= \mathbf{M}_I^{-1} \mathbf{J}^{(j)} \mathbf{M}_I^{-1} \mathbf{x}_j - \mathbf{M}_I^{-1} \mathbf{d}_{r(j)} \\
\mathbf{g}_j &= \mathbf{M}_I^{-1} \mathbf{J}^{(j)\top} \mathbf{M}_I^{-1} \mathbf{r}_j \\
\mathbf{t}_j &= \frac{\|\mathbf{r}_j\|^2}{\|\mathbf{g}_j\|^2} \\
\mathbf{x}_{j+1} &= \mathbf{x}_j - \mathbf{t}_j \mathbf{g}_j
\end{align*}
\]

end for

Stochastic gradient descent

\[
\text{batchsize} = 10 \\
\text{niter} = 32 \\
\text{for } j=1: \text{niter} \\
\quad \# \text{Select batch} \\
\quad \text{idx} = \text{randperm(dD.nsrc)}[1: \text{batchsize}] \\
\quad \text{Jsub} = \text{subsample(J, idx)} \\
\quad \text{dsub} = \text{subsample(dD, idx)} \\
\quad \# \text{Compute residual and gradient} \\
\quad \mathbf{r} = \mathbf{M}_I \text{Jsub} \mathbf{M}_I \mathbf{x} - \mathbf{M}_I \text{dsub} \\
\quad \mathbf{g} = \mathbf{M}_I \text{Jsub} \mathbf{M}_I \mathbf{r} \\
\quad \# \text{Step size and update variable} \\
\quad \mathbf{t} = \frac{\text{norm(r)^2}}{\text{norm(g)^2}} \\
\quad \mathbf{x} -= \mathbf{t} \mathbf{g} \\
\text{end}
\]
Algorithm 2 Preconditioned LS-RTM with elastic average SGD

\begin{algorithm}
 \For{$j = 1$ to n do}
 \For{$k = 1$ to p do}
 \State $r_j = M_l^{-1} J_{jk} M_r^{-1} x_j^k - M_l^{-1} d_{jk}$
 \State $g_j = M_r^{-\top} J_{jk}^\top M_l^{-\top} r_j$ and $x_j^{k+1} = x_j^k - \eta g_j^k(x_j^k) - \alpha(x_j^k - \bar{x}_j)$
 \EndFor
 \State $\bar{x}_{j+1} = (1 - \beta) \bar{x}_j + \beta \left(\frac{1}{p} \sum_{i=1}^{p} x_j^i \right)$
 \EndFor
\end{algorithm}

Gradient function

```julia
@everywhere function update_x(M_l, J, M_r, x, d, eta, alpha, xav)
    r = M_l * J * M_r * x - M_l * d
    g = M_r' * J' * M_l' * r
    return x - eta * g - alpha * (x - xav)
end
```

Parallel function wrapper

```julia
update_x_par = remote(update_x)
```

Select batch

```julia
idx = randperm(dD.nsrc)[1:batchsize]
Jsub = subsample(J, idx)
dsub = subsample(dD, idx)
```

Calculate x update in parallel

```julia
xnew[:,k] = update_x_par(M_l, Jsub, M_r, x[:,k], dsub, eta, alpha, xav)
```

Update average variable

```julia
xav = (1 - beta) * xav + beta * (1/p * sum(x, 2))
x = copy(xnew)
```
Least-squares migration

Making Broadband Least-squares Reverse-Time Migration affordable

Iteratively refining the output toward true reflectivity

Suppressing migration artefacts, wavelet sidelobes, incorrect amplitudes, poor illumination

Move LS-RTM from 10 x RTM compute cost to 2 x RTM compute cost

Applicable to all existing datasets

Sparsity-promoting LS-RTM: 2 data passes

RTM: 1 data pass

Cloud based 2D LS-RTM image of BP Salt model for < $100
Observations

Demonstrated power of abstractions towards data & compute intensive tasks
- flexibility w.r.t hardware (GPU, different CPUs etc.)
- exploits data-space parallelism
- exploits model space parallelism w/ multithreading & domain decompositions
- allows for reproducibility
- ready to scale technology to 3D TTI in Cloud?

“Not” ready for
- elastic
Solution

Serverless Cloud – Large-scale event-driven seismic imaging w/ automatic resource allocations, resilient nested levels of parallelization, and containerization

https://www.devitoproject.org
Seismic inversion in the cloud

Cloud computing:

✅ Pros
- Theoretically unlimited scalability
- High flexibility (hardware, jobs)
- No upfront + maintenance costs: pay-as-you-go
- Available to anyone
- No compromise – latest hardware & architectures available (GPUs, ARM)

❌ Cons
- Slower inter-node connections (depending on platform)
- Oftentimes larger MTBF
- High costs if not used properly
- Need to transition software
- Steep learning curve
Moving to the cloud

Lift & shift

Legacy Fortran or C code
Moving to the cloud

Go serverless (and re-engineer)

Automatic code generation

\[pde = \text{model.m} \times \text{u.dt}^2 - \text{u.laplace} + \text{model.damp} \times \text{u.dt} \]
Moving to the cloud

Go serverless (and re-engineer)

- Save cost (up to 10x): no idle instances, lower start-up time
- Resilience managed by cloud platform
- Requires re-engineering of software

\[
pde = \text{model.m} \cdot \text{u.dt2} - \text{u.laplace} + \text{model.damp} \cdot \text{u.dt}
\]
Nested levels of parallelization:

- Parallelize shot records (Azure Batch)
- Domain decomposition (MPI)
- Multithreading (OpenMP)
- Each gradient computed on individual instance or cluster of instances (cluster of clusters)
RTM/FWI gradients

Software stack:

- Batch runs docker containers
- Solve wave equations using Devito*
- Automated performance optimizations (loop blocking, vectorization, refactoring, OMP, MPI, etc.)

* Luporini et al., 2018; Louboutin et al., 2019
RTM/FWI gradients

Azure - Batch Shipyard:

- Tool for executing + monitoring batch jobs
- Many templates for docker + **singularity** containers
- Pre-existing containers for MPI, **Infiniband**, ML, various compilers, etc.
- Configure pools + jobs using high-level yaml files
- Developed by Microsoft + **open source**: https://github.com/Azure/batch-shipyard
Summation:

- Gradients stored in object storage (blob)
- Virtually unlimited I/O scalability
- Send object IDs to message queue
- Event-driven gradient summation using Azure functions
RTM/FWI gradient computations

Event-driven gradient reduction:

- Azure functions
- Cheaper than pay-as-you-go nodes
- Asynchronous & parallel
- Invoked as soon as at least 2 gradients are available
- Stream gradients from blob → sum → write back
- Update image after final summation
Strong scaling - OpenMP

- Fixed workload: 1 gradient
- Runtime as function of no. of threads
- Performance on bare metal vs. container similar (w/o hyperthreading)
Strong scaling - MPI

- Fixed workload: 1 gradient
- Runtime as function of no. of instances (per gradient)
- Good speed-up **but** significant cost increase

![Graph showing runtime and speedup for different instances and services](image)
Multi platform approach

<table>
<thead>
<tr>
<th></th>
<th>Azure</th>
<th>AWS</th>
<th>GCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute instances</td>
<td>Virtual machines</td>
<td>EC2</td>
<td>Compute engine</td>
</tr>
<tr>
<td>Object storage</td>
<td>Blob</td>
<td>S3</td>
<td>Cloud storage</td>
</tr>
<tr>
<td>Batch computing</td>
<td>Azure Batch</td>
<td>AWS Batch</td>
<td>Pipelines</td>
</tr>
<tr>
<td>Serverless functions</td>
<td>Azure functions</td>
<td>Lambda functions</td>
<td>Cloud functions</td>
</tr>
<tr>
<td>Message queues</td>
<td>Queue storage</td>
<td>SQS</td>
<td>Cloud Pub/Sub</td>
</tr>
<tr>
<td>Distributed file system</td>
<td>Azure files</td>
<td>EFS</td>
<td>Cloud filestore</td>
</tr>
</tbody>
</table>

https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://cloud.google.com/docs/compare/aws/
Multi platform approach

Serverless batch computing

Azure
- Azure functions
- Azure Batch
- Queue
- Blob

AWS
- Lambda
- Step Functions
- AWS Batch
- SQS
- S3
Multi platform approach

Event-driven gradient summation

Azure

AWS
Numerical examples

Sparsity-promoting LS-RTM of the BP Synthetic 2004 model:

- 1348 shot records
- Velocity model: 67.4 x 11.9 km (10,789 x 1,911 grid points)
- 20 iterations of linearized Bregman method
- Batchsize of 200 shot records per iteration
- Curvelet-based sparsity promotion
Numerical examples

Sparsity-promoting LS-RTM on the BP Synthetic 2004 model

Image after ≈ 3 data passes (total cost of < 120 $\$$)
Numerical examples

Reverse-time migration of the BP TTI model:

- 1641 shot records
- Velocity model: 78.7 x 11.3 km (12,596 x 1,801 grid points)
- Anisotropic modeling using pseudo-acoustic TTI equations*
- True adjoints of linearized Born scattering operator
- Domain-decomposition to compute gradients
- Each gradient computed on MPI cluster of 6 instances (no spot instances)

*Zhang et al., 2011
Numerical examples

Reverse-time migration of the BP TTI model:

RTM image (total cost of \(\approx 420 \text{ $} \))
3D TTI RTM on Azure

Synthetic model based on SEG Overthrust + Salt models:

- Domain: 10 x 10 x 3.325 km
- Grid: 881 x 881 x 347 (12.5 m grid + ABCs)
- **Wide-azimuth acquisition w/ 1,500 randomly distributed OBNs**
- 799 x 799 dense source grid (12.5 m)
- Anisotropic TTI models + density
- Used source-receiver reciprocity
3D TTI RTM on Azure

Acquisition geometry:

OBN receiver grid
50 X 50 m

Source vessel grid
12.5 X 12.5 m
3D TTI RTM on Azure

3D Overthrust + Salt model:

Velocity

Delta
3D TTI RTM on Azure

3D Overthrust + Salt model:

Epsilon

Azimuth
3D TTI RTM on Azure

Observed data: 1,500 shots

Shot records in xline
3D TTI RTM on Azure

Depth slice 725 m

Depth slice 1250 m
3D TTI RTM on Azure

Azure setup:

- E64 and ES64 VMs
- 2.3 GHz Intel Xeon® E5-2673 v4 (Broadwell)
- 432 GB RAM, 64 vCPUs per VM
- 100 VMs → 6,400 vCPUs
- 2 VMs per gradient (1 MPI rank per socket)
- 600 GB per wavefield
- Peak performance: 140 GFLOPS per VM (14 TFLOPS total)

- **Total cost for RTM:** ≈17,000$ (dedicated/on-demand)
Timings:
- 100 nodes
- 2 nodes per gradient
- 1500 source positions
- Average runtime: 110 minutes per gradient
- **Average cost per gradient: 11\$ (dedicated)**
- **Peak performance: 140 GFLOPS per VM (14 TFLOPS total)**
Azure Batch:

- Jobs start as VMs are added to pool
- Do not need to wait for full pool
- No long idle times
- At least **6X cost reduction** when using low priority...
Future directions

Go large:
- Ongoing collaboration Azure to run at industry-scale
- Iterative LS-RTM on large-scale 3D TTI
- SEAM model: long offset data acquisition w/ 3D elastic modeling

Check for updates on our website:

https://slim.gatech.edu/
Elastic
3D SEAM elastic, full offset, full azimuth

- 35km x 40km x 15 km
- 20m x 20m x 10m grid
- 12th order FD
- Velocity-stress formulation (9 coupled PDEs)
- Full offset & full azimuth
- 16s recording
- Modeling only (elastic imaging requires more than just compute)

.5Tb RAM
5.3 Gpoints
2.8TFlop/time-step
grid = Grid((1751, 2001, 1501), extent=(35000., 40000., 15000.))

Elastic parameters
lam = Function(name="lam", grid=grid, space_order=0, is_parameter=True)
mu = Function(name="mu", grid=grid, space_order=0, is_parameter=True)
rho = Function(name="rho", grid=grid, space_order=0, is_parameter=True)

Absorbing mask
damp = Function(name="damp", grid=grid, space_order=0, is_parameter=True)

Stress and particle velocities
v = VectorTimeFunction(name="v", grid=grid, space_order=so, time_order=1)
tau = TensorTimeFunction(name="tau", grid=grid, space_order=so, time_order=1)

symbol for dt
s = grid.time_dim.spacing

Velocity stress formulation in its vectorial form

u_v = Eq(v.forward, damp * (v + s / rho * div(tau)))
u_t = Eq(tau.forward, damp * (tau + s * (lam * diag(div(v.forward)) + mu * (grad(v.forward) + grad(v.forward).T))))
Setup

- Out of the box Devito
- Source at the centre (17.5km, 20km)
- 16s recording of Vx, Vy, Vz at ocean bottom
- 32 compute nodes (small node on azure, no InfiniBand)
- 3s per time-step
- 7 TFlop/s
Observations

Built a scalable reproducible imaging solution in the Cloud in 1y timeframe
 ‣ leveraging abstractions, open source, and collaboration
 ‣ using serverless Cloud native tools
 ‣ levels the play field

Proved that focussed
 ‣ industry-supported Consortia & public-private partnerships deliver
 ‣ needs to be sustainably funded

Contrast w/ industry-wide initiatives
 ‣ integration of different systems often fail
 ‣ suffer from scope creep
Observations

Created an industry-strength low-cost TensorFlow/Pytorch-like environment

- makes research findings directly available & reproducible
- changes how we spend our research budgets & interact with Consortia & Startups
- that drives innovations more rapidly by giving everybody a chance
Conclusions

Seismic imaging in the Cloud:

- feasible in Cloud but requires rethinking algorithms & implementations
- take advantage of high-throughput batch computing, serverless/event-driven computations, object storage, spot instances
- access to hardware w/o compromise w/ potential of hyperscaling
- only pay what you use: up to 10x cost reductions
- software based on separation of concerns + abstractions is prerequisite to go serverless
Acknowledgments

This project was made possible through the help of:

- Microsoft Azure
- Sverre Brandsberg-Dahl
- Evan Burness
- Kadri Umay
- Alexander Morris
- Steve Roach
- Hussein Shel
- Georgia Research Alliance & Georgia Institute of Technology