Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SLIM group @ Georgia Institute of Technology.

EUROPEAN
ASSOCIATION OF
GEOSCIENTISTS &
ENGINEERS

OPPORTUNITIES PRESENTED BY THE ENERGY TRANSITION

11-14 JUNE 2018 WWW.EAGEANNUAL2018.ORG

Compressed-sensing based land acquisition design

Felix J. Herrmann

11-14 JUNE 2018 WWW.EAGEANNUAL2018.ORG

Compressed-sensing based land acquisition design

Rajiv Kumar, Shashin Sharan, Nick Moldoveanu, and Felix J. Herrmann

Georgia Institute of Technology

Lin, T.T. and Herrmann, F.J. [2009] Designing simultaneous acquisitions with compressive sensing. EAGE Annual Conference Proceedings, EAGE, EAGE.

Oristaglio, M. [2012] SEAM Phase II—Land Seismic Challenges. The Leading Edge, 31(3), 264-266.

Mosher, C., Li, C., Williams, L., Carey, T., Olson, R., Malloy, J. and Ji, Y. [2017] Compressive Seismic Imaging: Land Vibroseis operations in Alaska. 127–131.

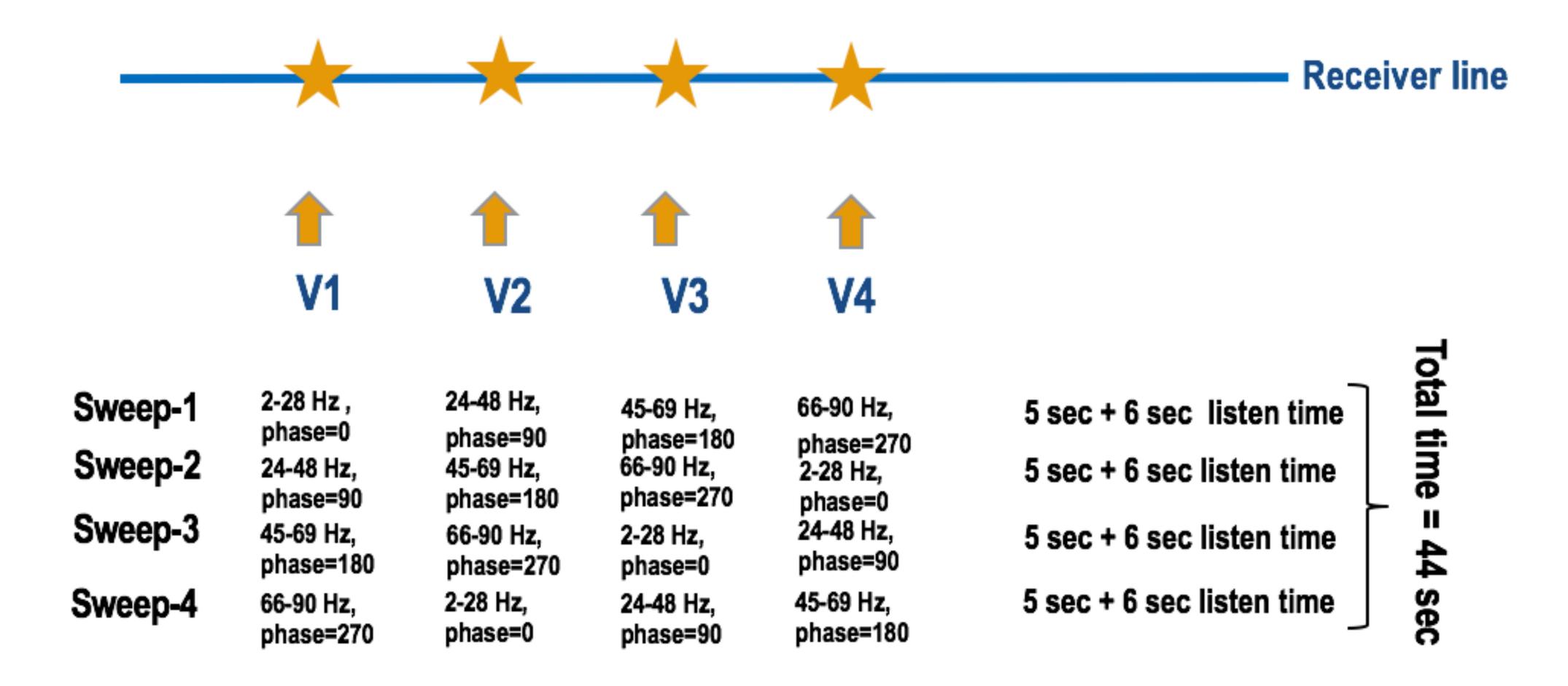
Current acquisition paradigm

Large number of single vibrators to sweep simultaneously

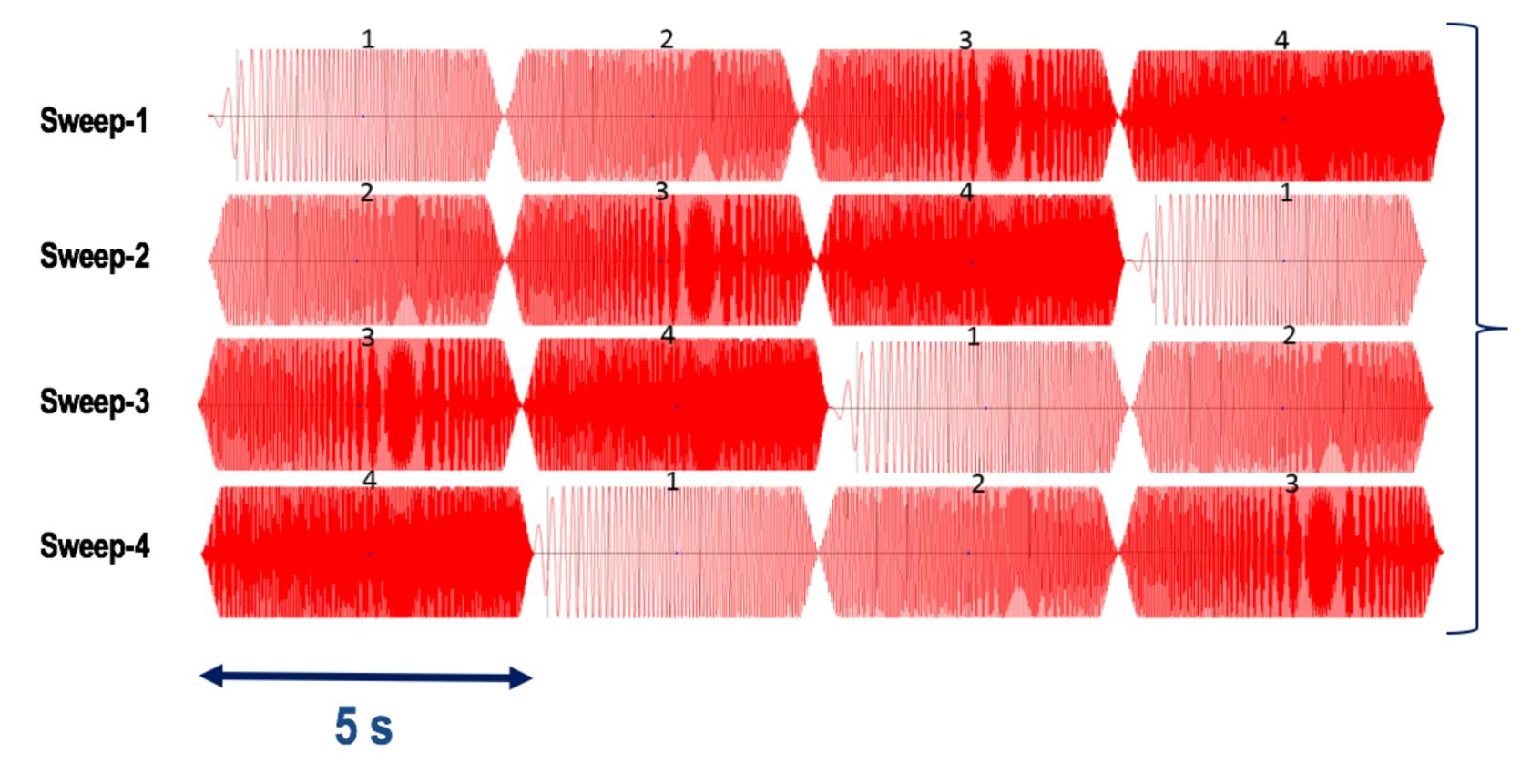
Perform source separation to recover individual shots

Cannot be used in the areas with obstruction or permit limitations

Phase- and Frequency- encoding



Phase- and Frequency- encoding



5 s each + 6s listening 44s non-concatenated 104s conventional

Can we further reduce the acquisition time?

Motivation

Lower the acquisition cost using simultaneous encoded sweeps

Reduce the sweeping time

Coarsely sampled data w/ insights from Compressive Sensing

Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, "Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology", Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012.

Felix J. Herrmann, "Randomized sampling and sparsity: Getting more information from fewer samples", *Geophysics*, vol. 75, p. WB173-WB187, 2010. Gilles Hennenfent and Felix J. Herrmann, "Simply denoise: wavefield reconstruction via jittered undersampling", Geophysics, vol. 73, p. V19-V28, 2008. Felix J. Herrmann and Gilles Hennenfent, "Non-parametric seismic data recovery with curvelet frames", Geophysical Journal International, vol. 173, p. 233-248, 2008.

Compressive sensing paradigm

Sample to break structure = renders interference into incoherent noise

- randomized acquisition (e.g., time-jittered, over/under, continuous recording etc.)
- destroys sparsity/low rank

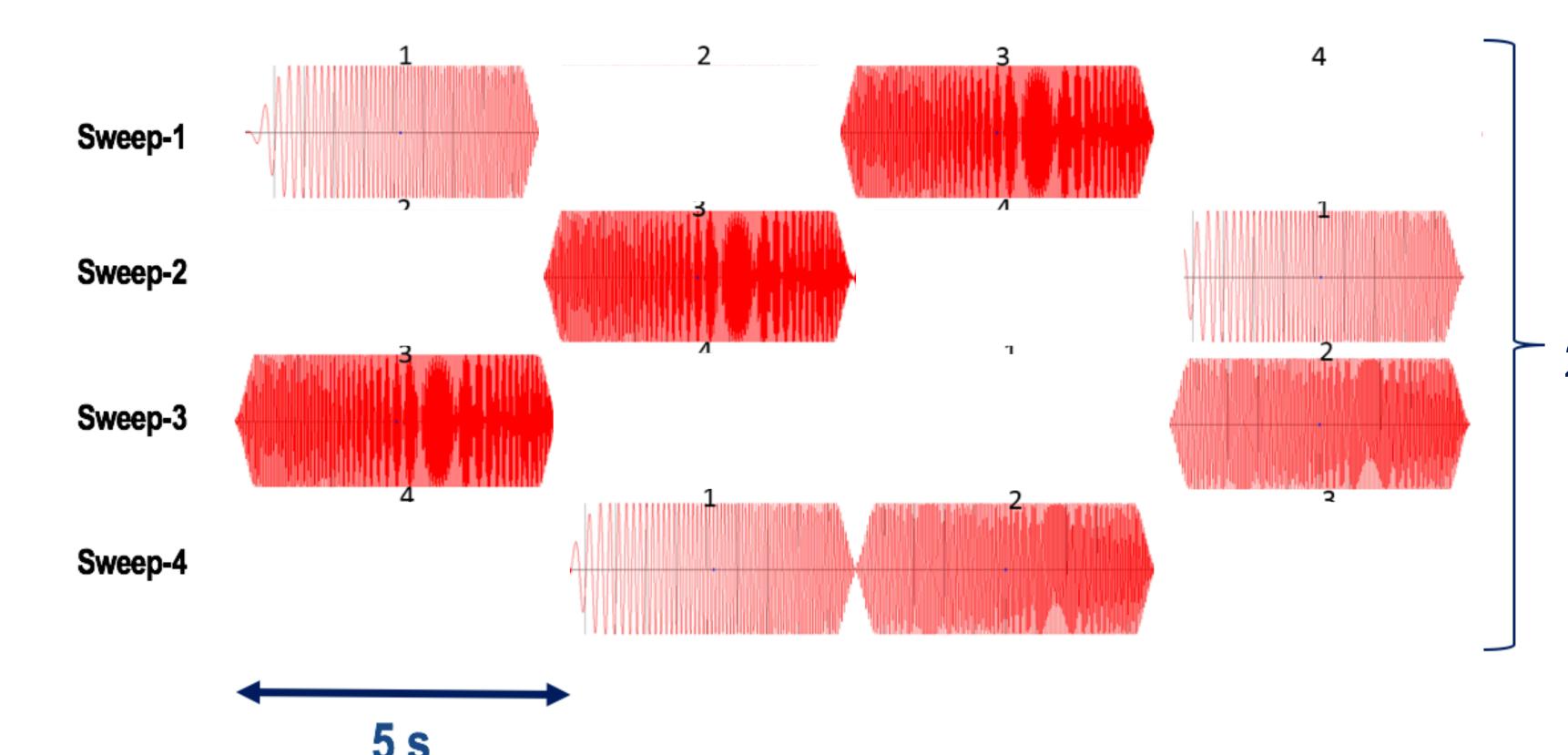
Find representations that reveal structure = separate signal from "noise"

- transform-domain sparsity (e.g., Fourier, curvelets, etc.)
- low-rank revealing matrix or tensor representations

Recover by structure promotion = obtain artifact-free densely sampled data

- > sparsity via one-norm minimization, or
- nuclear-norm minimization

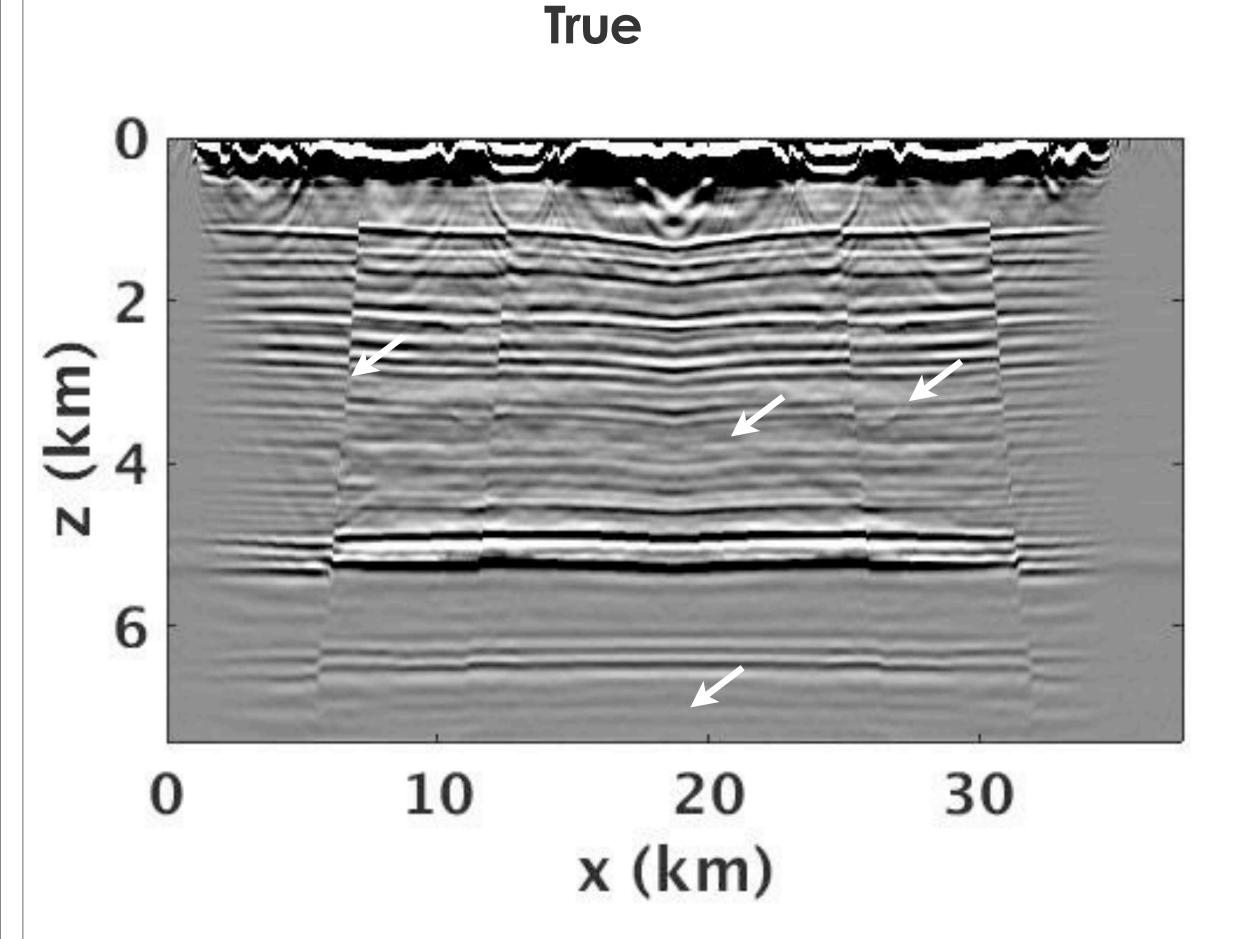
Random Phase- and Frequency- encoding



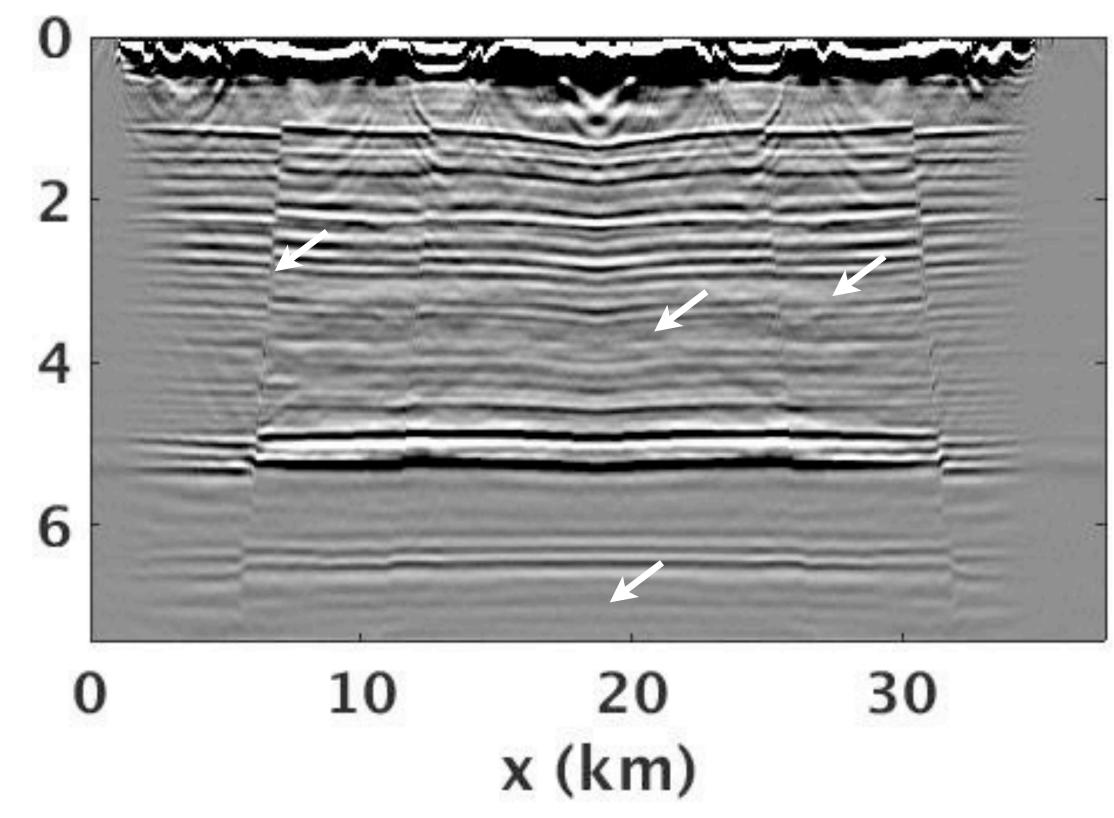
50 % subsampling

5 s each + 6s listening 22s non-concatenated 104s conventional

Reverse time migration



After deblending & Spectral Interpolation 4-5x speedup in acquisition

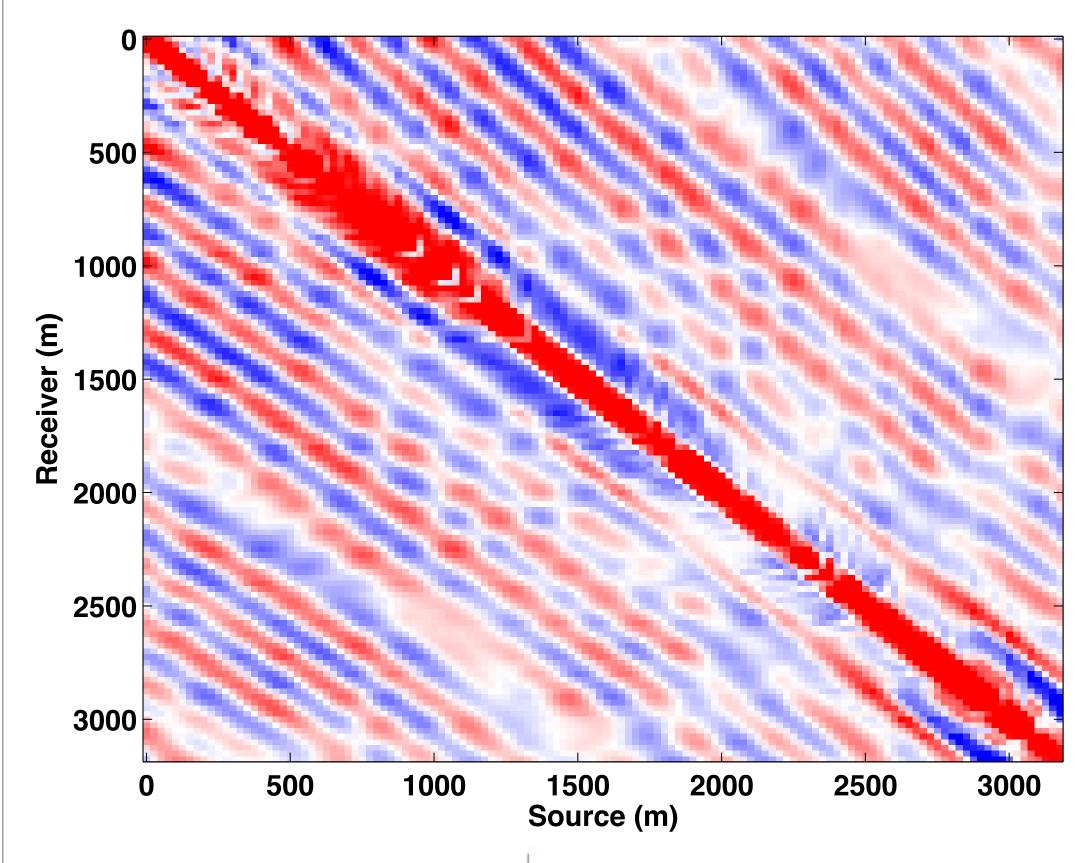


[Candes and Plan 2010, Oropeza and Sacchi 2011]

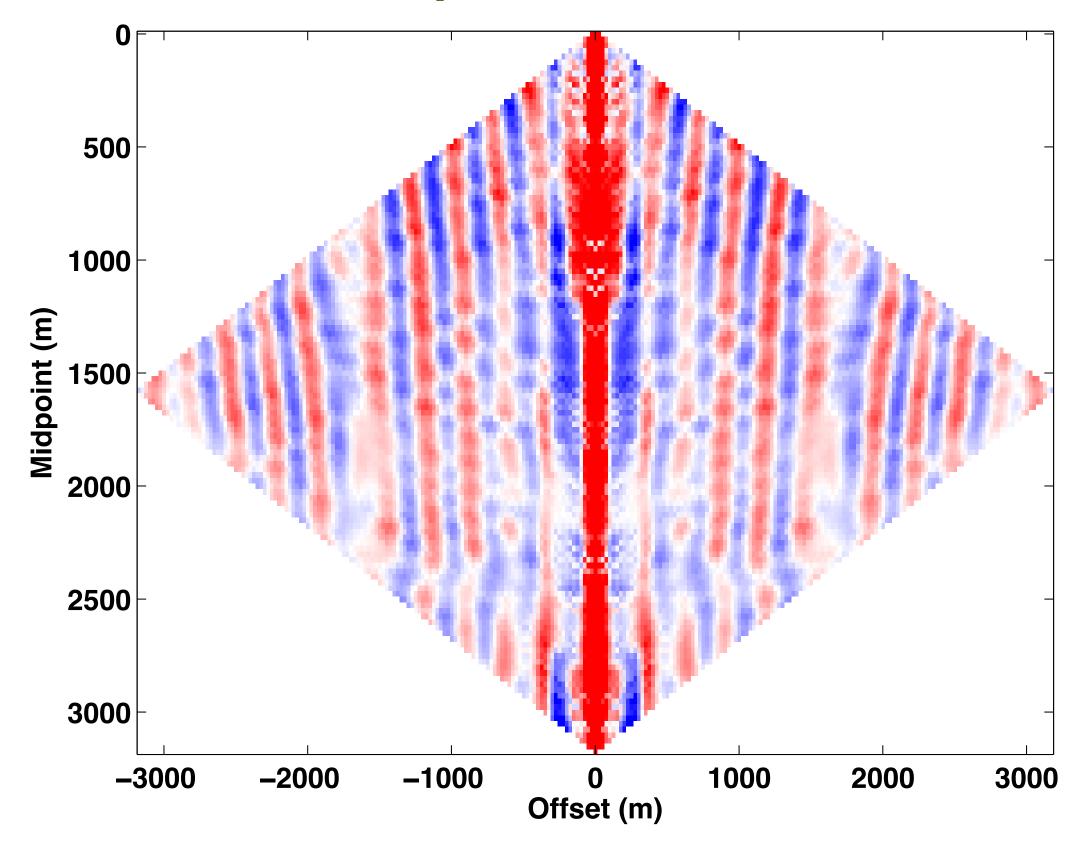
Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure conventional 5D data, monochromatic slice

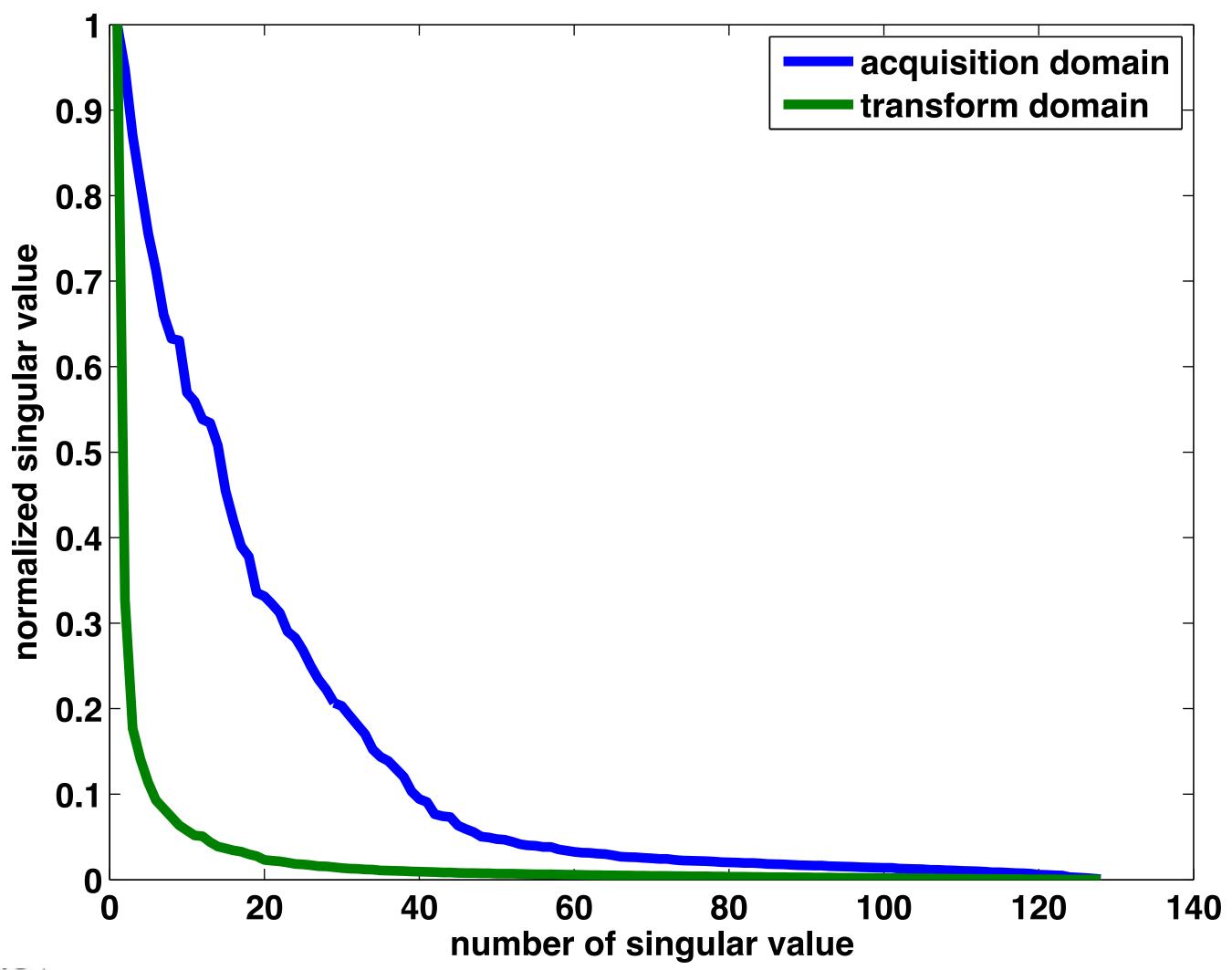


midpoint-offset domain



SLIM 🔒

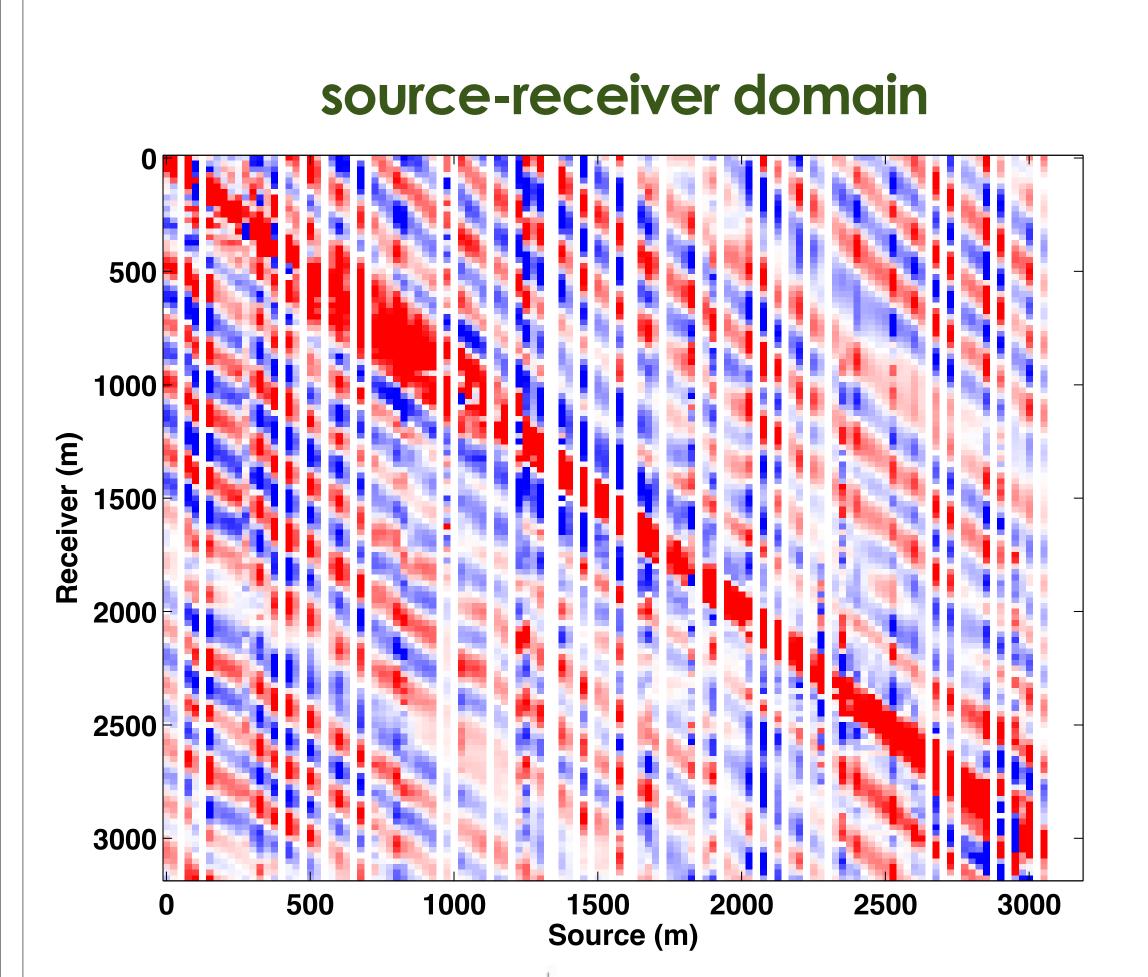
Low-rank structure conventional 3D data, monochromatic slice, SVD decay

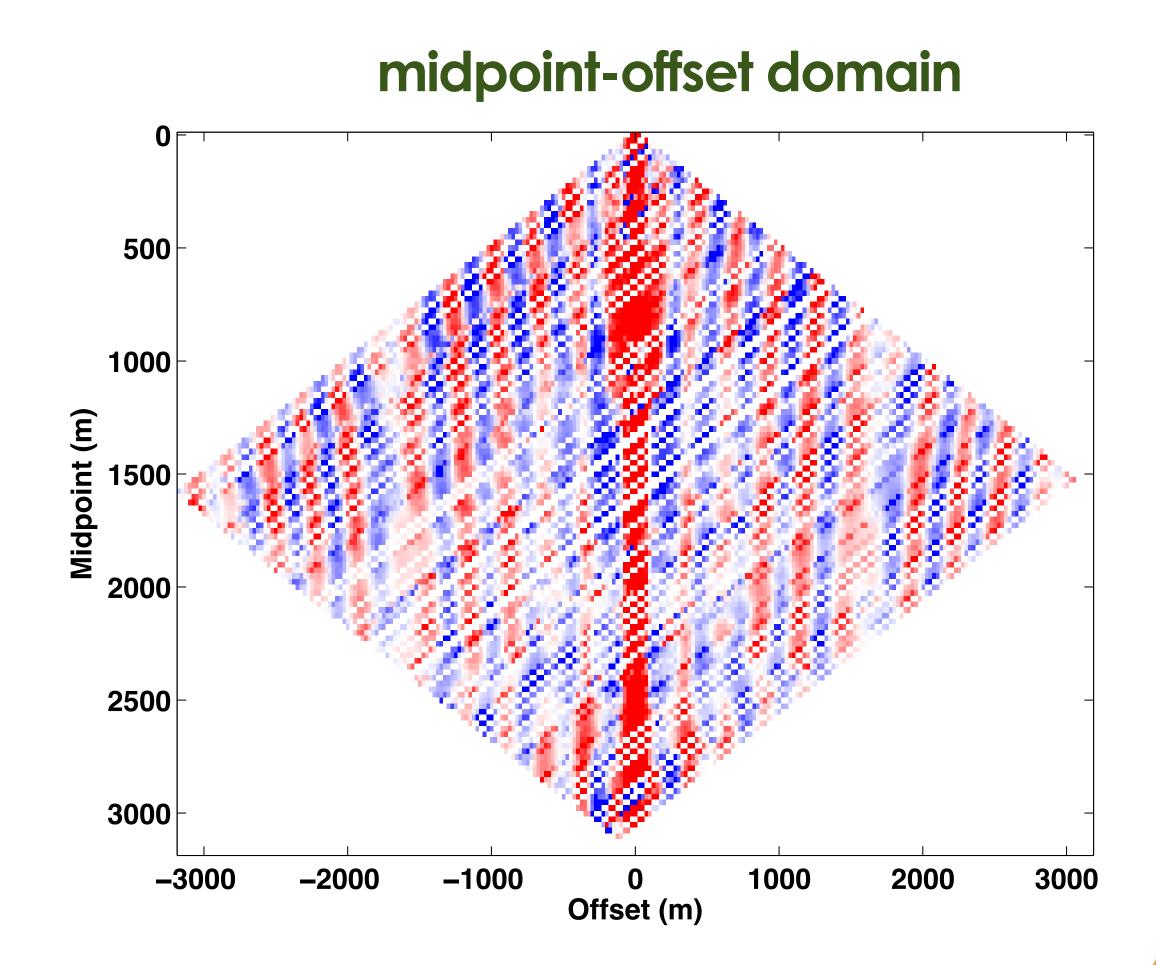


Matrix completion

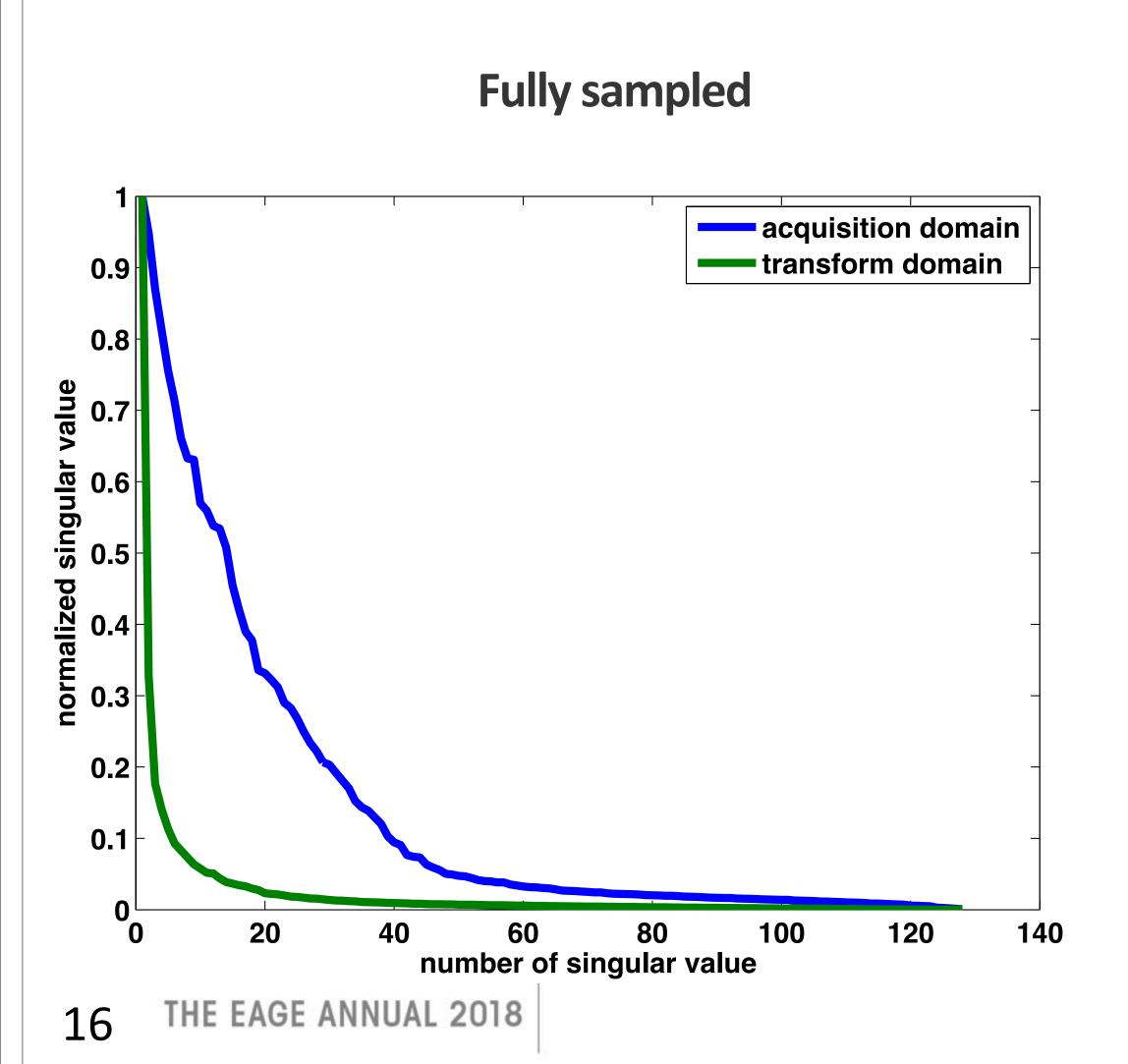
- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

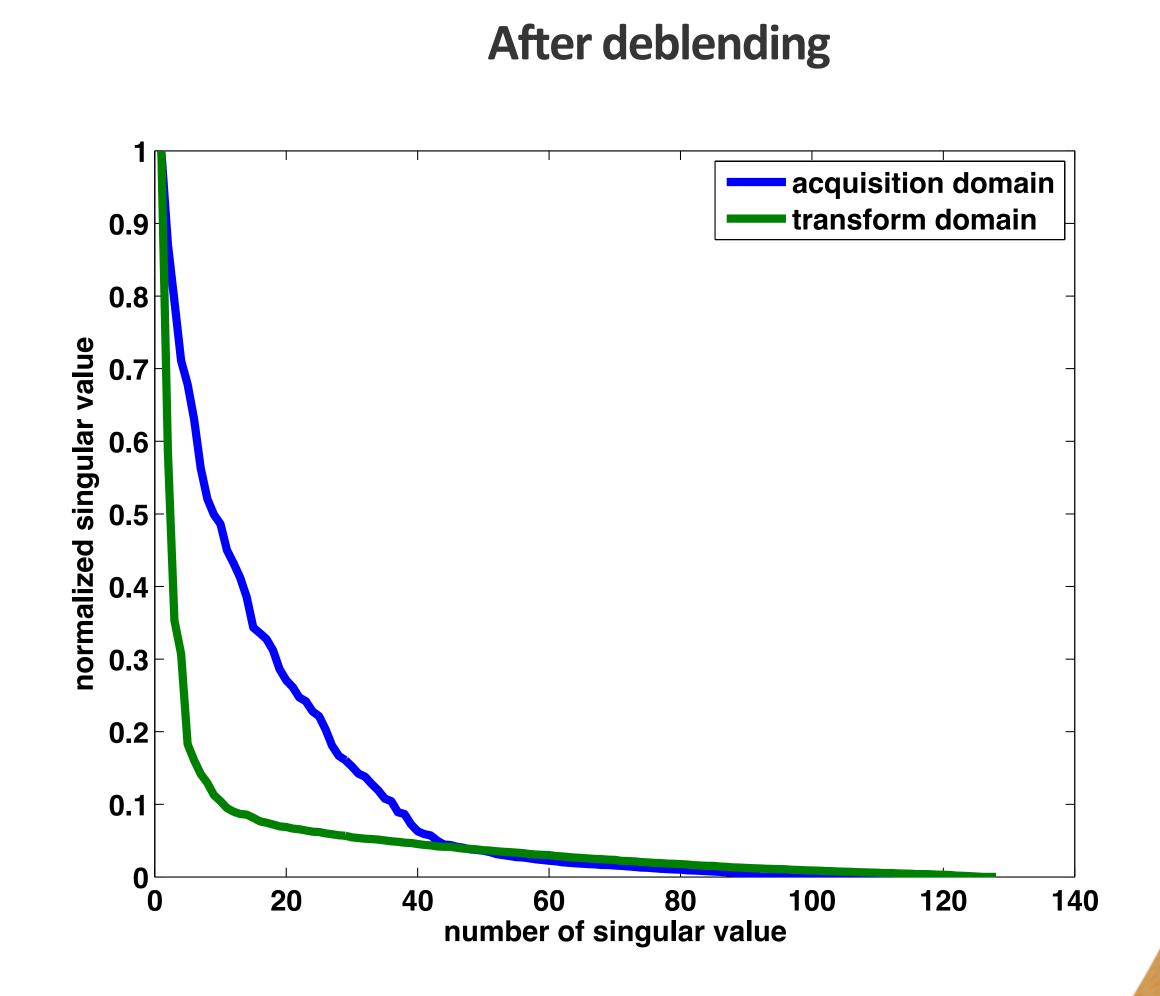
Low-rank structure pseudo-deblended data, monochromatic slice





Low-rank structure pseudo-deblended data, monochromatic slice





Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

[Recht et. al., 2010]

$$\min_{\mathbf{X}} \ ||\mathbf{X}||_* \ \text{s.t.} \ ||\mathcal{A}(\mathbf{X}) - \mathbf{b}||_2 \leq \epsilon$$
 sum of singular values of \mathbf{X}

where

$$\mathcal{A} = \mathbf{F}_t^{-1} \mathbf{R} \mathbf{B} \mathcal{S}^H$$

- F Temporal-Fourier transform
- Restriction operator
- S Midpoint-offset operator
- Blending and convolution operator

Nuclear-norm minimization

[Recht et. al., 2010]

$$\mathbf{B} = egin{bmatrix} \mathbf{B}_1 & & & \ & \ddots & & \ & & \mathbf{B}_k \end{bmatrix}$$

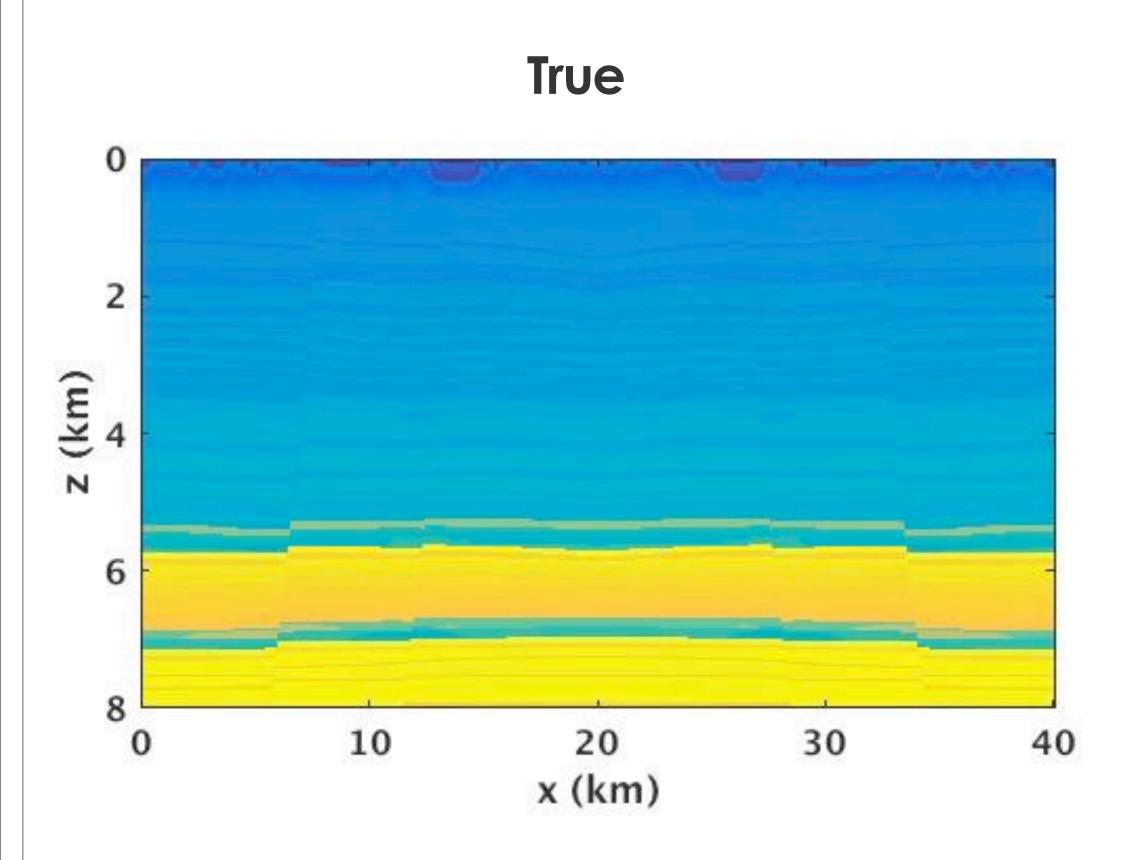
where

$$\mathbf{B}_{i} = \begin{pmatrix} \operatorname{diag}(a_{1}) & \operatorname{diag}(a_{2}) & \operatorname{diag}(a_{3}) & \operatorname{diag}(a_{4}) \\ \operatorname{diag}(a_{2}) & \operatorname{diag}(a_{3}) & \operatorname{diag}(a_{4}) & \operatorname{diag}(a_{1}) \\ \operatorname{diag}(a_{3}) & \operatorname{diag}(a_{4}) & \operatorname{diag}(a_{1}) & \operatorname{diag}(a_{2}) \\ \operatorname{diag}(a_{4}) & \operatorname{diag}(a_{1}) & \operatorname{diag}(a_{2}) & \operatorname{diag}(a_{3}) \end{pmatrix}$$

 a_1,a_2,a_3,a_4 Four sweep segments and $k=rac{N_s}{n_s}$

2D SEAM Model

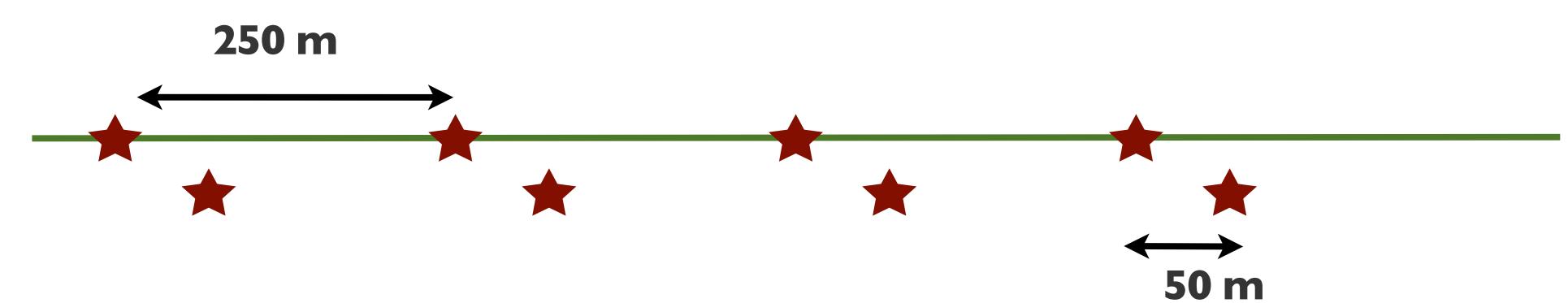
SEAM Land Model



Perturbation



Acquisition parameters



720 sources and receivers sampled at 50 m

Four vibrators separated by 250 m

Green's function is simulated using ricker wavelet with central frequency of 25 Hz

Convolved w/ sweep to generate synthetic data

Acquisition parameters

Underlying grid:

720 sources and receivers sampled at 50 m

Four vibrators separated by 250 m

Ricker wavelet with central frequency of 25 Hz

4 – 5 X cost reduction

- thanks to CS based acquisition design

Optimization information

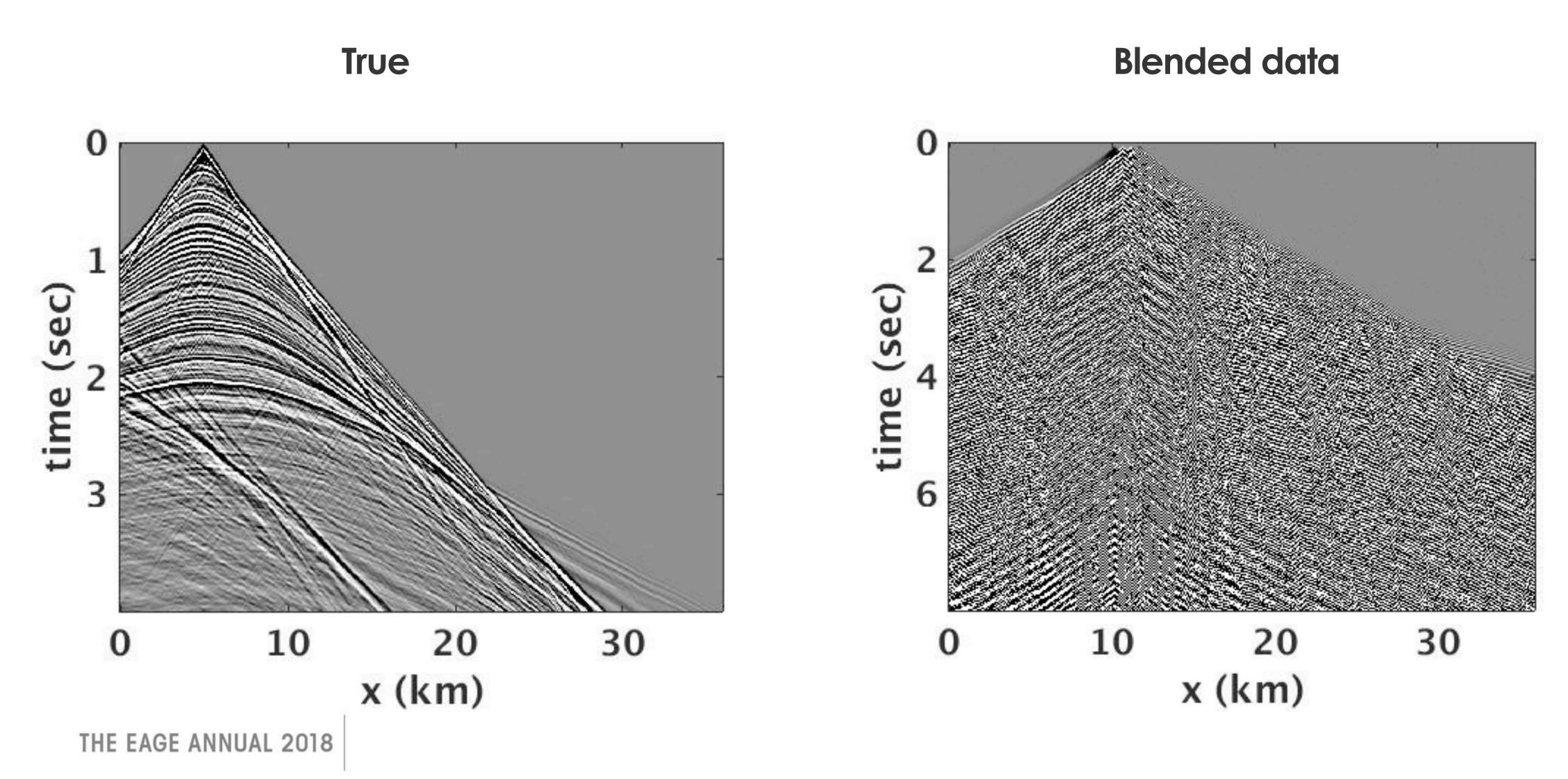
Parallelized factorization framework over sources & receivers

Number of iterations: 200

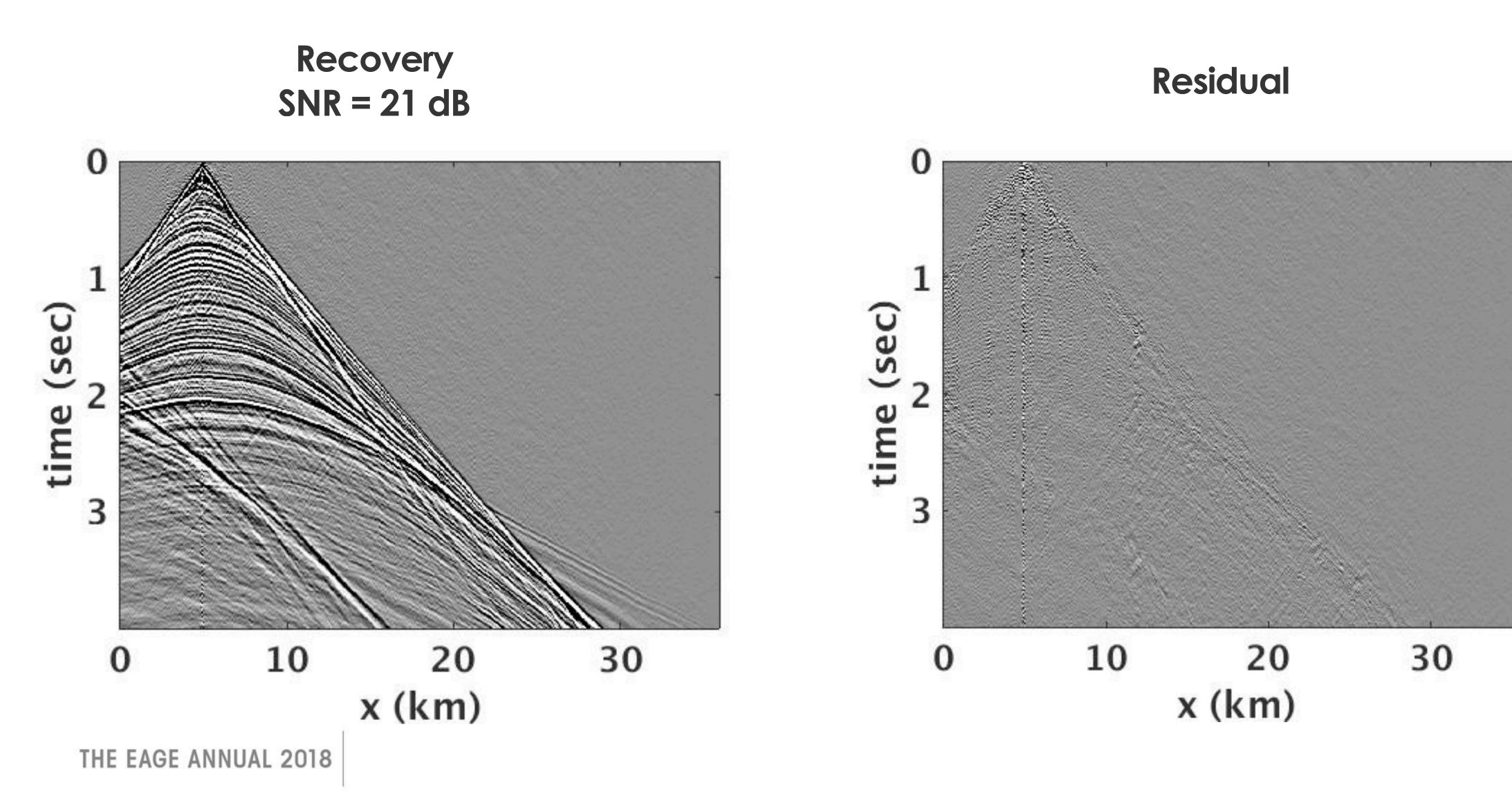
Computational time / frequency slice: I hour 10 minutes

Computational resource / frequency slice: I node w/ 128 GB RAM, 20-core processors, and multithreading

Deblending and Spectral Interpolation

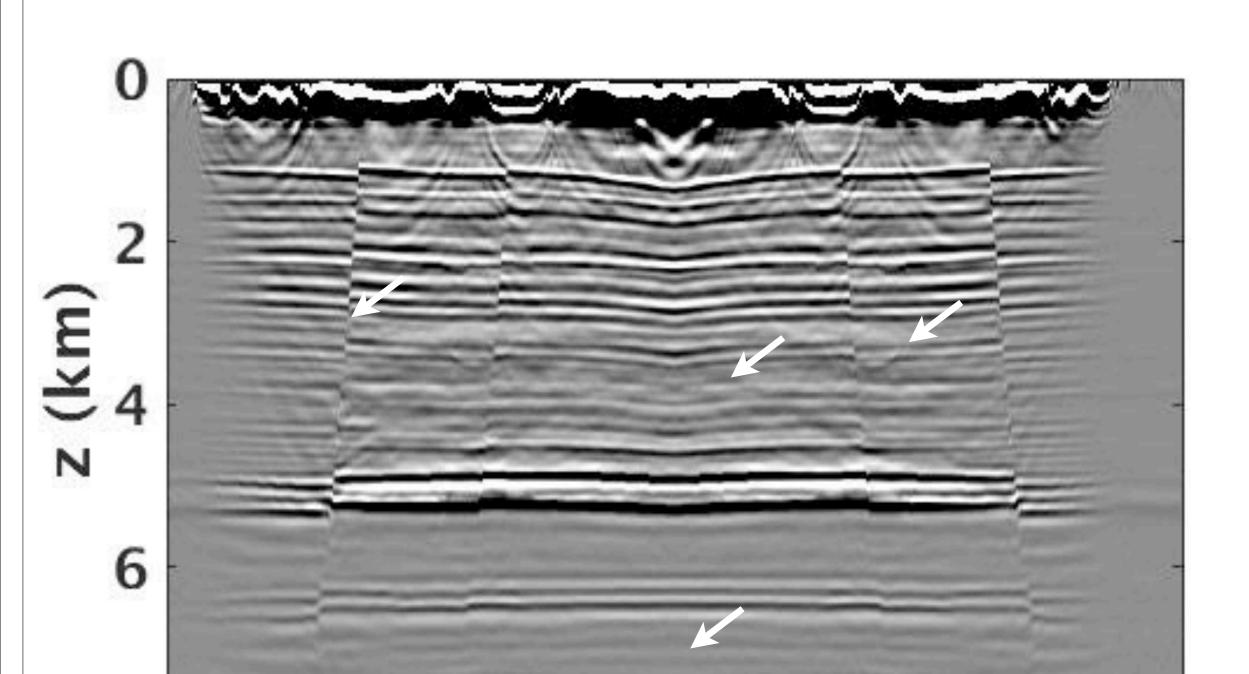


Deblending and Interpolation



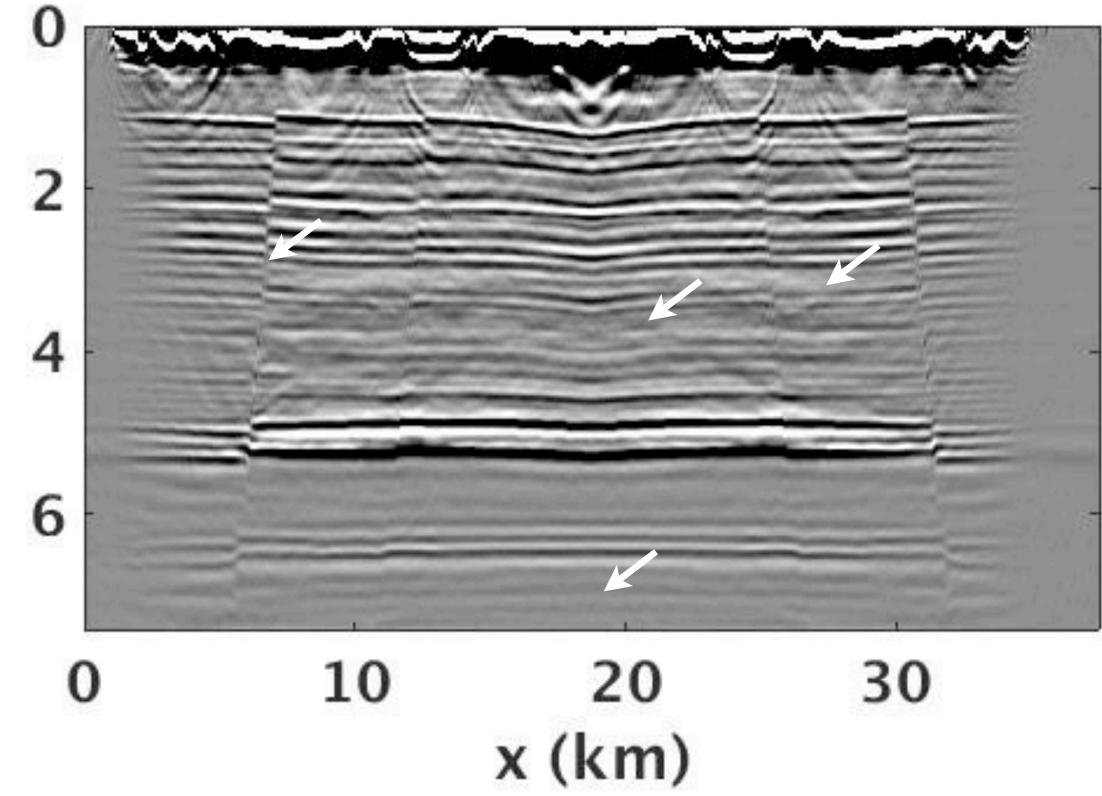
Reverse time migration

True



x (km)

After deblending & Spectral Interpolation



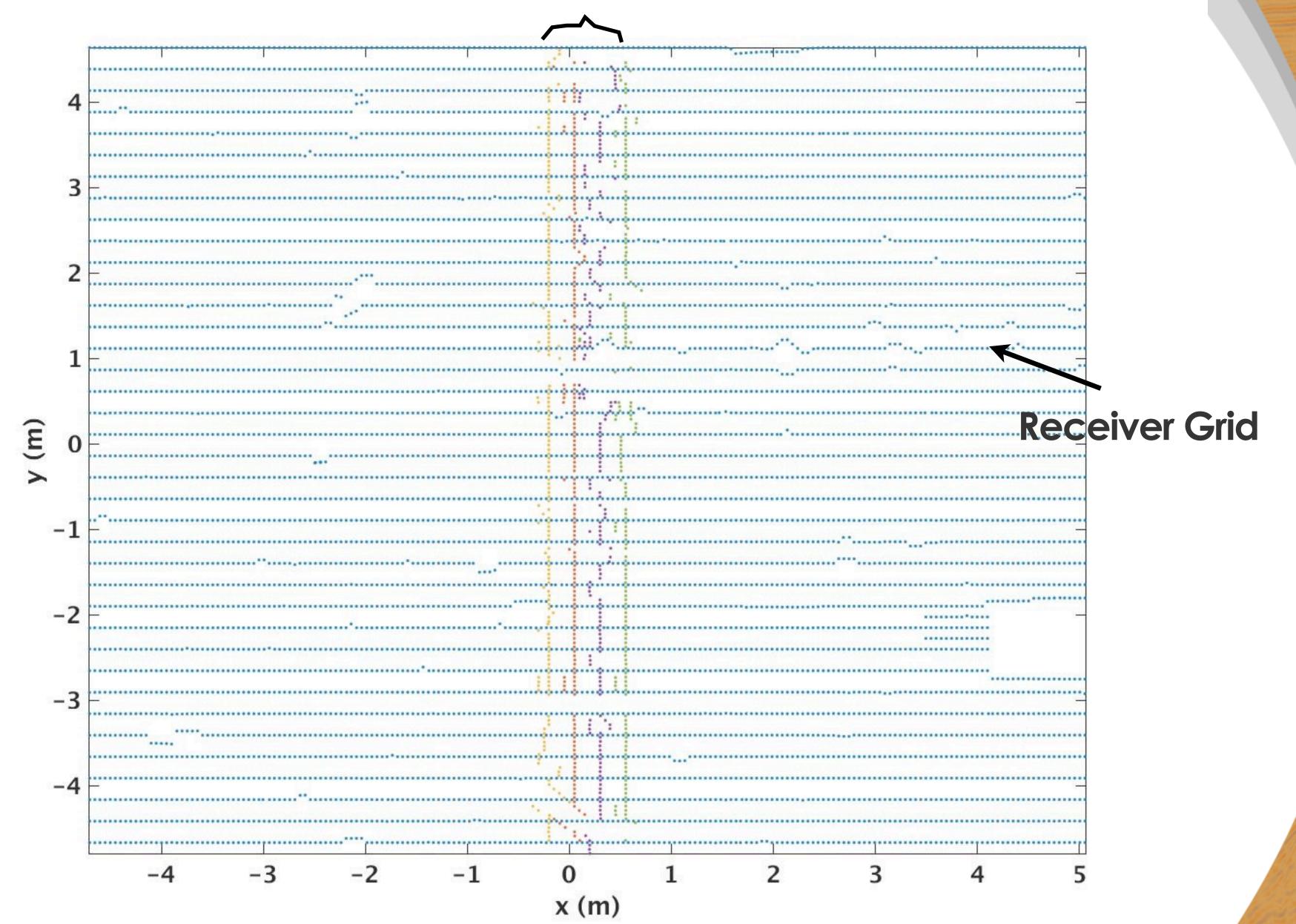
THE EAGE ANNUAL 2018

10

3D Acquisition — West Texas

Real data—West Texas

Source Grid



Acquisition Parameters

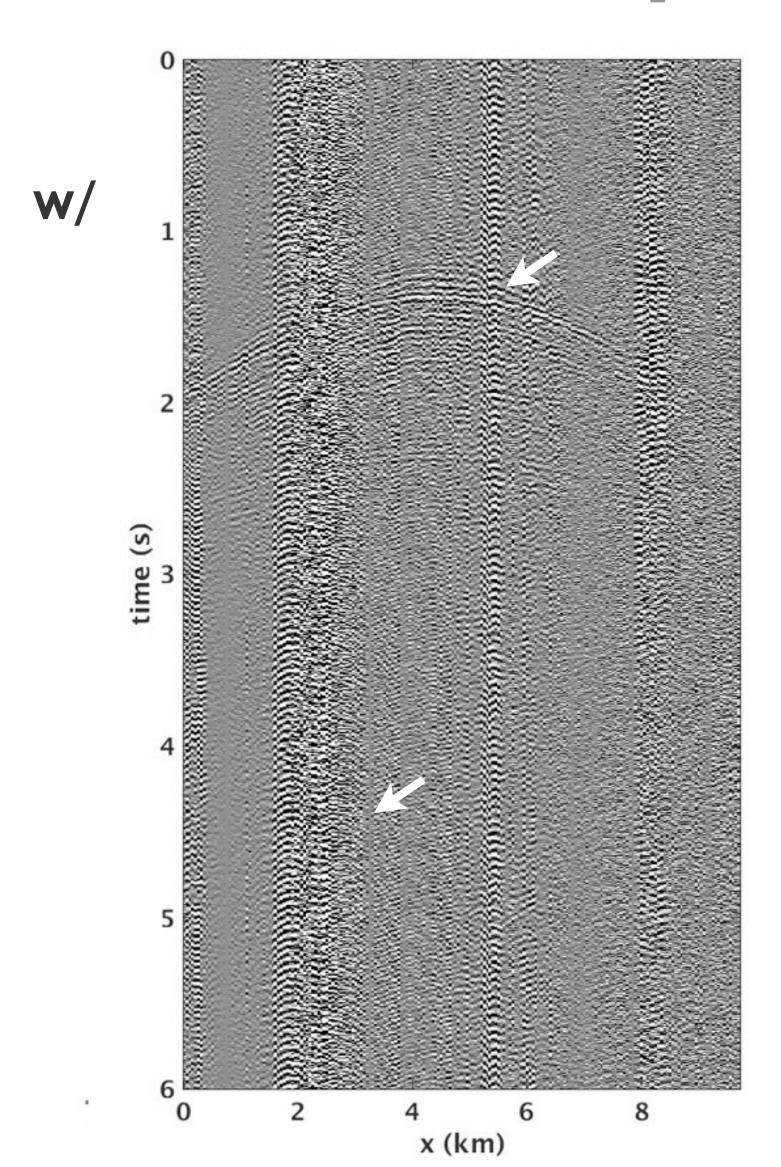
Source line interval = Receiver line interval = 825 ft

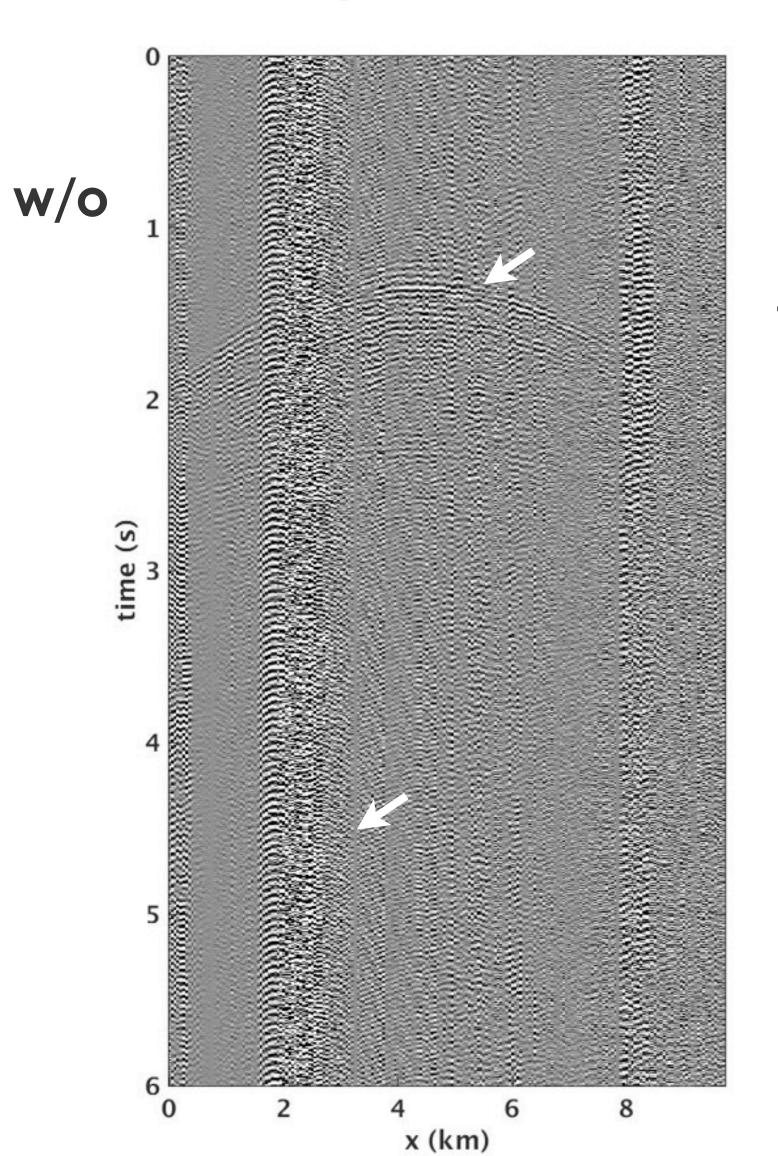
Source point interval=receiver point interval=165 ft

756 shots, 7400 receiver for each shot

4 different sweeps combination

Adjoint w/ & w/o sweeps subsampling





Benefits

4-5x speedup in acquisition record less noise

Deblending and Spectral Interpolation process

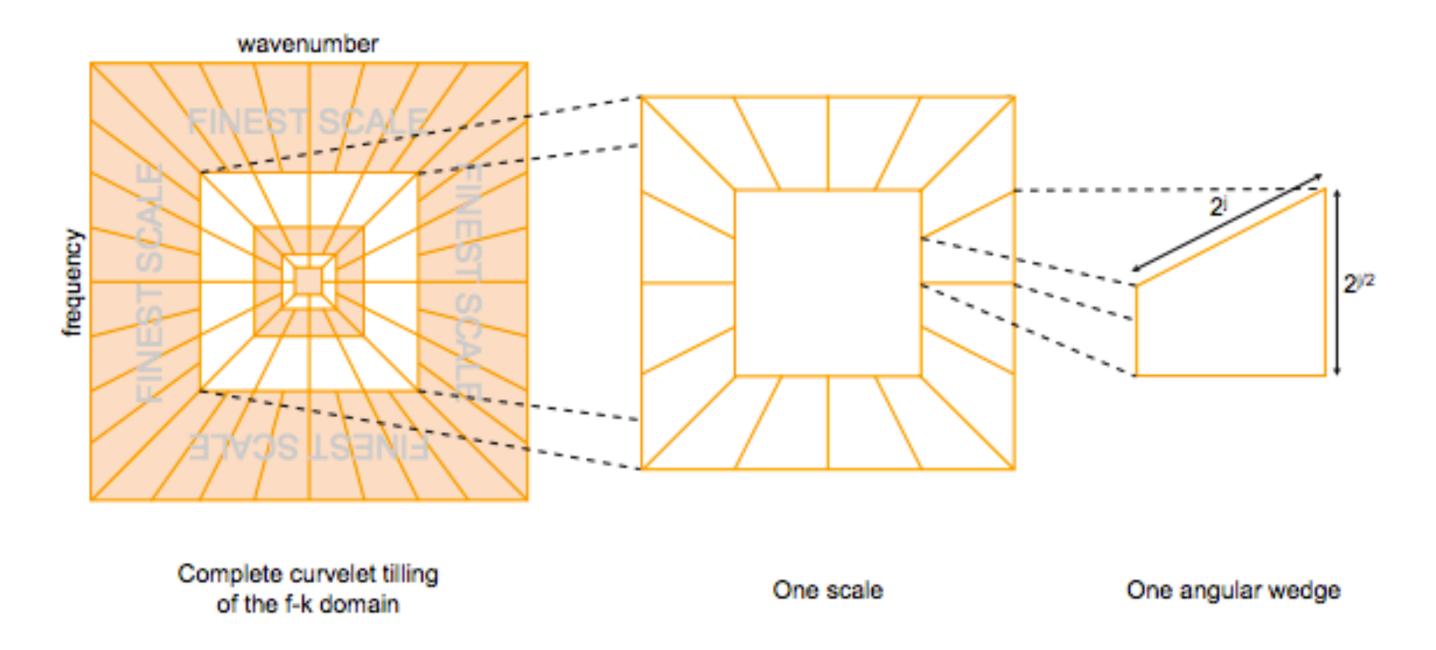
Apply adjoint

Remove ground roll

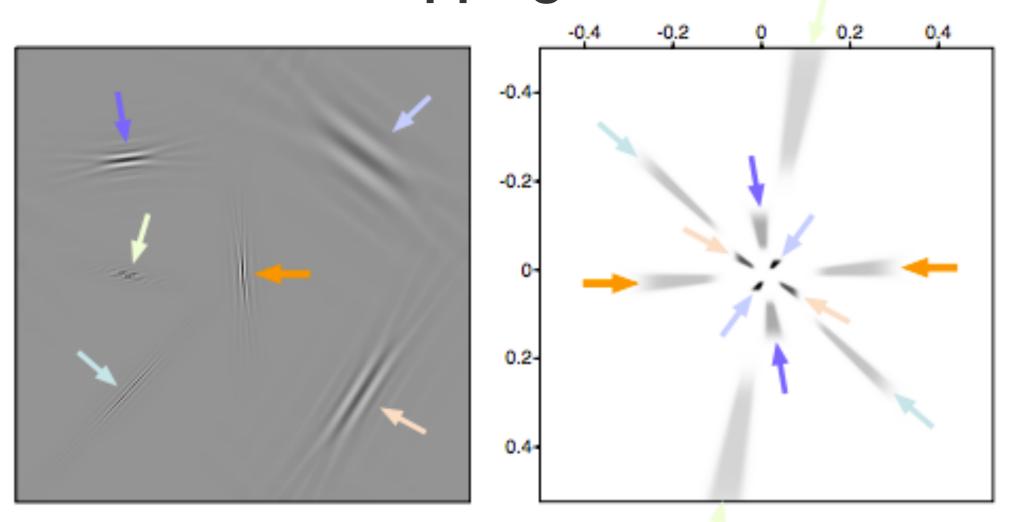
Blend ground roll and subtract from field data

Run deblending & spectral interpolation

Ground roll removal



Curvelet mapping in FK domain



Noise mapping in curvelet domain

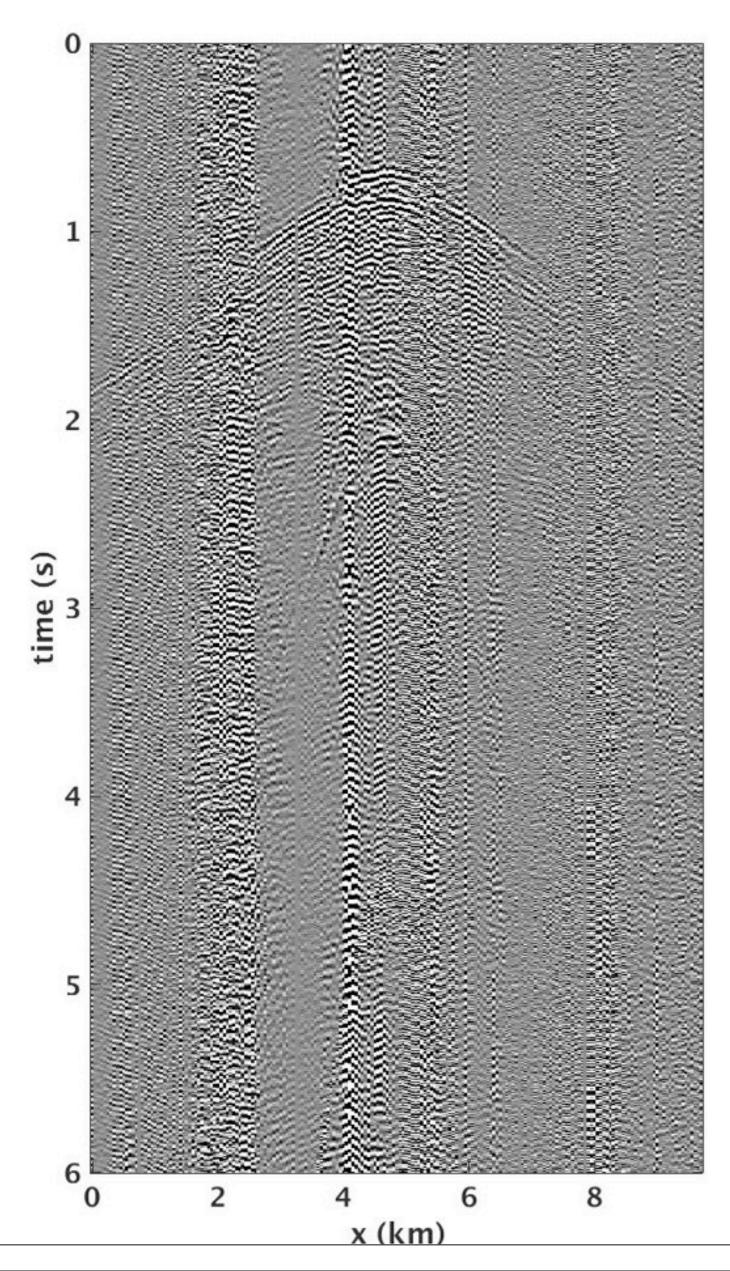
Different morphological appearances of noise & signal in curvelet domain

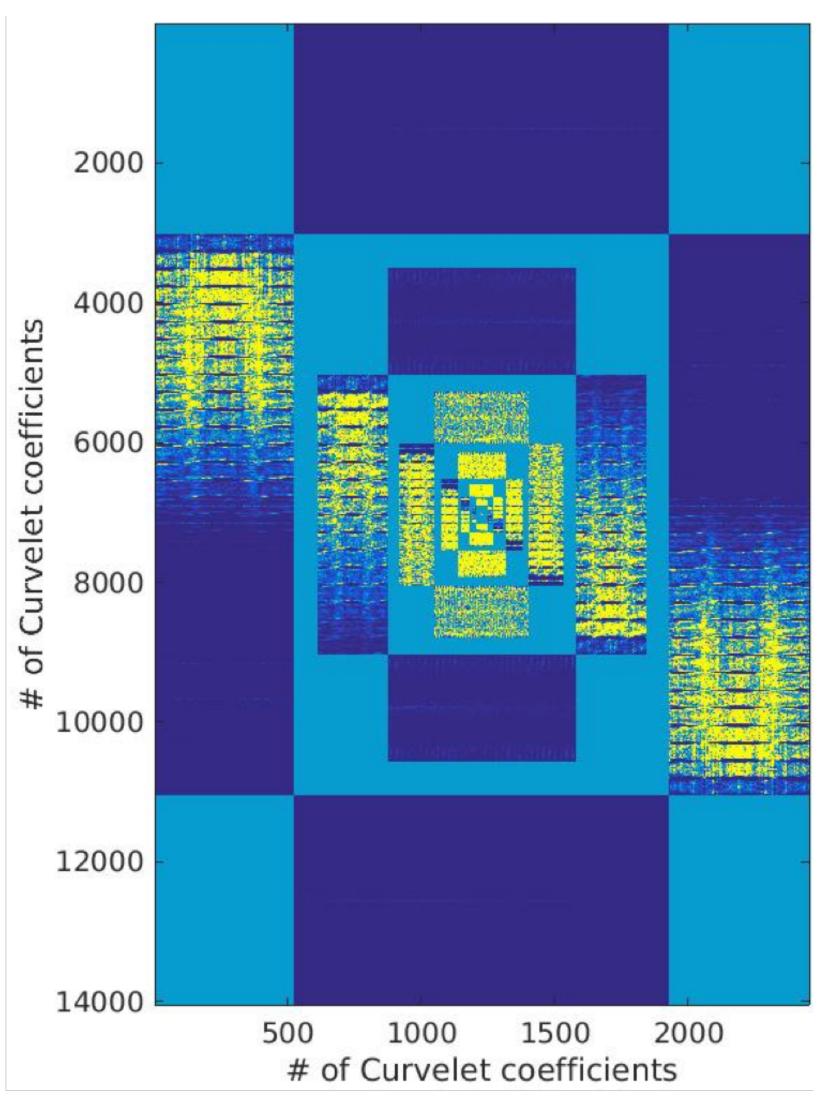
Noise & signal map to different angular wedges w/ distinct dip characteristics

Coherent noise is generally low-rank

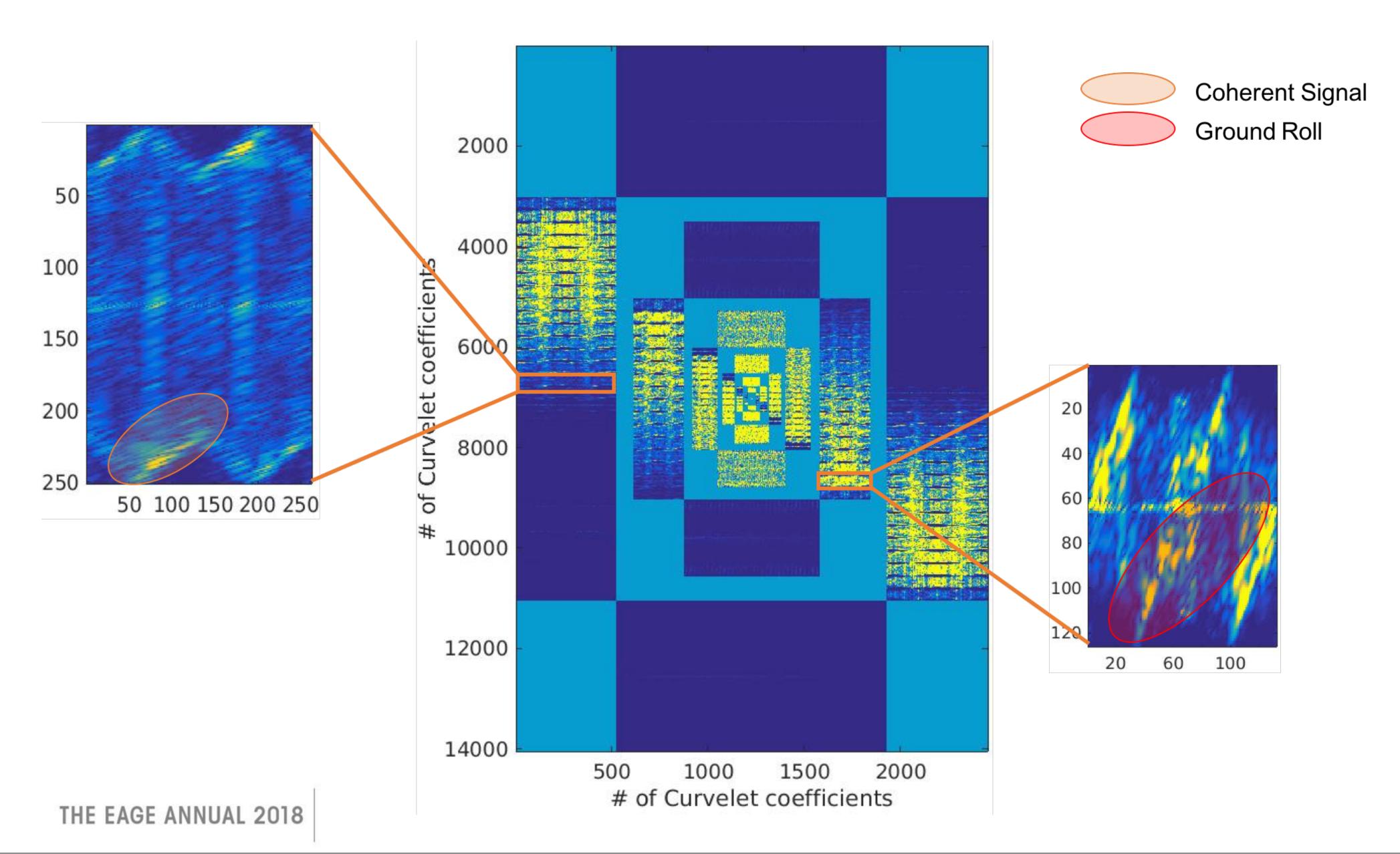
Seismic reflection & diving waves are sparse

Curvelet representation





Ground roll in curvelet domain



Denoising high-amplitude cross-flow noise using curvelet-based stable principle component pursuit, Kumar et. al., 2017

Principal component pursuit

Let $\mathbf{Y} = \mathbf{L} + \mathbf{S}$, where \mathbf{Y} is observed data, \mathbf{L} is low-rank noise component and \mathbf{S} is sparse seismic reflection and diffraction events. Principle component pursuit solves:

$$\min_{(\mathbf{L}, \mathbf{S})} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 \text{ subject to } \mathbf{L} + \mathbf{S} = \mathbf{Y},$$

where

$$\|\mathbf{L}\|_* = \sum_i \sigma_i(\mathbf{L})$$
 and $\|\mathbf{S}\|_1 = \sum_{i,j} |\mathbf{S}_{i,j}|$

Principal component pursuit

Solve the following augmented Lagrangian system:

$$l(\mathbf{L}, \mathbf{S}, \mathbf{P}) = \min_{(\mathbf{L}, \mathbf{S}, \mathbf{P})} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 + \langle \mathbf{P}, \mathbf{Y} - \mathbf{L} - \mathbf{S} \rangle + \frac{\mu}{2} \|\mathbf{Y} - \mathbf{L} - \mathbf{S}\|_F^2$$

Use alternating direction method

Each variable is solved using gradient decent followed by soft-thresholding

Principal component pursuit

Initialize
$$\mathbf{S}_0 = \mathbf{P}_0 = \mathbf{0}, \mu > \mathbf{0}, \lambda > \mathbf{0}$$

for
$$k = 0, ..., n$$

$$\mathbf{L}_{k+1} = \mathcal{D}_{\mu^{-1}}(\mathbf{Y} - \mathbf{S}_k + \mu^{-1}\mathbf{P}_k)$$

$$\mathbf{S}_{k+1} = \mathcal{S}_{\lambda\mu^{-1}}(\mathbf{Y} - \mathbf{L}_{k+1} + \mu^{-1}\mathbf{P}_k)$$

$$\mathbf{P}_{k+1} = \mathbf{P}_k + \mu(\mathbf{Y} - \mathbf{L}_{k+1} - \mathbf{S}_{k+1})$$

where

end

$$S_{\tau}[x] = \operatorname{sgn}(x) \times \max(\|x\| - \tau, 0)$$

$$\mathcal{D}_{ au}[\mathbf{X}] = \mathbf{U}\mathcal{S}_{ au}(\mathbf{\Sigma})\mathbf{V}^*$$

Denoising framework

Perform 2D curvelet transform on each shot gather

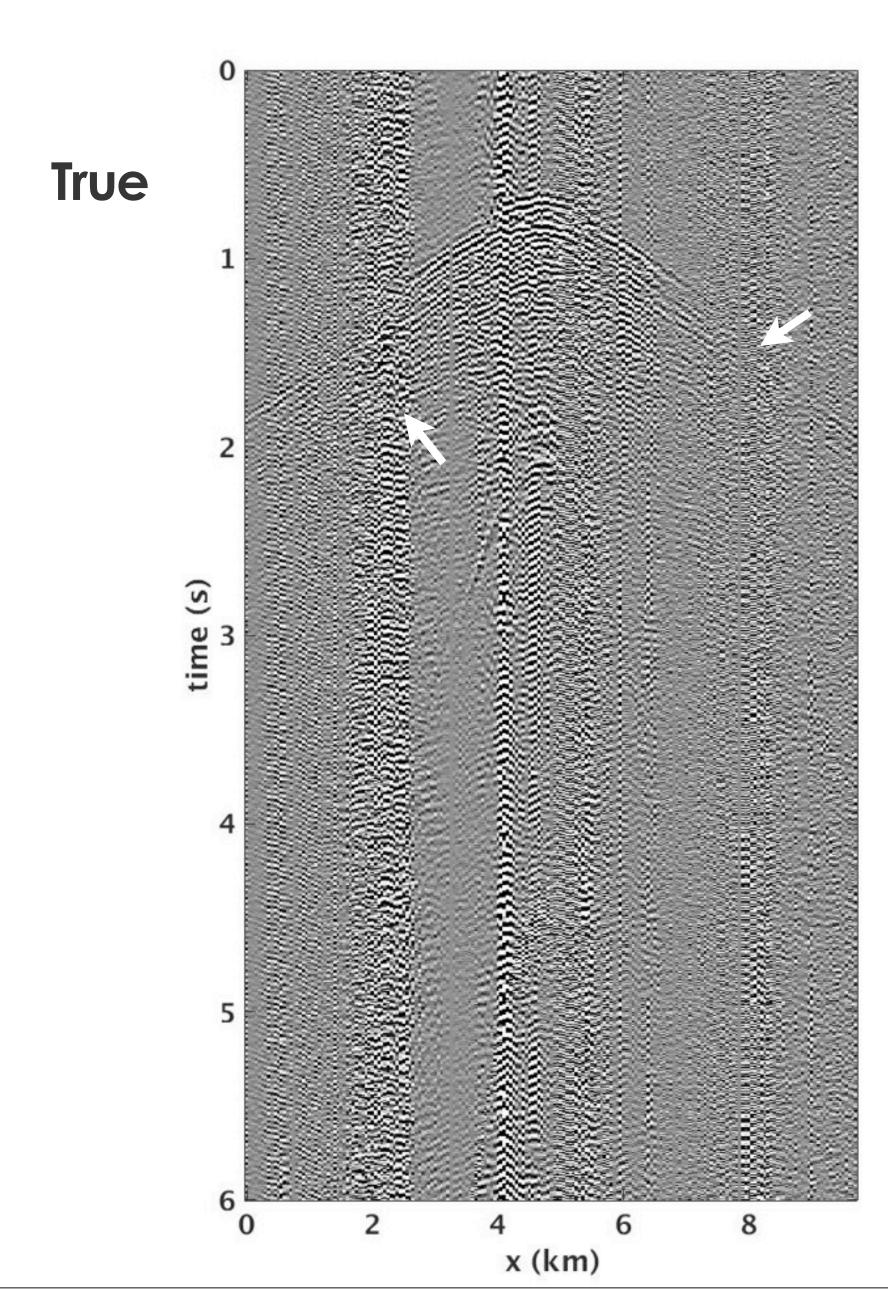
Extract noisy curvelet coefficients along parabolic angular wedges at each scale and organize into a matrix

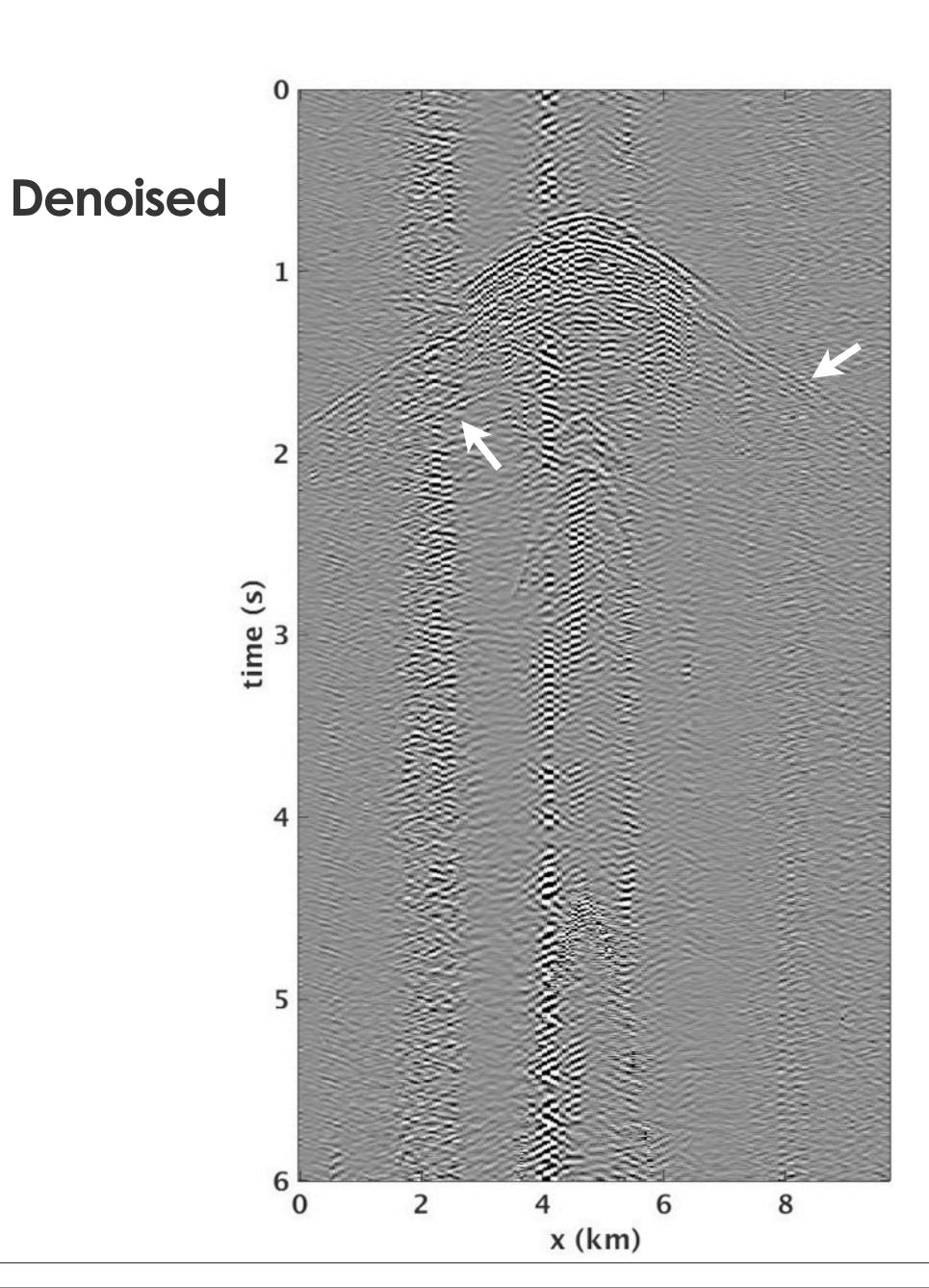
Solve RPCA on each of these matrices independently to separate the low-rank noise from the sparse component

Insert the separated curvelet coefficients for each scale back into the corresponding parabolic angular wedges

Perform 2D inverse curvelet transform to get estimates for shot records for the separated components

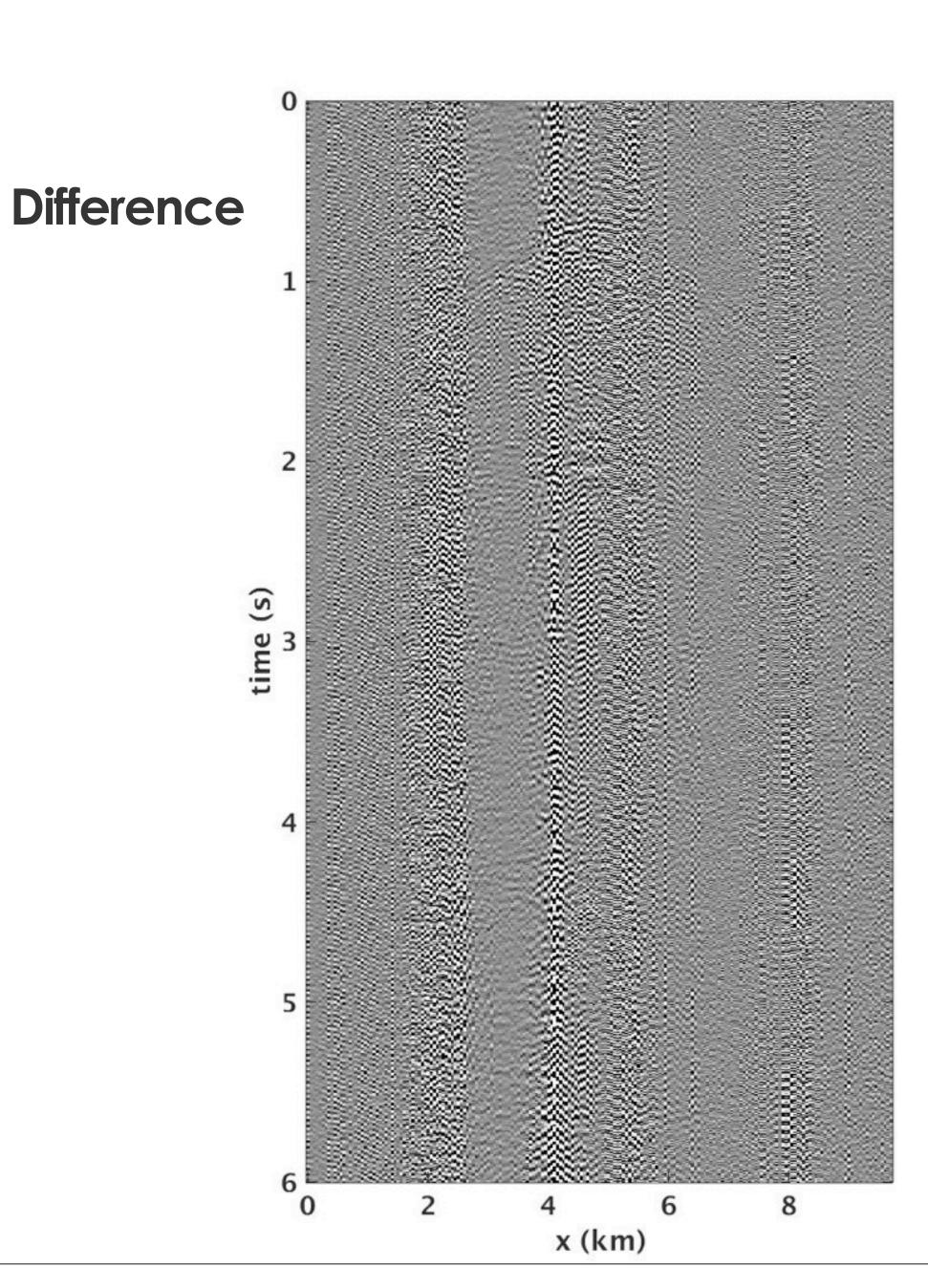
Curvelet based PCP





Curvelet based PCP





Future directions

Perform noise attenuation on field data before cross-correlation

Use robust-norm to minimize residual noise during inversion process

Re-design acquisition with more randomness across sources and receivers positions

Test random sweep encoding

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Thank you for your attention

11-14 JUNE 2018 WWW.EAGEANNUAL2018.ORG