

Capturing velocity-model uncertainty and two-phase flow with Fourier Neural Operators

Ali Siahkoohi, Thomas Grady, Abhinav P Gahlot, Hüseyin Tuna Erdinc, and Felix J. Herrmann

SLIM

ML4Seismic

Capturing velocity-model uncertainty and two-phase flow with Fourier Neural Operators

Ali Siahkoohi, Thomas Grady, Abhinav P Gahlot, Hüseyin Tuna Erdinc, and Felix J. Herrmann

SLIM

ML4Seismic

Georgia Institute of Technology

Motivation

increasing complexity

Geophysical challenges such as geological carbon storage call for

- high-resolution & highly sensitive imaging of weak time-lapse signals
- complex multi-phase flow simulations
- coupling of wave & fluid-flow physics
- approaches that are uncertainty aware

Results in a need for *surrogate* models to make simulations computationally *feasible*

Today's focus is on recent developments enabled by neural operators

What are neural operators?

Neural operators

Conventional Neural Networks:

- learn discretized image-to-image mappings
- generalize poorly to different discretization & sources (e.g. well locations)

Neural Operators:

- learn mappings between function spaces (e.g. PDE solution operators)
- finite-dimensional (fixed grid) \Longrightarrow infinite-dimensional (gridless)

Learning neural operators

Given $\{a^{(i)}(\mathbf{x}), u^{(i)}(\mathbf{x})\}_{i=1}^N$ from nonlinear map between function spaces \mathcal{A} , \mathcal{U} :

$$G: \mathcal{A} \mapsto \mathcal{U}$$

taking values on \mathbb{R}^{d_a} and \mathbb{R}^{d_u} , operator learning entails minimizing

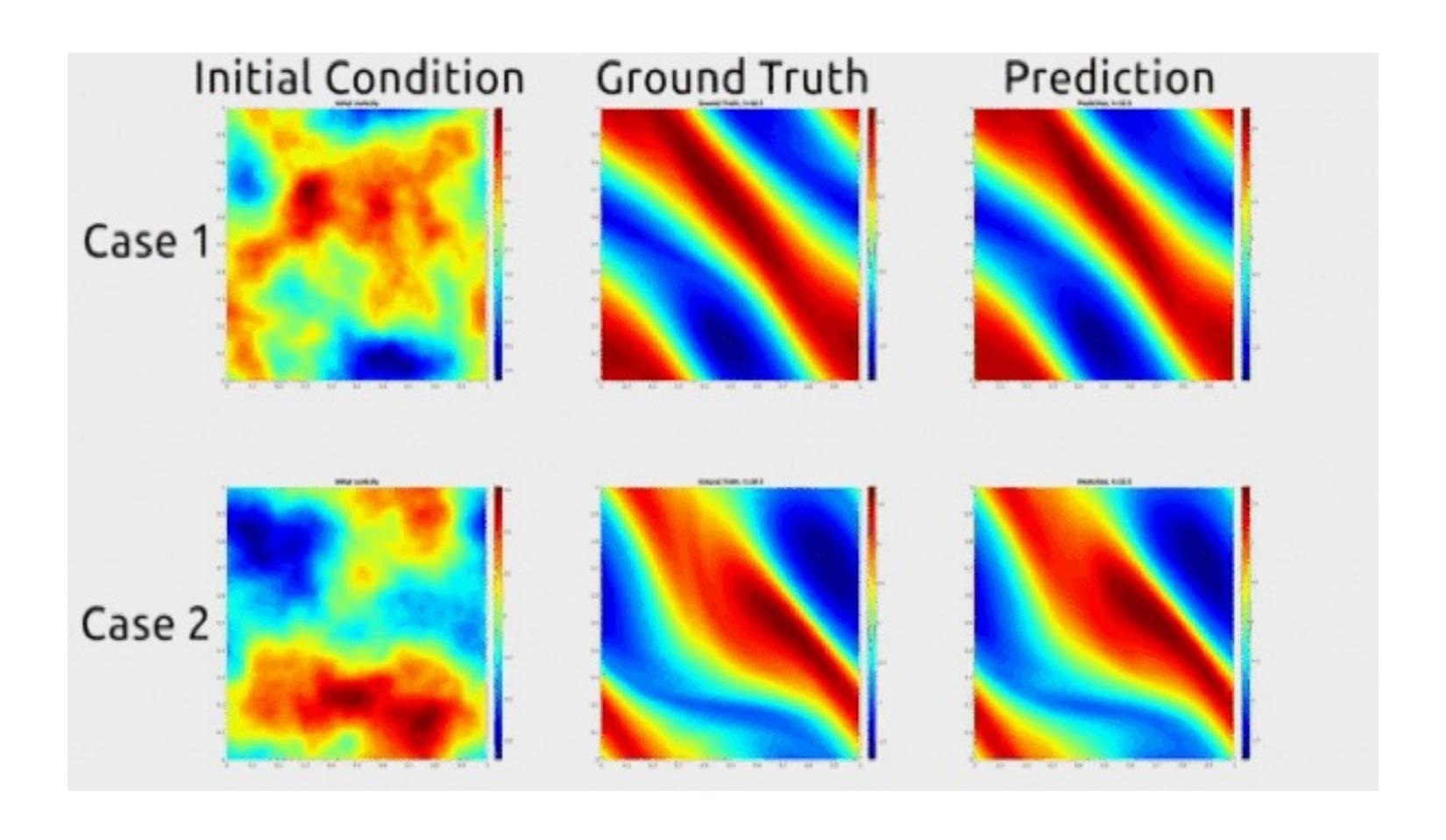
$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg}} \min_{\mathbf{N}} \frac{1}{N} \sum_{i=1}^{N} \| \mathcal{G}_{\mathbf{w}}(a^{(i)}) - u^{(i)} \|_2^2$$

yielding the approximate mapping

$$G_{\mathbf{w}^*}: \mathcal{A} \mapsto \mathcal{U}$$

Applications

Fourier Neural Operators



So what?

Surrogate model

two-phase flow equations

mass balance equation $\frac{\partial}{\partial t}(\phi S_i \rho_i) + \nabla \cdot (\rho_i \mathbf{v}_i) = \rho_i q_i$, i=1,2

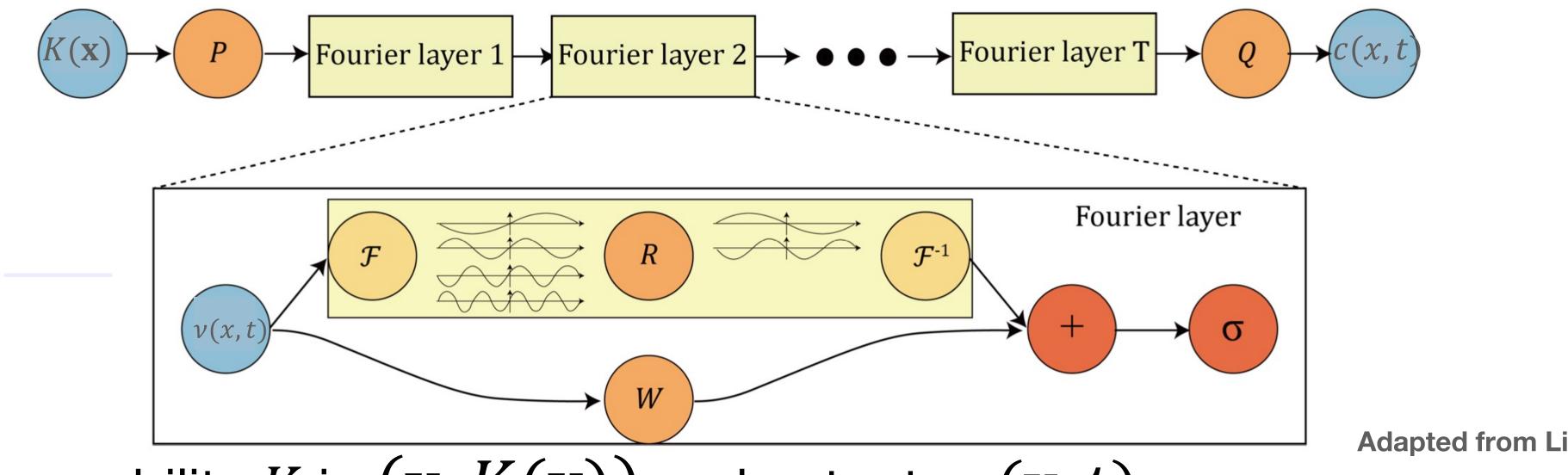
inject CO₂ to replace water $S_1 + S_2 = 1$

Darcy's law
$$\mathbf{v}_i = -\frac{Kk_{ri}}{\tilde{\mu}_i} (\nabla P_i - g\rho_i \nabla Z), i = 1,2$$

Corey model $k_{ri}(S_i) = S_i^2$

fluid pressure $P_2 = P_1 - P_c(S_2)$

Fourier Neural Operators



Maps permeability K in $(\mathbf{x}, K(\mathbf{x}))$ and outputs $c(\mathbf{x}, t)$

P lifts to higher latent dimension and Q projects back to target dimension

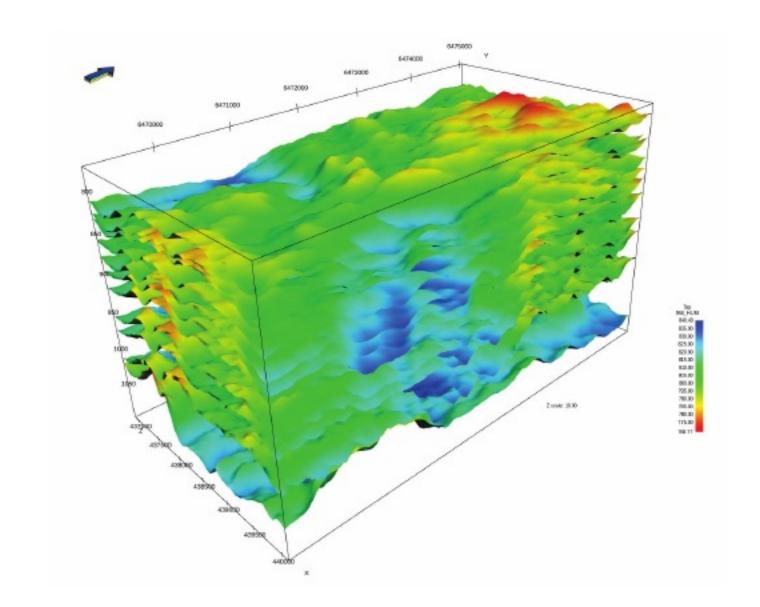
Fourier layer:
$$v_{j+1} = \sigma \left(W v_j + \mathcal{F}^{-1} \left(R_{\phi} \cdot (\mathcal{F} v_j) \right) \right)$$

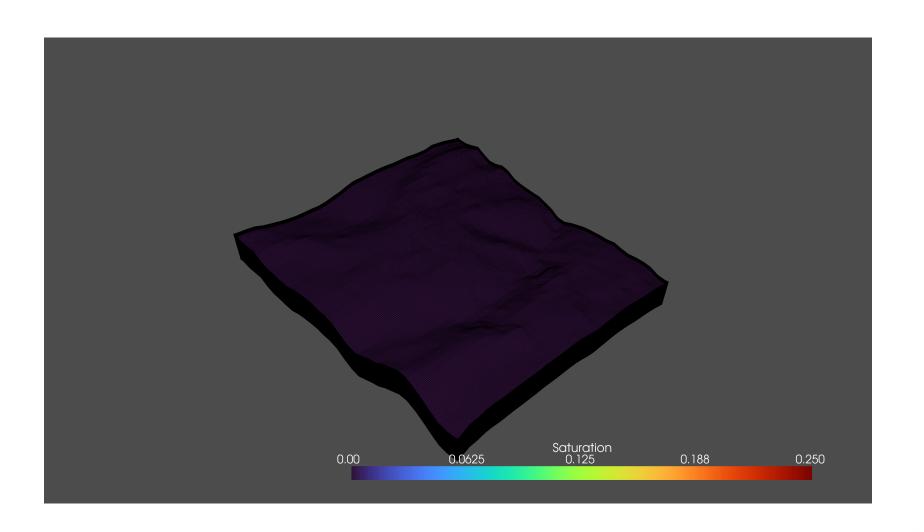
 $R_{oldsymbol{\phi}}$ selects a subset of the modes, usually a low-pass filter

Challenges

Scaling FNOs to realistic problems is challenging

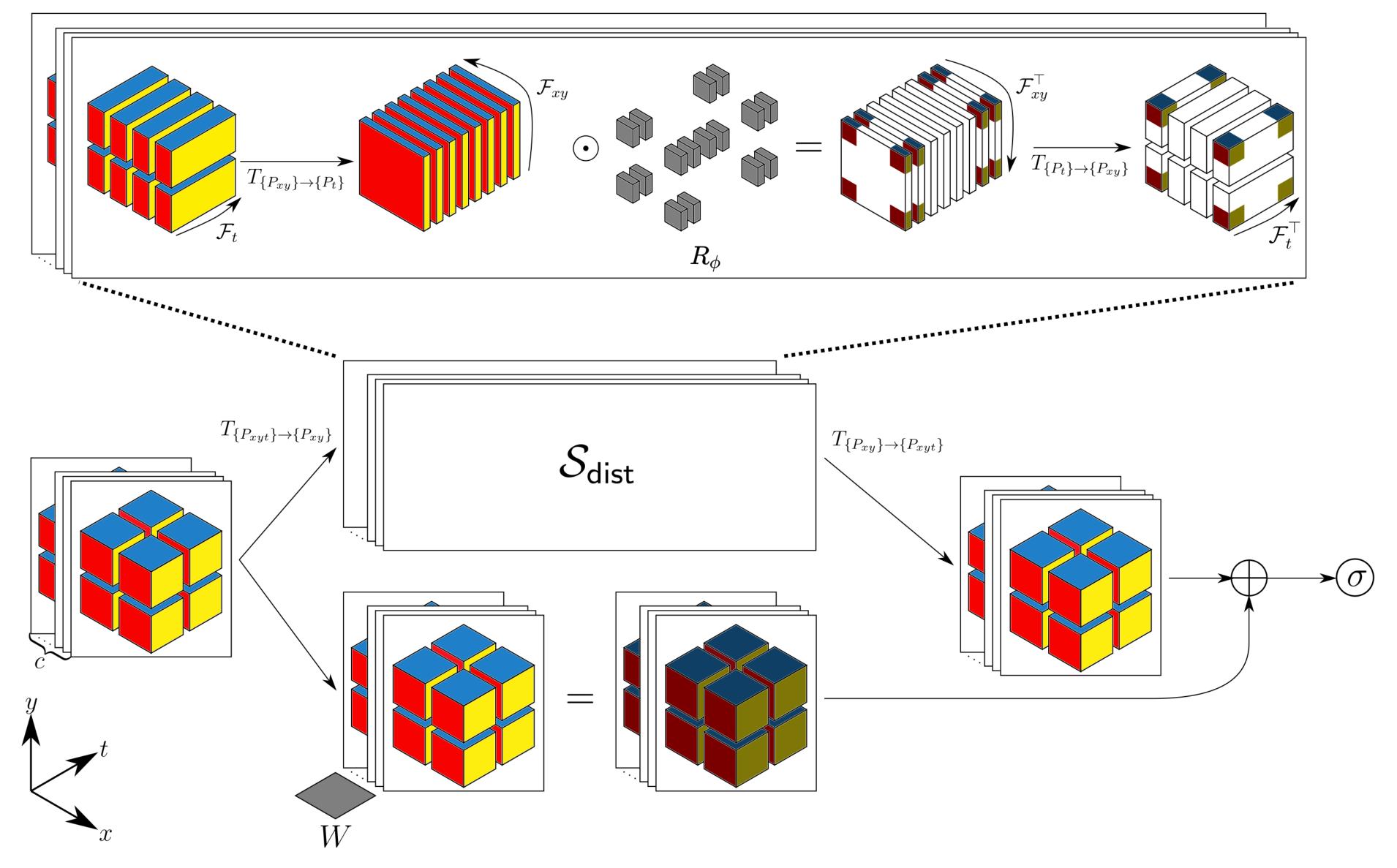
- 3D permeability $(x, y, z) \rightarrow$ 4D CO₂ evolution (x, y, z, t)
- problems beyond $64^3(x,y,z)$ do not fit w/i GPUs
- real problems are often much larger, e.g. Sleipner (low-resolution) is $64\times118\times263$
- need high-dimensional model-parallelism on distributed-memory systems





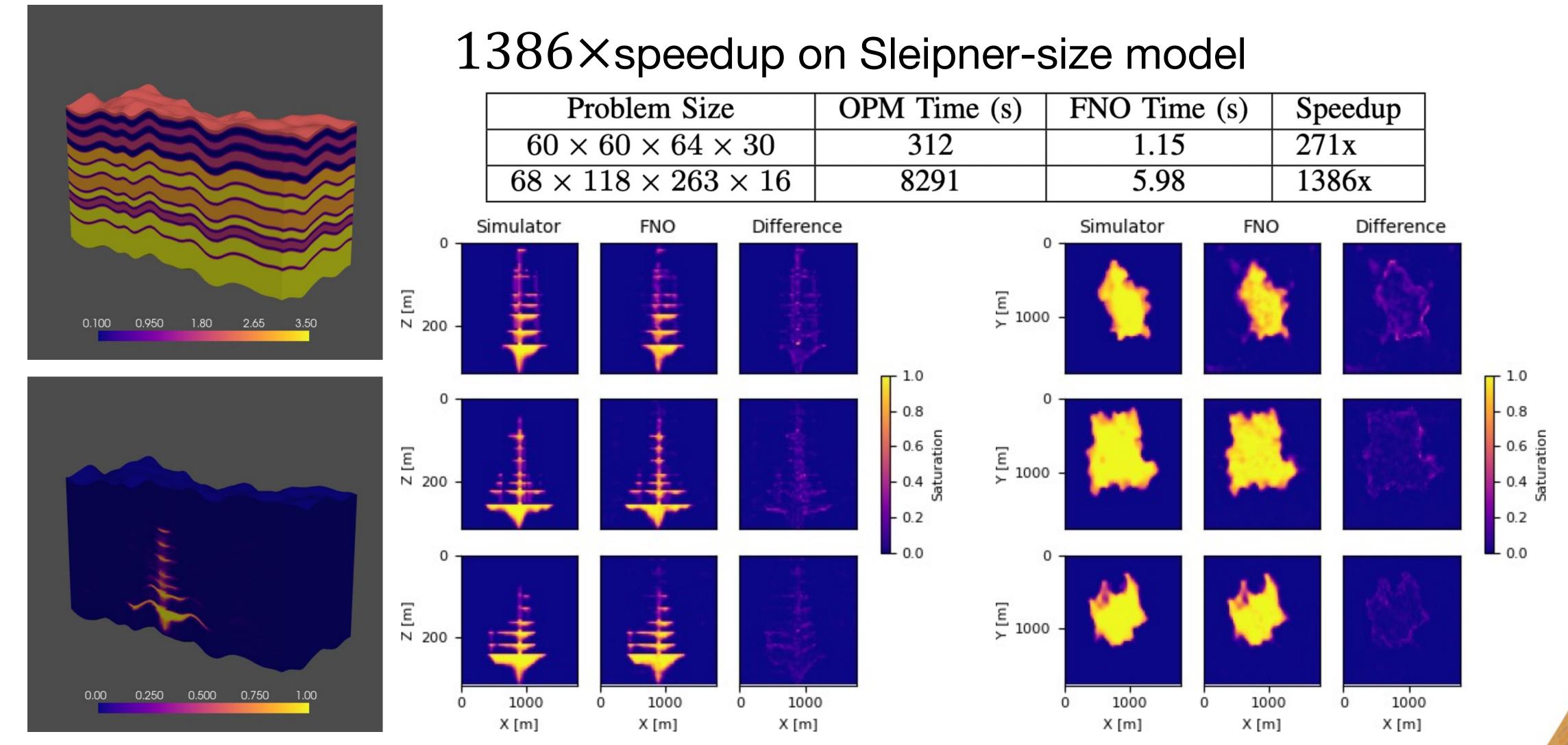
FNO Block w/ domain decomposition

Implemented w/ DistDL



Results

3D two-phase flow for CCS



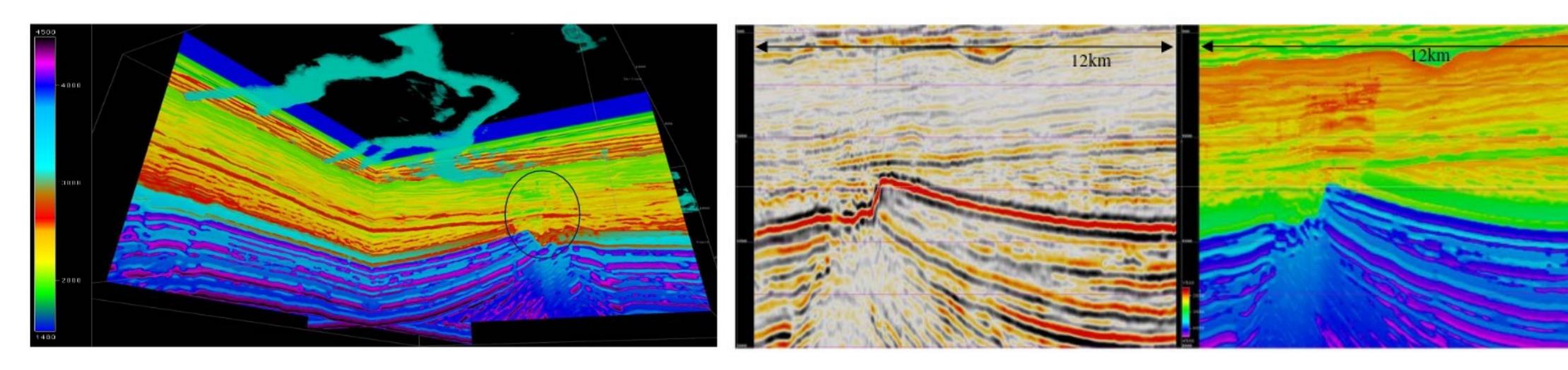
Leakage detection

Proxy model

derived from imaged 3D seismic & well data

convert velocity model into

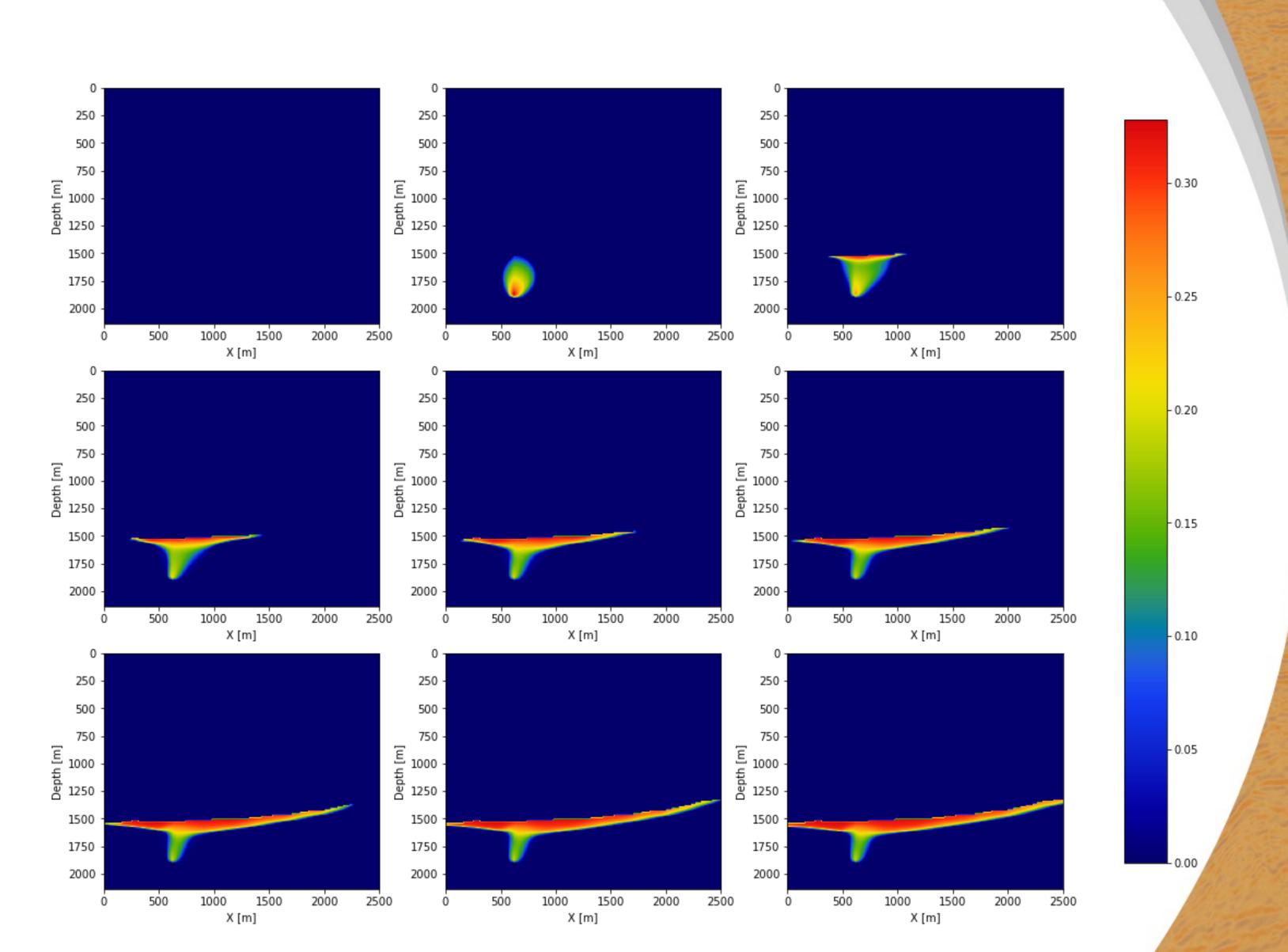
- permeability
- porosity



Dongzhuo Li, Kailai Xu, Jerry M Harris, and Eric Darve. Coupled time-lapse full-waveform inversion for subsurface flow problems using intrusive automatic differentiation. Water Resources Research, 56(8):e2019WR027032, 2020.

Simulations

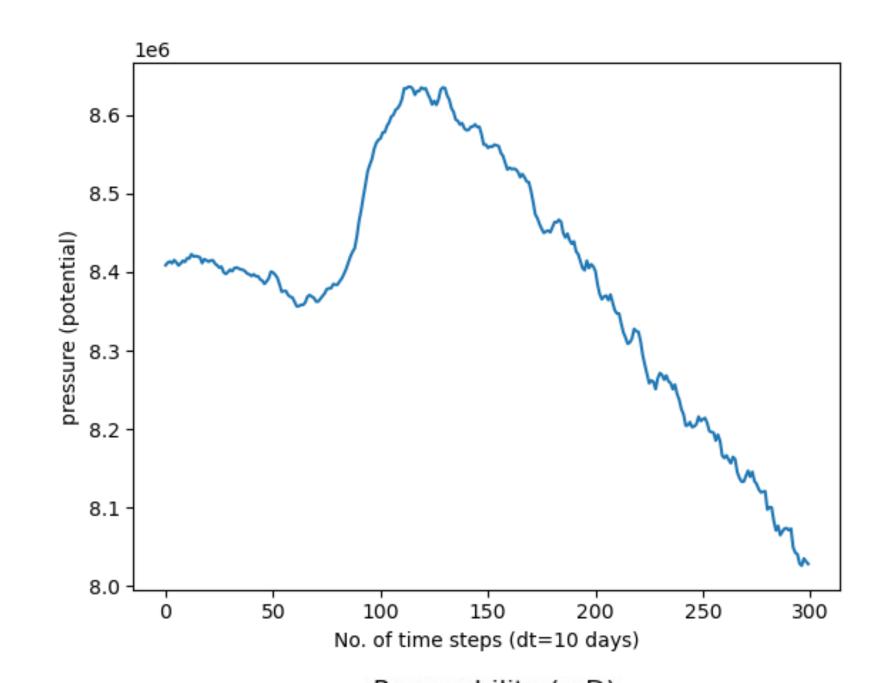
regular CO2 plume

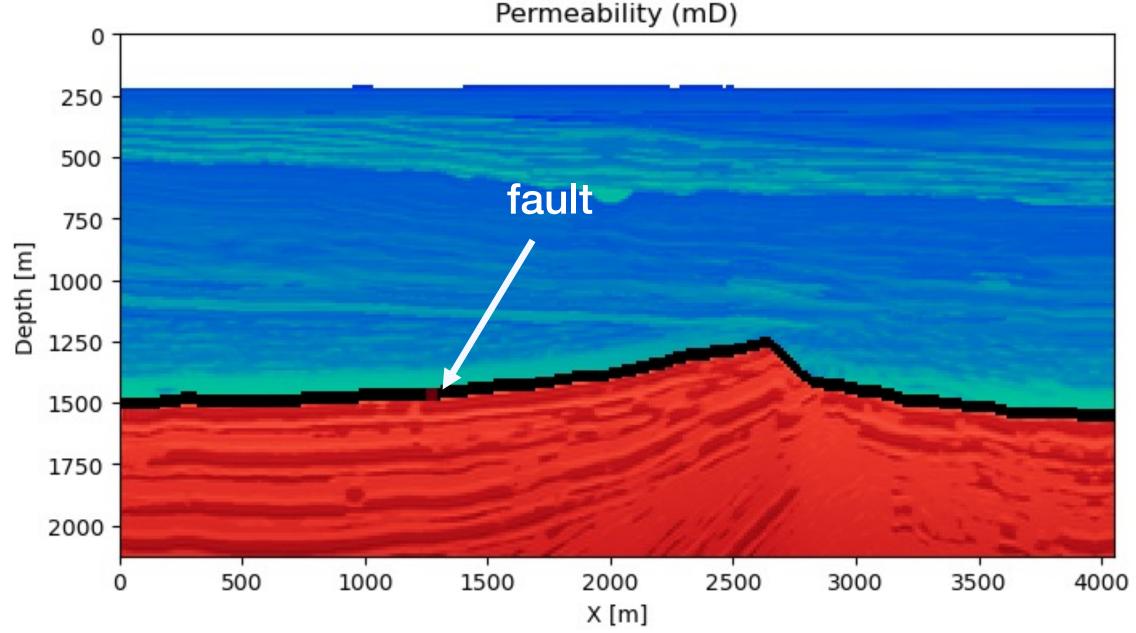


Leakage scenario

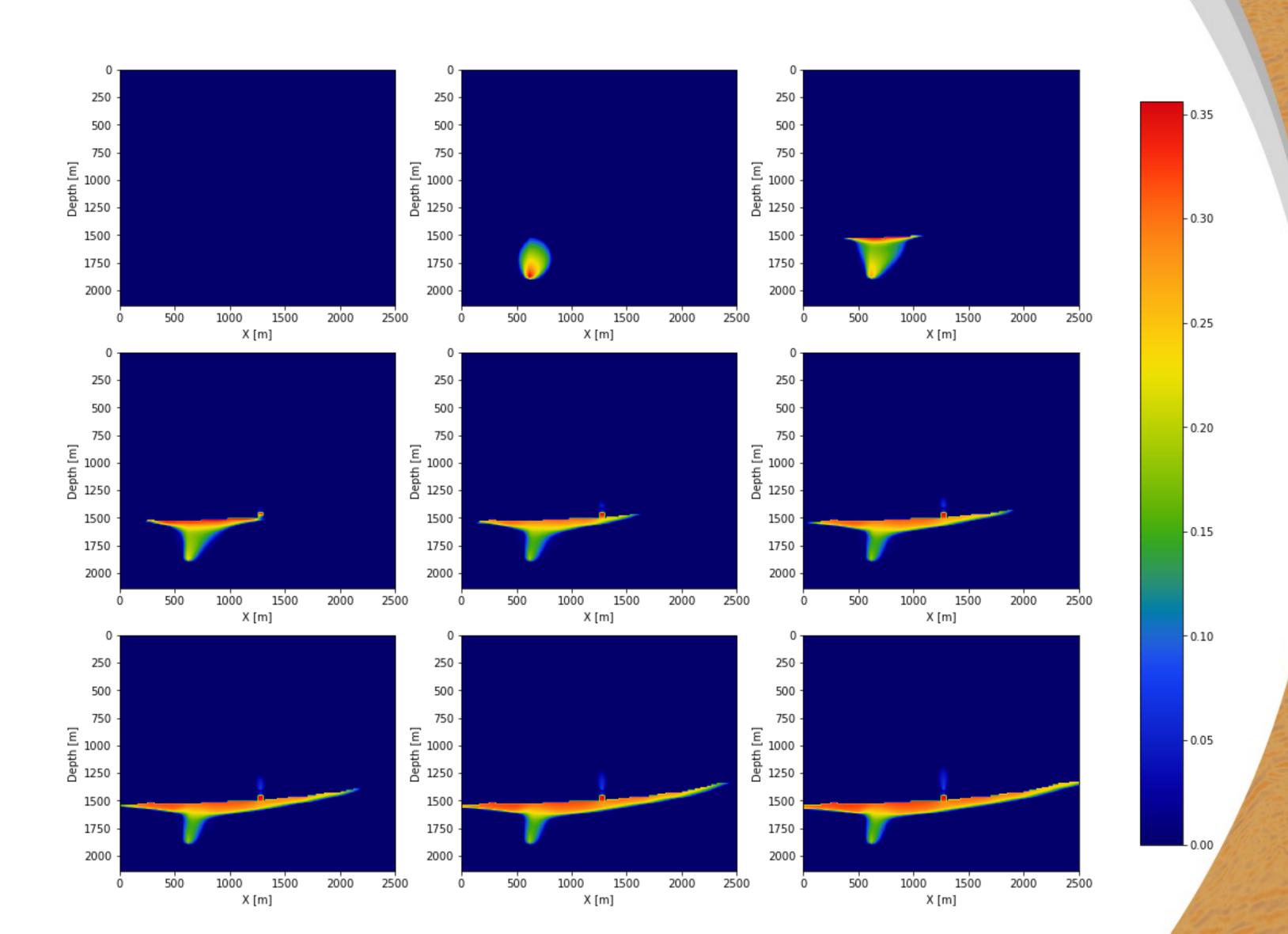
pressure-induced fault activation

- two-phase-flow simulations
- pressure $\geq 15 MPa$ induces a fault in the seal
- increase in permeability leads to leakage through seal
- leak location in seal selected at random w/ random widths



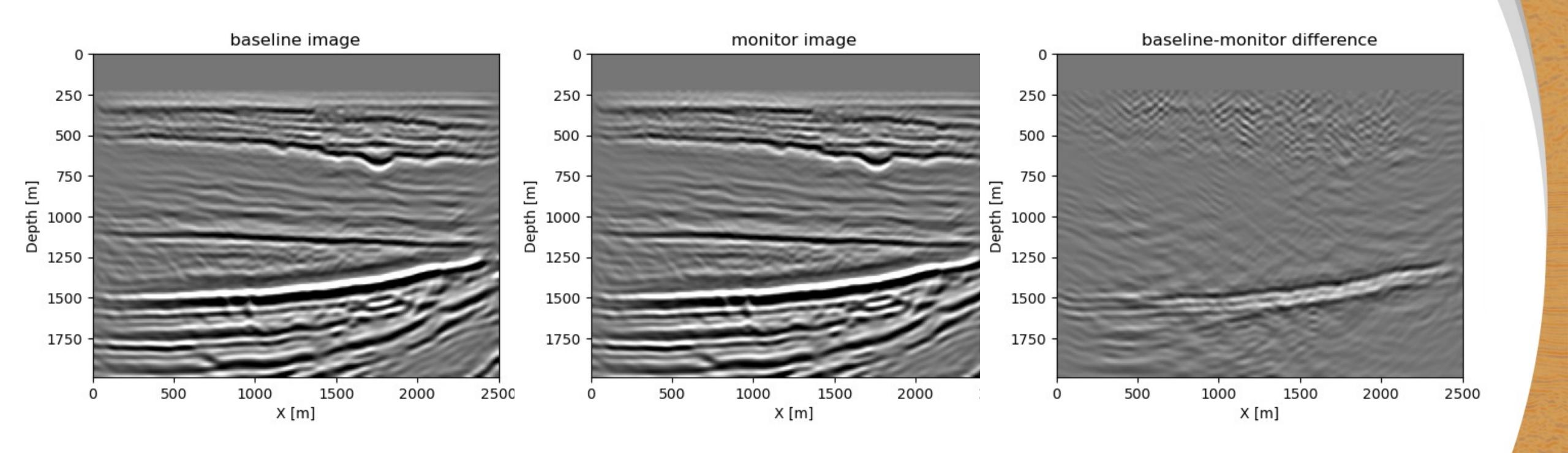


Simulations irregular CO2 plume



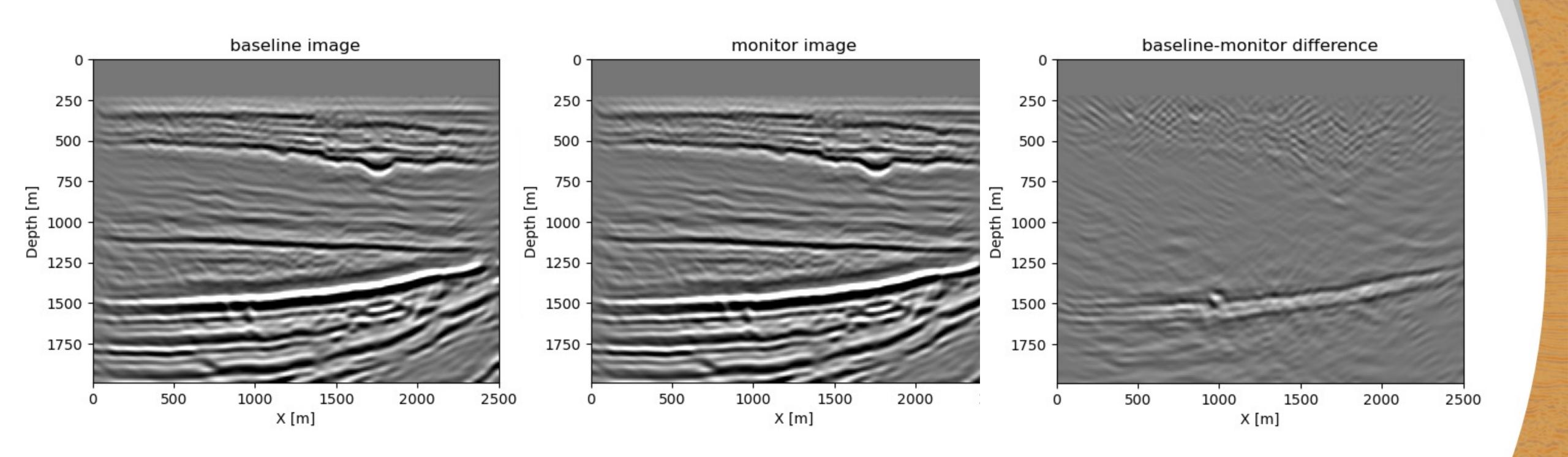
Time-lapse images

regular flow - no replication acquisition



Time-lapse images

irregular flow - no replication acquisition



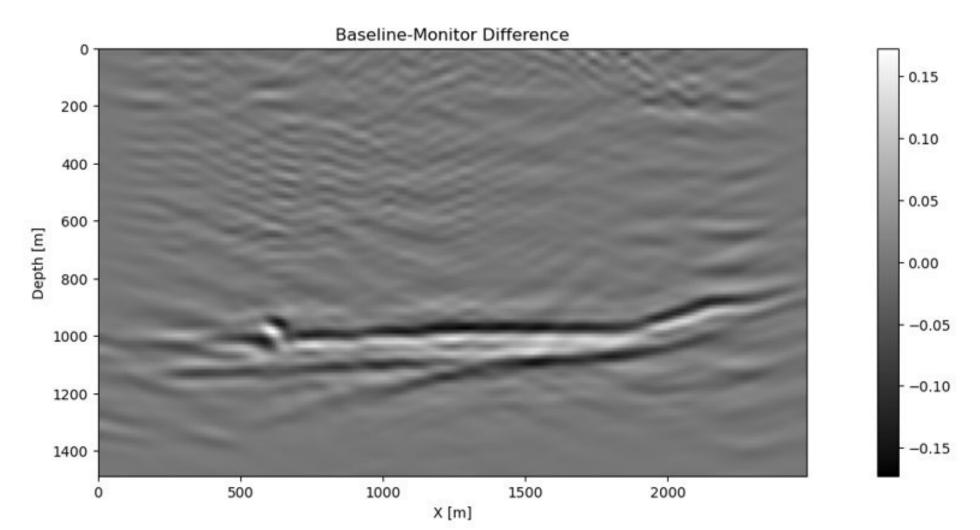
Leak / no leak classification

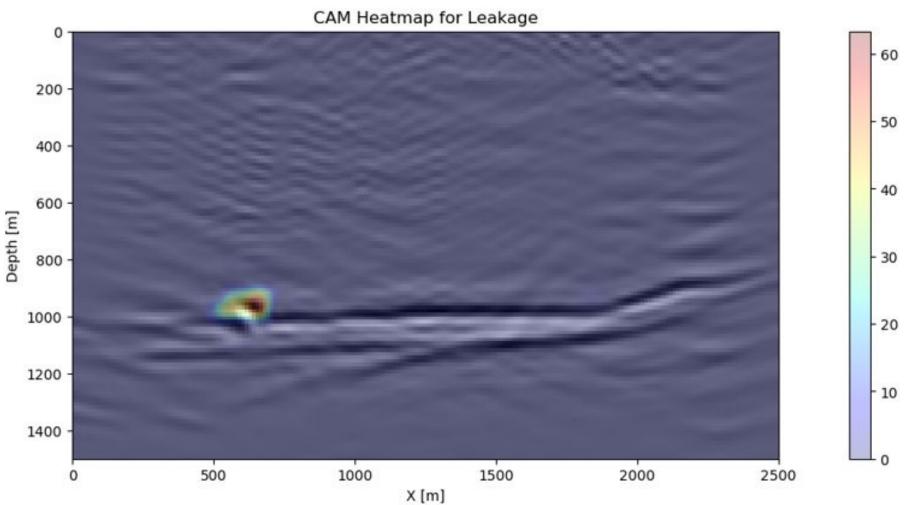
TABLE I Performance Metric Comparison

Metrics	Mean Deviation
Accuracy	0.797 ± 0.066
Precision	0.711 ± 0.105
Recall	0.954 ± 0.023
F1 Score	0.818 ± 0.068

Precision: measures how many leakages model predicted correctly, out of all predicted leakages

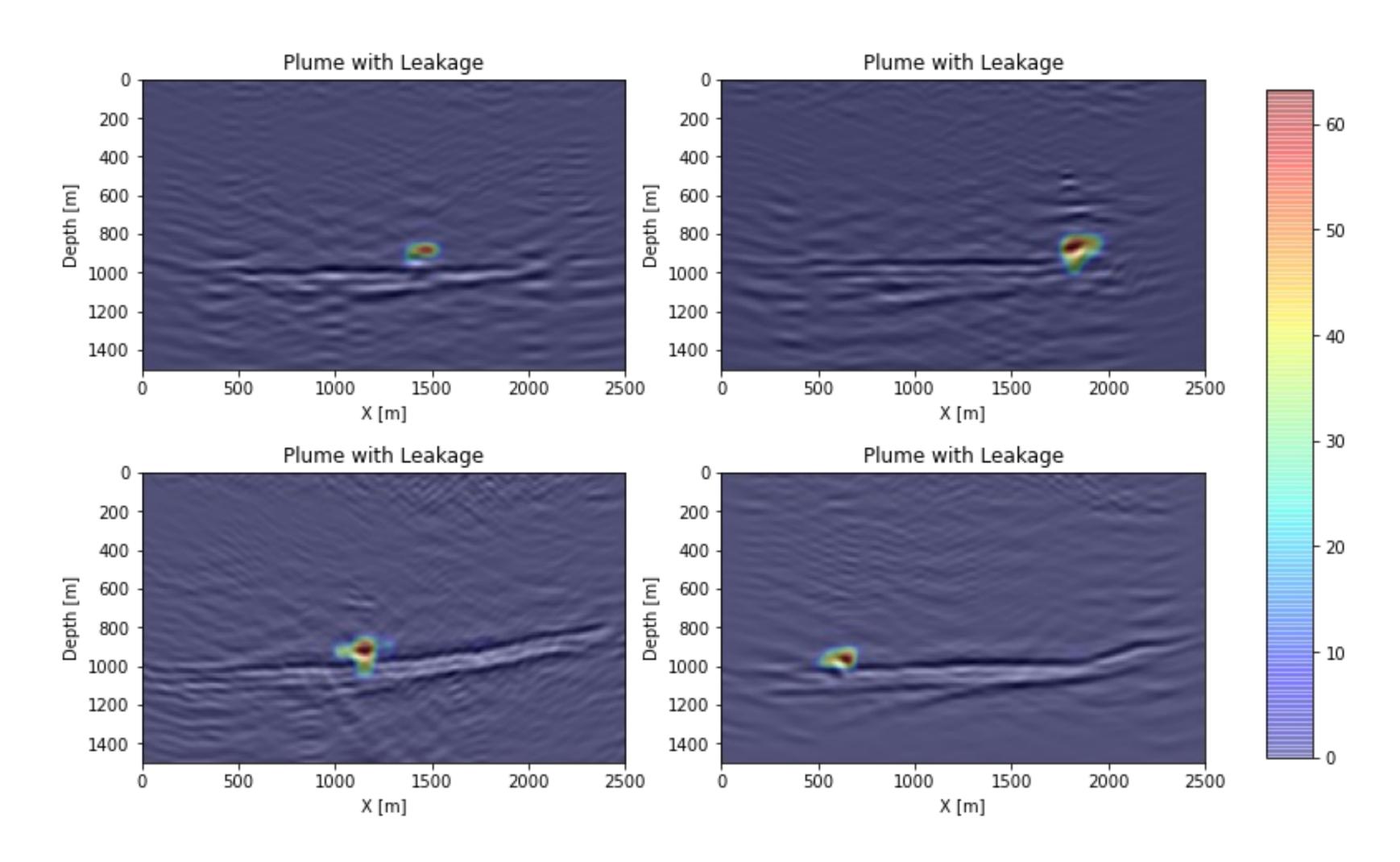
Recall: measures how many leakages model predicted correctly, out of all actual leakages





Leakage detection

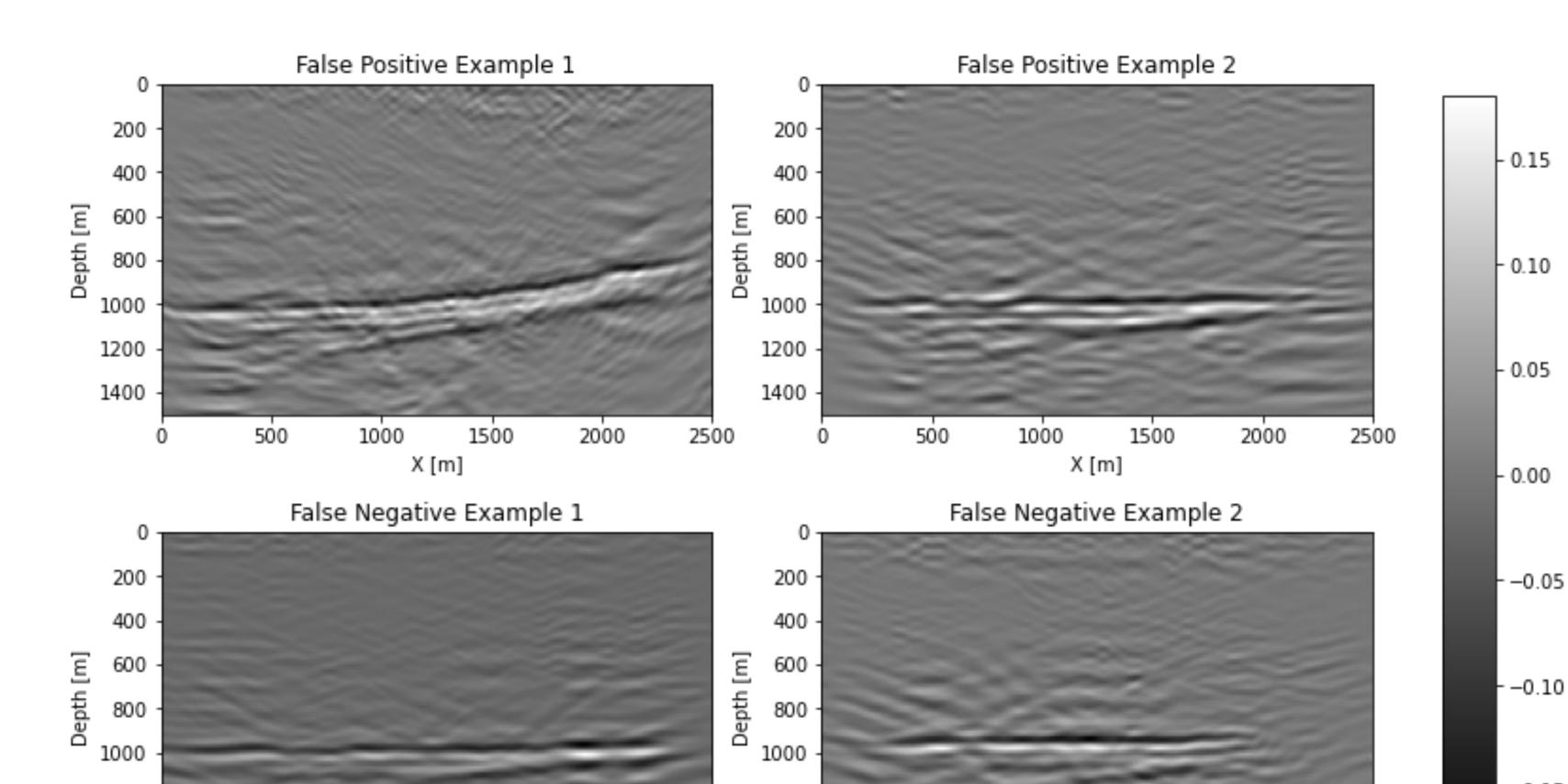
examples



False positives/negatives

examples

false positives



1200 -

1400 -

500

1000

1500

X [m]

2000

2500

2500

1500

X [m]

2000

1000

500

false negatives

1200

1400

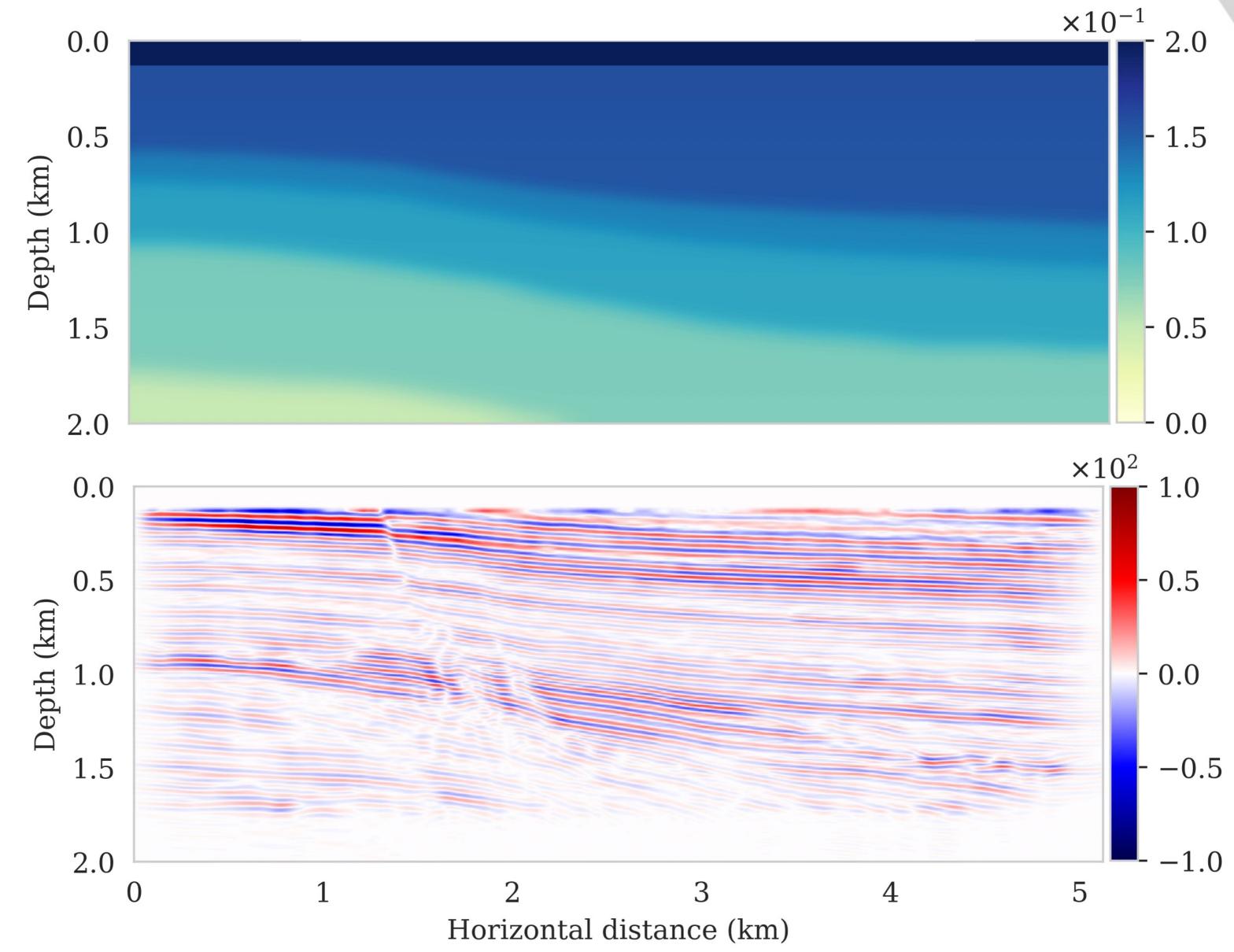
What about uncertainty?

e.g. w.r.t. background velocity models...

RTMs for different background velocity models

Samples from $p(\mathbf{m}_0 \mid \mathbf{d})$ for the background velocity model

Corresponding RTMs $\delta \mathbf{m}_{RTM} = \sum_{i=1}^{n_s} \mathbf{J}(\mathbf{m}_0, \mathbf{q}_i)^{\mathsf{T}} \delta \mathbf{d}_i$



Velocity continuation

w/ FNOs

Learn mapping $\mathcal{T}_{(\mathbf{m}_{\mathrm{init}},\mathbf{m}_{\mathrm{target}})}$: $\delta\mathcal{M} \to \delta\mathcal{M}$ from training pairs

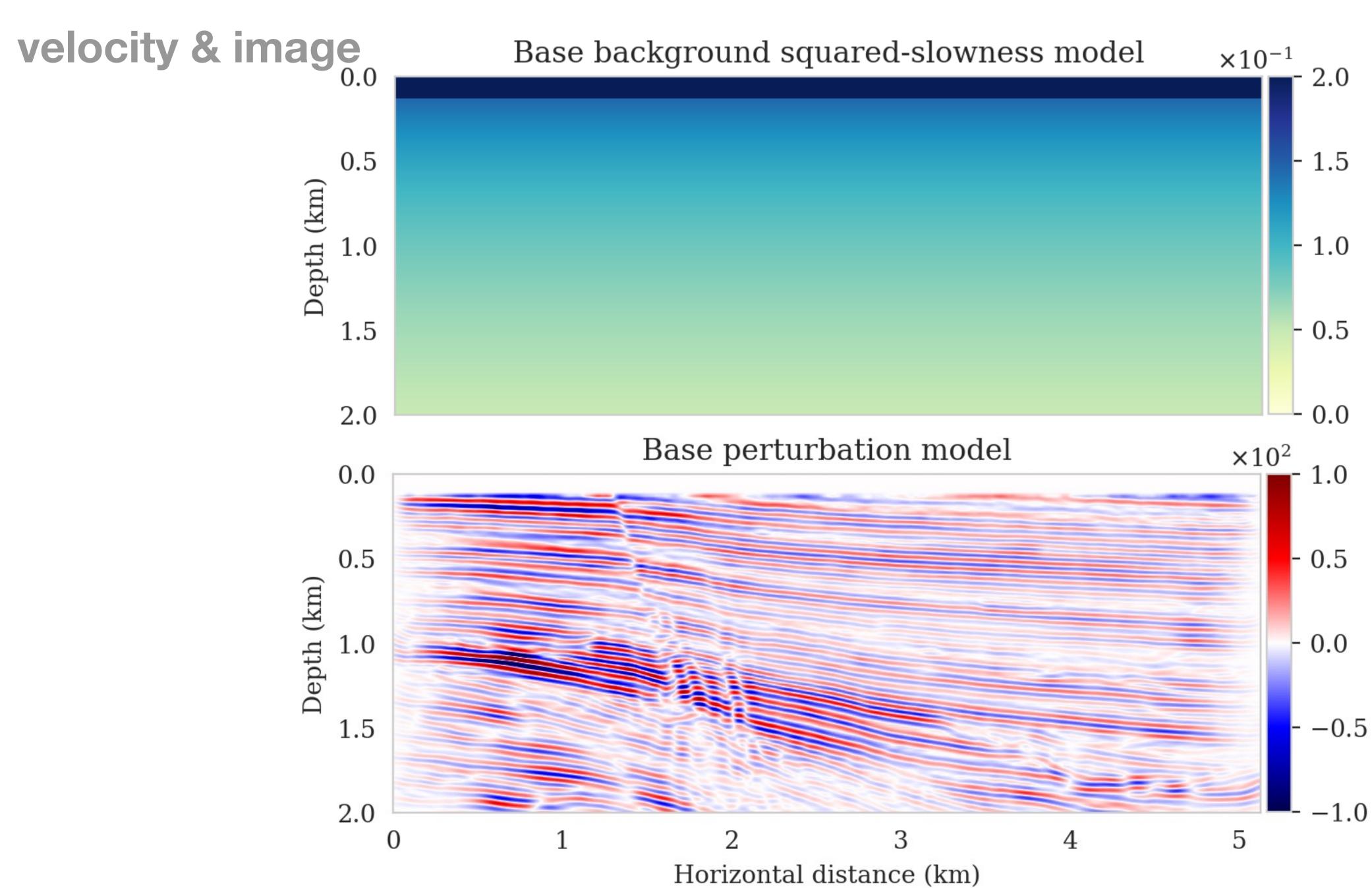
$$\{((\mathbf{m}_{0}^{(i)}, \delta \mathbf{m}_{\text{init}}), \delta \mathbf{m}_{\text{RTM}}^{(i)}) | i = 1, ..., N\}$$

- $(\mathbf{m}_0^{(i)}, \delta \mathbf{m}_{init})$ input target background and initial seismic image training pair
- $\delta \mathbf{m}_{\mathrm{RTM}}^{(i)}$ target seismic image

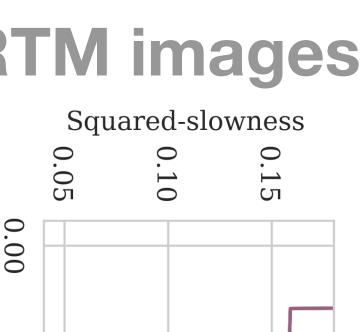
by minimizing

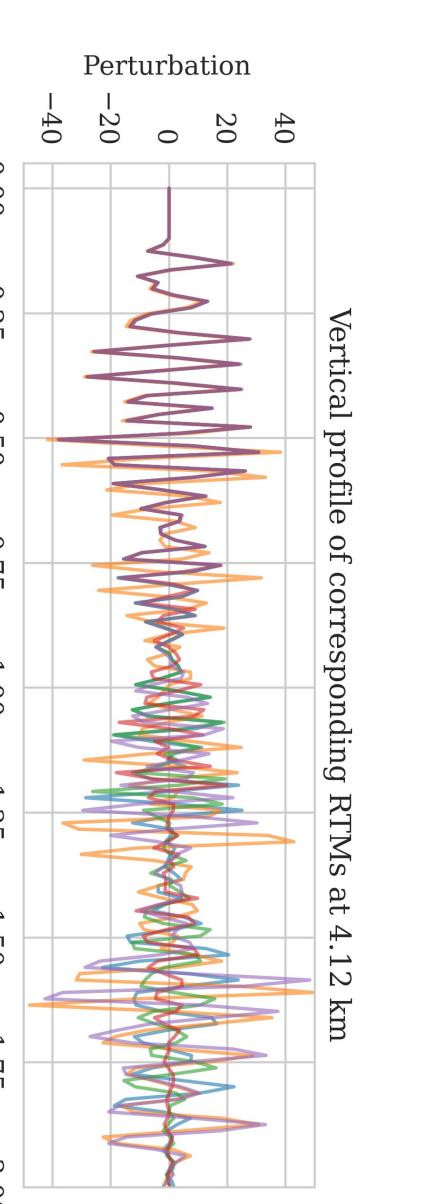
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} \| \mathcal{G}_{\mathbf{w}}(\mathbf{m}_0^{(i)}, \delta \mathbf{m}_{\text{init}}) - \delta \mathbf{m}_{\text{RTM}}^{(i)} \|_2^2$$

yielding the learned FNO $G_{\mathbf{w}^*}: \mathcal{M} \times \delta \mathcal{M} \to \delta \mathcal{M}$.



RTM images





Squared-slowness

Vertical profile

of five

background models

at

2

50

kr

0.05

0.00

0.25

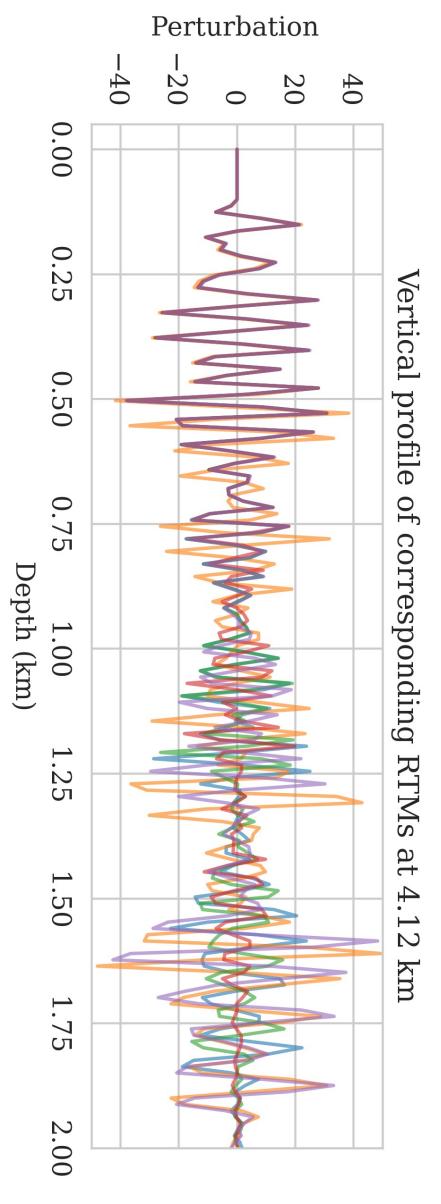
0.50

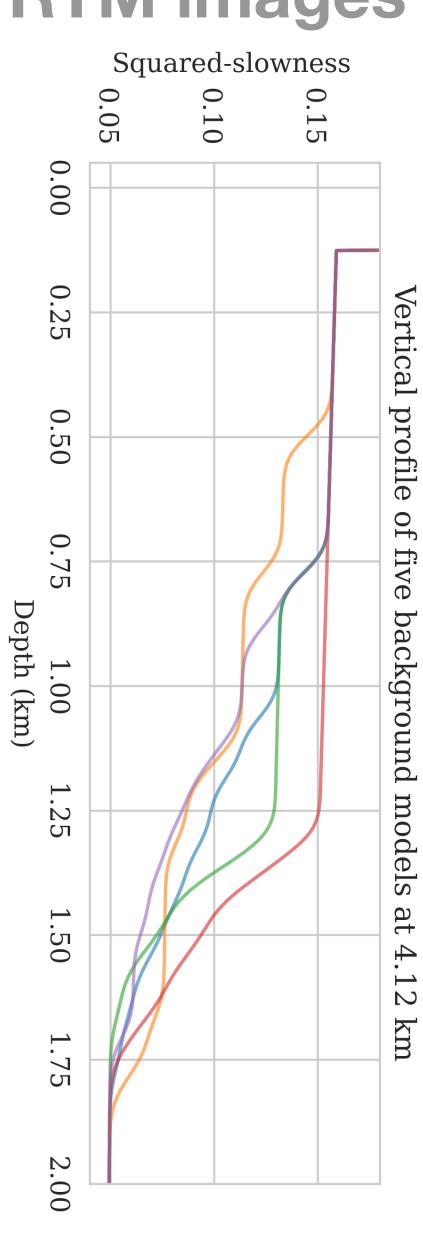
Depth (km)

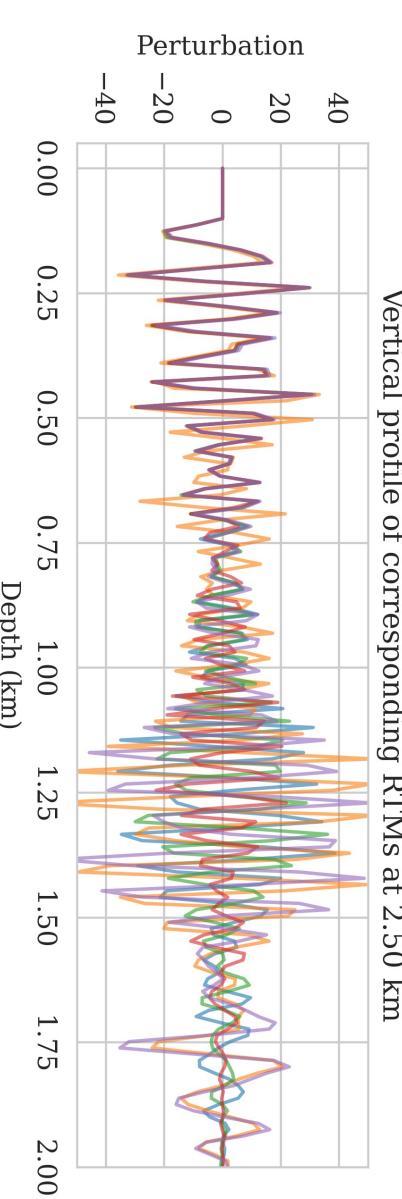
1.50

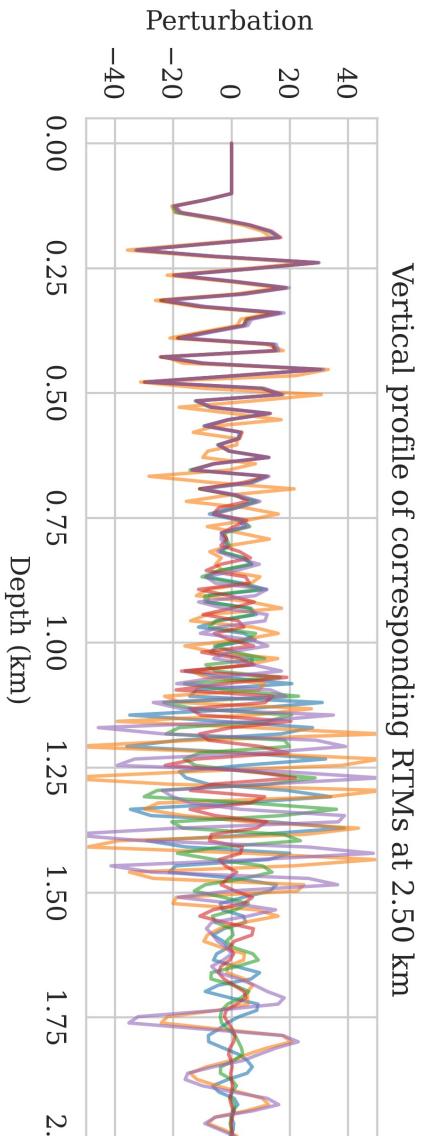
.75

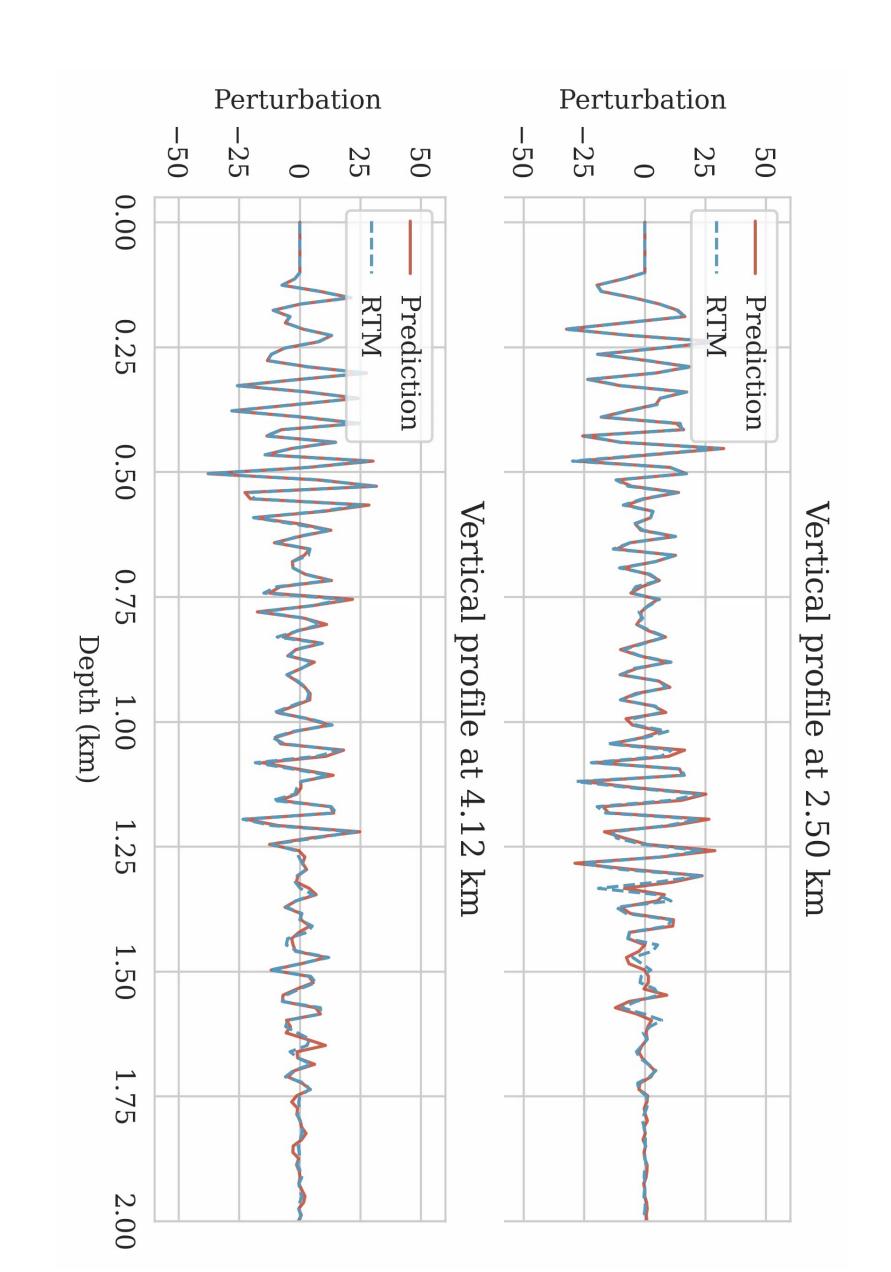
2.00

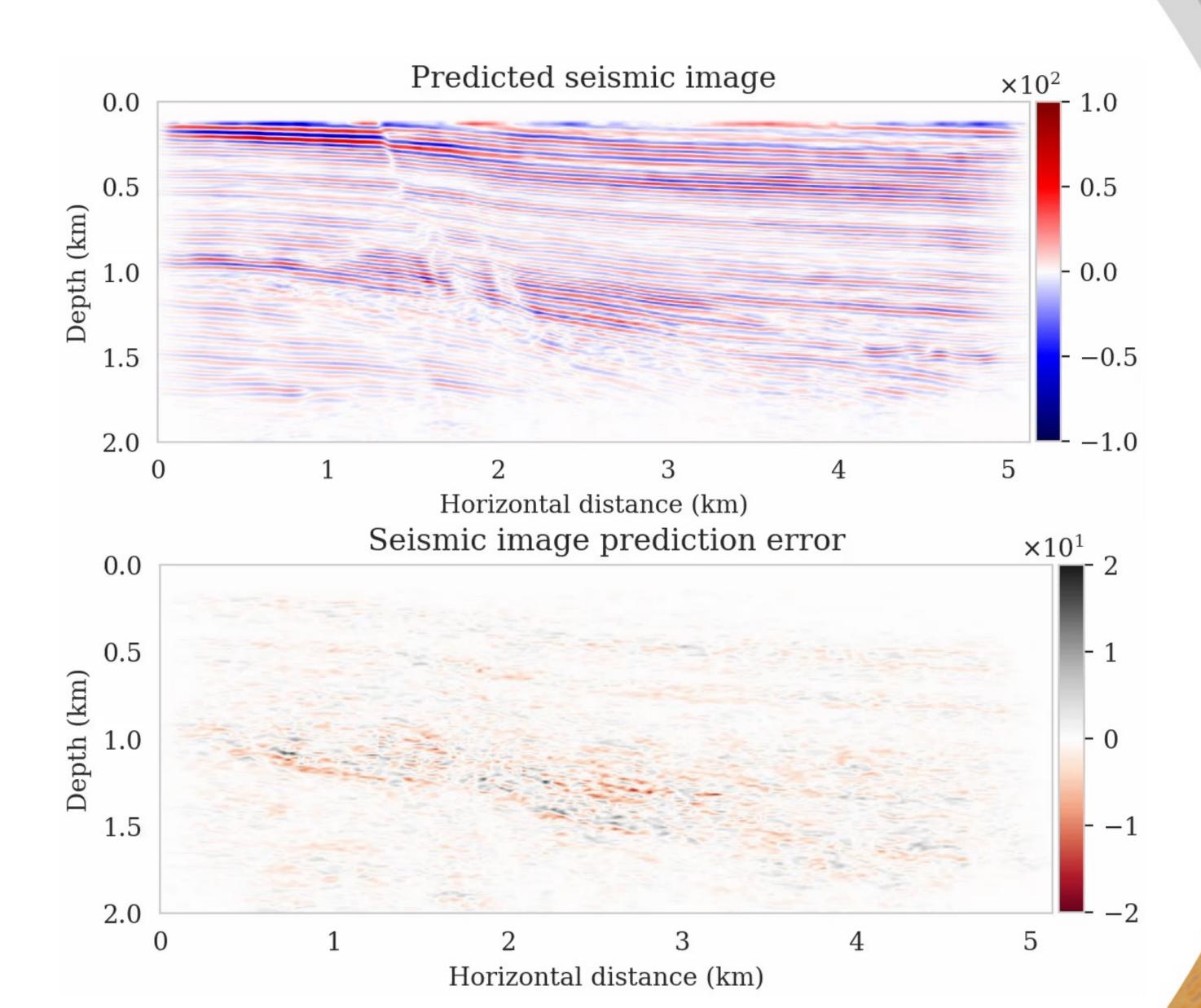












Conclusions

Neural Networks and Neural Operators can act as surrogates to capture complicated physics:

- two-phase flow
- velocity continuations

Bayes Inference allows for risk analysis for geological carbon storage

FNO's opens to possibility to

- carry out inversions using AD
- conduct UQ

Acknowledgment

This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic Center