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1 Summary
By building on recent advances in the use of randomized trace estimation to drastically reduce the memory
footprint of adjoint-state methods, we present and validate an imaging approach that can be executed
exclusively on accelerators. Results obtained on field-realistic synthetic datasets, which include salt and
anisotropy, show that the method produces high-fidelity imaging results. These findings open the enticing
perspective of 3D wave-based inversion technology with a memory footprint that matches the hardware and
that runs exclusively on clusters of GPUs without the undesirable need to offload certain tasks to CPUs.

2 Introduction
Subsurface imaging has recently thrived building on advances in wave-equation based methods such as
Full-Waveform Inversion (FWI) and Reverse-Time Migration (RTM) [Tarantola, 1984, Virieux and Operto
[2009]]. However, these methods rely on extremely high computational and memory costs, which explains
the relative limited widespread adaptation of these technologies. Unfortunately, exceedingly large memory
footprints are inherent to the adjoint-state method [Lions, 1971, Tarantola [1984]], which requires storage (in
memory, on disk, possibly compressed) of the complete time history of the forward modeled wavefield in order
to compute the imaging condition that correlates this forward wavefield with the time-reversed solution of the
adjoint wave equation. Because saving forward modeled wavefields requires terabytes of memory for industry
scale high-frequency 3D imaging, memory usage has been and continues to be a major bottleneck on standard
with the exception perhaps of dedicated high-memory nodes available in the cloud. While dedicated nodes
relief some of the memory pressure, they do not allow use of accelerators to speed up computations. Contrary
to conventional computer hardware, memory on accelerators comes at a premium, which is problematic given
the large memory footprint of adjoint-state methods. To address this problem, several methods have been
proposed over the years where excessive memory footprints are offset by incurring computational overhead. A
good example of such an approach is the method of optimal checkpointing proposed by Griewank and Walther
[2000] and Symes [2007]. This method was initially introduced to tackle memory limitation of CPUs and
has been used successfully in 3D seismic applications. To further limit the computational overhead, Kukreja
et al. [2020] recently supplemented this approach by adding on-the-fly compression and decompression of the
forward wavefields. In situations where the wave physics is reversible, researchers [McMechan, 1983, Mittet
[1994], Raknes and Weibull [2016]] have shown that forward wavefields can also be recomputed from boundary
values. Unfortunately, both approaches are challenged by underlying assumptions. They also require a
relative high of algorithmic complexity. This explains why GPUS-native implementations of adjoint-state
methods including on-the-fly compression remain illusive.

While recomputing forward wavefields as part of memory-footprint mitigation certainly has its merits,
there exist simpler randomized approaches where memory use is traded against computational overhead and
controllable error. Unlike approaches that aim to compute gradients exactly, these methods approximate the
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gradient with the aim to reduced computational and memory costs at the expense of a controllable loss in
accuracy. Examples of such an approach include to working with random subsets of shots [Friedlander and
Schmidt, 2012] or simultaneous shots [Romero et al., 2000, Krebs et al. [2009b], Moghaddam et al. [2013],
Haber et al. [2015], van Leeuwen and Herrmann [2013]], or with randomized singular value decompositions
[van Leeuwen et al., 2017, Yang et al. [2021]] and random-trace estimation. The latter was used by Haber
et al. [2015] to analyze computational speedups of full-waveform with computational simultaneous sources.
As long as the errors are controlled, these methods lead to equivalent inversion results at fraction of the
computational costs (e.g. speedups of a factors of seven have been reported for FWI [Krebs et al., 2009a]).
Following ideas from randomized linear algebra to estimate the trace of a matrix, Louboutin and Herrmann
[2021] proposed an approximation of the adjoint-state method that leads to major memory improvements
and is relatively easy to implement and supported by theory [Avron and Toledo, 2011, Meyer et al. [2020]],
guaranting convergence including bounds on the accuracy. However, unlike other approximate methods,
such as on-the-fly Fourier-based [Witte et al., 2019b] or lossy compression-based algorithms[Kukreja et al.,
2020], the artifacts introduced by the proposed randomized trace estimation are incoherent and appear as
Gaussian-like noise, which can be handled easily by sparsity-promoting imaging [Witte et al., 2019b]. While
the initial results of the randomized trace estimation on a simple 2D synthetic were encouraging [Louboutin
and Herrmann, 2021], we submit the proposed approximation to additional scrutiny by considering complex
imaging examples that involve salt (SEAM model [Fehler and Keliher, 2011]) and anisotropy [Thomsen, 1986]
(BP TTI model).

Our contributions are organized as follows. First, we briefly introduce randomized trace estimation and its
computational benefits during RTM and the formation of horizontal subsurface-offset image volumes [Symes,
2008]. Next, we show its application to two representative examples, long-offset subsalt imaging on the 2D
SEAM acoustic model with a sparse ocean-bottom node acquisition, and TTI anisotropic imaging of the
2D BP TTI model. With these examples, we validate the computational efficiency and practicality of our
method on GPUs available on Azure (the Standard_NC6 virtual machine).

3 Methodology
Before we demonstrate the advocacy of the proposed methodology on complex imaging problems, let us first
quickly discuss how randomized trace estimation can be used to reduce the memory footprint of adjoint-state
wave-based seismic imaging. We do this by showing that applying the imaging condition corresponds to
computing the trace of a matrix.

3.1 Randomized trace estimation
Approximating [Avron, Meyer et al., 2020] the identity I by
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lies at the heart of randomized trace estimation where the zi’s are random probing vectors for which
E(z>z) = 1 with E is the stochastic expectation operator. This above estimator for the trace (sum of the
diagonal of the matrix A, tr(A) =

∑
i Aii) is unbiased (i.e., exact in expectation) and converges to the true

trace with an error that decays with r and without access to the entries of A. Only actions of A on the
probing vectors are needed and we exploit this property and the specific structure of the matrix A in gradient
calculations for wave-equation based inversion. Motivated by recent work [Meyer et al., 2020, Graff-Kray
et al. [2017]] we also employ a partial qr factorization [Trefethen and Bau III, 1997] that approximates the
range of the matrix A—i.e., we approximate the trace with probing vectors

[
Q,∼

]
= qr(AZ) where Z is a

Rademacher random matrix of ±1.
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3.2 Approximate gradient calculations
While the presented randomized approach carries over to arbitrary complex wave physics, we derive our
memory reduced gradient approximation for the isotropic acoustic case where the gradient for a single source
δm can be written as

δm =
nt∑

t=1
ü[t]v[t]. (2)

In this expression, u[t],v[t] are the vectorized (along space) full-space forward and adjoint wavefields at time
index t = 1 · · ·nt with nt the number of timesteps. The symbol¨represents second-order time derivative.
To arrive at a form where randomized trace estimation can be used, we write the above zero-lag imaging
condition over time as the trace of the outer product for each space index x separately. By using the dot
product property,

∑
xiyi = x>y = tr(xy>), and the approximation in Equation 1, the gradient at location x

becomes

δm[x] = tr
(
ü[·,x]v[·,x]>

)
≈ 1
r

tr
(¯̈u[·,x]v̄[·,x]>

)
with ¯̈u = Q>ü, v̄ = Q>v. (3)

Contrary to the sum over all timesteps t, the zero-offset imaging condition in Equation 3 involves storage of
the compressed wavefields for only r � nt timesteps. This compression not only significantly reduces the
memory footprint but it also lessens the computational cost of computing imaging conditions as a function of
the horizontal subsurface offset

δM[x,h] ≈ 1
r

tr
(¯̈u[·,x + h]v̄[·,x− h]>

)
(4)

with h the horizontal subsurface offset and δM[h] the subsurface image volume. As with computing the
zero-offset imaging condition in Equation 3, the cost of computing these volumes is also reduced by a factors
of r/nt. Also notice that δm[x] = δM[x, h]|h=0.

Figure 1 contains subsurface offset gathers for the 2007 BP TTI model discussed in more detail below.
Despite the fact that we used only a limited (r = 64� nt) probing factors, the images gathers are properly
focused around and nearly noise free thanks to the noise stacking. Each image volume is using 81 offsets
(−500m : 12.5m : 500m) and is effectively using more memory that we needed to store the compressed
wavefields needed to compute these volumes, highlighting how memory frugal the proposed trace estimation
method realy is.

4 Synthetic case studies
To validate the proposed technology, we consider the 2D acoustic SEAM model and the 2D 2007 BP TTI
model. We chose these models because they are complex and in need of a large number of timesteps. As
the examples included below, we obtain reasonable RTM images for a limited number of probing vectors
(r = 64), yielding a memory reduction by a factor of 100×—150× reducing the memory footprint to less than
2Gb. This drastic memory reduction allows us to fully take advantage of accelerators by performing the
RTM imaging natively on GPUs without relying on advanced IO or checkpointng techniques. More details
on memory gains are included in Table 1. We refer to [Louboutin and Herrmann, 2021] for more details on
memory cost and computational overhead of the proposed method.

4.1 2D SEAM model
To study the behavior of our approximation on long-offset sparse OBN acquisition, we consider a 2D slice of
the SEAM salt model [Fehler and Keliher, 2011]. Because this type of acquisition improves the illumination of
large salt bodies in the Gulf of Mexico, this type of acquisition has recently gained in popularity. The survey
consists of 44 OBNs one kilometer apart. At the surface, sources are located every 12.5m at a depth of 12.5m.
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Figure 1: Subsurface offset gathers with a -500m to 500m horizontal offset.

Standard RTM Trace Estimation Gain (×)
SEAM 380/94 Gb 1.4/.7 Gb 271–134
BP TTI 337/75 Gb 2.1/1.05 Gb 160–71

Table 1: Memory usage of standard adjoint-state RTM (full history/sampled at 4ms) versus imaging via
random trace estimation with r = 64/32 on the 2D SEAM model and 2D BP TTI model.

We idealized this dataset by modeling with reciprocity, which leads to 44 densely sampled common receiver
gathers that serve as input to our approximate imaging approach. As we can clearly see from Figure 2, we
are able to produce a good image despite complexity of the model and drastic compression of the wavefield
(we use only r = 64 probing vectors. Even though we incur limited noise mostly in shallow areas, we argue
that these noisy artifacts can easily be removed. At greater depth, the imprint of the noise is less leading to
good resolution below the salt.

4.2 2007 BP TTI
To demonstrate that the proposed method can be extended to more complex imaging physics, we also included
an anisotropic example where a subset of the 2007 BP TTI dataset is imaged. Figure 3 includes the imaging
result. From this image, we observe that all the layers are imaged correctly and continuously. Because we
have a much denser acquisition in this case, the noise incurred by the randomized trace estimation mostly
stacks out leading to a very clean image for a fraction of the memory cost of standard RTM. Again all
calculations were done exclusively on the GPU.
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4.3 Code availability
Our implementation and examples are available as open-source software at TimeProbeSeismic.jl, which
extends our Julia inversion framework JUDI.jl[Witte et al., 2019a]. Our code is also designed to generalize to
3D and more complicated physics as supported by Devito [Louboutin et al., 2019, Luporini et al. [2020]].

5 Discussion and conclusions
We presented a proof of concept of wave-based seismic inversion with randomized trace estimation. Aside from
demonstrating that this method leads to drastic memory reductions that allow us to form subsurface-offset
gathers while remaining on GPUs, we also showed that the incoherent imaging artifacts related to the
approximation mostly stack out as long as the fold is sufficient. This allowed us to create high-fidelity images,
including subsurface-offset volumes, for realistic anisotropic models with salt. We expect that the reliance on
fold can be relaxed when carrying sparsity-promoting imaging or full-waveform inversion with constraints.
More importantly, the achieved memory reductions open the way to carry our wave-based inversions (both
reverse-time migration and full-waveform inversion) exclusively on GPUs without the need to delicate certain
tasks to CPUs. This capability opens the perspective of carrying out industry-scale 3D wave-based inversions
with domain decomposition on clusters of GPUs. As long as these GPUs are connected with a low-latency
network fabric, we expect a major boost in performance thanks to exclusive use of accelerators facilitated by
the reduction in memory footprint.
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Figure 2: 2D RTM on the SEAM model with sparse OBN acquisiton.
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Figure 3: 2D RTM on the 2007 BP TTI model with a marine acquisition.
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