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Extending the search space of time-domain
adjoint-state FWI w/ randomized implicit time
shifts



Motivations

Sensitivity to cycle skipping

Memory cost
¢ storing time history of the wavefield

Computationally expensive
checkpointing

random boundaries
wavelet compression
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Motivations

Global methods have shown good results

e |ow-rank extension

e full-space

New way to extend the research space for time-domain.
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An Adaptive Gradient Sampling Algorithm for Nonsmooth Optimization,Frank E. Curtis and Xiaocun Que, 2015

__ Gradient Sampling Algorithm
Designed for Non-Smooth Non-Convex problems:
¢ global method

¢ use information from many “nearby” models

¢ simple & computationally cheap implementation




Gradient sampling

Current model m
m is the square slowness




Gradient sampling

1- Define a ball around current point m




Gradient sampling

1- Define a ball around current point m
2- Take p sample inside the ball




Gradient sampling
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Gradient sampling direction




Gradient sampling

1- Define a ball around current point m
2- Take p sample inside the ball

3 - Compute direction for each sample

4 - Take weighted sum of the direction

Direction at m

Gradient sampling direction
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Gradient sampling

1- Define a ball around current point m
2- Take p sample inside the ball

3 - Compute direction for each sample

4 - Take weighted sum of the direction

5 - Update in this direction

New m
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Gradient sampling

1- Define a ball around current point m
2- Take p sample inside the ball

3 - Compute direction for each sample

4 - Take weighted sum of the direction

5 - Update in this direction

6 - Backtostep 1

New neighborhood
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Summary

Update direction
¢ use information from “nearby” samples
¢ global direction instead of local

e proven to be robust for non-convex problems
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Shoricomings

Needs to compute p gradients independently

e at each iteration

® p times more expensive than FWI
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Shoricomings

Needs to compute p gradients independently
¢ at each iterations
e for every iterations

e thousand times more expensive than FWI

Redefine the neighborhood...
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Small velocity changes correspond to a time delay
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Constant velocity
model example

u [t -+ 7-] wavefield at t for a faster velocity

u[t — 7'] wavefield at t for a slower velocity
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Local update direction

Update direction for model nis

Tt

Ve(m) = - [diag(u[t])(Dv[t])]
t=0
where
u is the source wavefield for model 1
\% is the receiver wavefield for model 1M

d(m) isthe FWI objective for model 1M




Neighbors update direction

Update direction for model m -+ dnislower)

Tl ¢

Vo&(m +0m) = — ) [diag(ult — 7])(D"v[t])]
t=0
where
u is the source wavefield for model 1
\% is the receiver wavefield for model 1M

<I>(m 5m) is the FWI objective for model 11N om




Neighbors update direction

Update direction for model m — ondfaster)

(427
Ve®(m —om) = — ) [diag(ut + 7])(D"v[t])]
t=0
where
u is the source wavefield for model 1
\% is the receiver wavefield for model 1M

<I>(m — 5m) is the FWI objective for model Il — om




___Weighted sum of the gradients
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Gradient sampling direction becomes

Z Wt dlag

where

)(D™¥[1])]

€ Maximum shift

Wt dependson /-

o random numbers in [0, 1]



On-the-fly compressed gradient sampling
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On-the-fly compressed gradient sampling
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On-the-fly compressed gradient sampling
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Mathias [Louboutin and Felix J. Herrmann, “Time compressively sampled full-waveform inversion with stochastic optimization”, in SEG
Technical Program Expanded Abstracts, 2015

Gives a time compressibly sampled gradient sampling direction

vq)w(m) — Z [dlag(ﬁ[t])(DT‘_/—[t])] [ = {tla t27 t37 t4}
tel In the previous cartoon
e redrawing new time indexes for each source

e redrawing new weights for each source
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Ycack
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Time-shift imaging condition in seismic migration, Paul Sava and Sergey Fomel, GEOPHYSICS, VOL. 71, NO. 6 NOV-DEC 2006; P. S209-S217, 16 FIGS.10.1190/1.23
Filtering Random Layering Effects for Imaging and Velocity Estimation, V
F.G delCueto, W.Symes 2008
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Implicit time shift
Full history
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Time compressed
implicit time shift
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Summary

Time-compressed implicit gradient sampling

uses information from “nearby models”

for an interval of length P uses pgiﬁerent models

search direction is now global

“nearby models” calculated cheaply on the fly w/ weighted stacking

reduces memory usage




Bas Peters, Zhilong Fang, Brendan Smithyman, and Felix J. Herrmann, “Regularizing waveform inversion by projections onto convex sets — application to the 2D Chevron 2014 synthetic blind-test dataset”. 2015

___________Overthrust 2D

e Data:

e Ricker wavelet at 15Hz, 6s recording
e 151 sources at 100m interval
e 1201 receivers at 12.5m interval

¢ Acoustic modelling & inversion

e 20 PQN iterations:

e bound constraints
e T\ constraint
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Initial velocitx
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Bas Peters, Zhilong Fang, Brendan Smithyman, and Felix J. Herrmann, “Regularizing waveform inversion by projections onto convex sets — application to the 2D Chevron 2014 synthetic blind-test dataset”. 2015

 BG Compass 2D

e Data:

e Ricker wavelet at 15Hz, 2.4s recording
e 61 sources at 100m interval
e 251 receivers at 25m interval

¢ Acoustic modelling & inversion

e 20 PQN iterations:

e bound constraints
e minimum smoothness
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Conclusion

implicit extension of the model space

same or smaller computational/memory cost than FWI

potentially more robust

easy to implement
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Future work

Improve the choice of :
e the weights for the stack
¢ the length of the interval
e study convergence (stochastic optimization)

Explore limits of the robustness

Elastic/anisotropic

More rigorous formulation of Gradient Sampling for FWI
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