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Abstract

Adjoint-state full-waveform inversion aims to obtain subsurface properties such as velocity,
density or anisotropy parameters, from surface recorded data. As with any (non-stochastic) gradient
based optimization procedure, the solution of this inversion procedure is to a large extend determined
by the quality of the starting model. If this starting model is too far from the true model, these
derivative-based optimizations will likely end up in local minima and erroneous inversion results.
In certain cases, extension of the search space, e.g. by making the wavefields or focused matched
sources additional unknowns, has removed some of these non-uniqueness issues but these rely on
time-harmonic formulations. Here, we follow a different approach by combining an implicit extension
of the velocity model, time compression techniques and recent results on stochastic sampling in
non-smooth/non-convex optimization.



Introduction

To reduce the dependence of full-waveform inversion (FWI, (Virieux and Operto, 2009)) on the quality of
starting models, we apply recent work by Burke et al. (2005) on non-convex/non-smooth optimization to
adjoint-state FWI in the time-domain. By using this technique, we intend to tackle an important limitation
of classical adjoint-state methods that ask for a starting that too accurate to be practical. Our approach is
similar in spirit to other methods aimed to overcome cycle skip problems but instead of extending the
search space—as for instance in Wavefield Reconstruction Inversion (WRI, van Leeuwen et al. (2014),
van Leeuwen and Herrmann (2015)) where both the velocity model and wavefields are unknowns—our
method extends the search space implicitly while relying on robust gradient sampling algorithm for
nonsmooth, nonconvex optimization problems (Burke et al., 2005). By working on sets of nearby velocity
models instead of working with a single velocity model as in conventional adjoint-state, our approach
scales to high frequencies in 3D at low computational and memory overhead. To set the stage, we start by
introducing the gradient sampling algorithm followed by our proposal how to incorporate this technique
into FWI without incurring massive computational costs. We conclude by demonstrating the advantages
of this method compared to regular FWI on a synthetic but realistic 2D model.

Gradient sampling for FWI

While smooth, i.e. the objective of FWI is differentiable with respect to the velocity model, FWI is
non-convex and suffers as a consequence from local minima and sensitivity to starting models. A recent
result by Curtis and Que (2013) extends Burke et al. (2005)’s original work on gradient sampling for
non-smooth optimization problems to non-convex problems with encouraging results. Encouraged by
these findings we propose to adapt this method to overcome issues related to the non-convexity of FWI.
As a result, we expect the proposed method to make FWI less reliant on accurate starting models. As we
show below, the cornerstone of this algorithm is to work with local neighborhoods (read sets of perturbed
velocity model around the current model estimate) instead with a single velocity model. By working
with these neighborhoods, we are able to reap global information on the objective from local gradient
information at small cost.

Gradient sampling for non-smooth and non-convex optimization

We minimize at iteration k the objective function Φ(x) with respect to the unknown variable x ∈RN by
using local gradient ∇Φ(x) information by

• sampling N +1 vectors xki in a ball Bεk(xk) defined as all xki such that ‖xk−xki‖2
2 < εk, where εk

is the maximum distance between the current estimate and a sampled vector;
• calculating gradients for each sample—i.e., gki = ∇Φ(xki);
• computing descent directions as a weighted sum over all sampled gradients—i.e.,

gk '
p

∑
i=0

ωigki , such that
p

∑
i=0

ωi = 1, ωi > 0 ∀i (1)

• updating the model according to xk+1 = xk−αH−1gk, where α is a step length obtained from a
line search and H−1 is an approximation of the inverse Hessian.

Figure 1: Gradient Sampling step.
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We illustrate the calculation of a single iteration of this algorithm in Figure 1. While the above procedure
demonstrably is capable of finding minima of non-convex minimization problems using local gradient
information only, its computational costs are prohibitive. For instance, for a model of size N (in number
of grid points) we would need to calculate N +1 gradients, a cost way out of reach for even the smallest
FWI problem. The other major drawback is that the obtention of the weights ωirequires the solution of a
quadratic subproblem over all the gradients gki, which requires too much storage. We circumvolve these
issues in two ways. First, we approximate the solution of the quadratic subproblems with predetermined
random positive weights. This choice will not always give accurate gradient sampling weights but will
always guaranty that the obtained update direction will perform as well as FWI in the worst case and
as well as gradient sampling in the best case. Random weights that satisfy the constraints (positive and
sum to one) of the subproblem improve then the chances to be in the best case scenario as the descent
direction will be a non-optimal but feasible solution of the subproblem. Secondly, we exploit the structure
of time-stepping solutions of the wave equation to build an implicit approximation of sampling of velocity
models in the ball Bεk(xk)

Implicit time shift and on-the-fly Gradient sampling

As we just stated, gradient sampling relies on the computation of gradients at (too) many sampling points
in the neighborhood of the current model. Unfortunately, this requirement is not feasible in a realistic
setting because gradients of the FWI objective Φs(m) for an acoustic medium (Virieux and Operto, 2009)
involves

∇Φs(m) =−∑
t∈I

[
diag(u[t])(D>v[t])

]
, (2)

where m is the square slowness and qs the source. In this expression, the superscript > denotes the
transpose and the matrix D contains the upwind discretization of the second-order time derivative δ 2

dt2 .
The sum in this expression for the correlation between the forward u and adjoint v wavefields, calculated
from

A(m)u = qs, A>(m)v = P>r δds, (3)

runs over the time index set I and involves inverting the discrete acoustic wave equation operator A(m),
the receiver projection operator Pr and the data residual δds. As we can see, these gradient calculations
require the solution of at least two PDEs so generating N gradient would require at least 2N PDE
solves. However, as we will show below we can reduce these costs to only two PDE solves by randomly
perturbing the velocity at each time step. Our main argument is based on the fact that the effects of
slightly perturbed velocity models contained within the vicinity of the current velocity model can be
approximated by time shifts. This means that we can obtain approximations of of the forward and
reverse-time wavefields corresponding to perturbed velocity models, in the neighborhood of our current
model estimate, by simply time shifting these wavefields. So, we argue that for a slightly perturbed
velocity model m̃ nearby m, we can write

u(m̃)[t]≈ u(m)[t+ τ], v(m̃)[t]≈ v(m)[t− τ]. (4)

Note that the shift in time τ is reversed for the adjoint wavefield as the propagation time axis is reversed
(propagated backward in time). With this approximation, we can now write a simplified expression for
the corresponding gradients with respect to perturbed models m̃ :

∇Φs(m̃) =−∑
t∈I

[
diag(u[t+ τ])(D>v[t− τ])

]
. (5)

We now have a way to compute multiple gradients for a range of velocity models in the neighborhood
Bεk(xk) at roughly the same computational cost incurred when calculating the usual FWI gradient.
Moreover, by limiting the maximum time shift to τmax =

1
f0

, where f0 is the peak frequency of the source
wavelet, we effectively define neighborhoods Bεk(xk) at each iteration k. With this choice, we guaranty
wavefields not to be shifted by more than half a wavelength meaning we only consider shifts contained
within a single wavefront. While the above described method allows us to apply time shifts as proxies
for evaluating gradients in perturbed velocity models, it requires storage of the forward and reverse-time
(adjoint) wavefield — an unfeasible proposition. To overcome this memory issue, we propose to use
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recently developed technique that allows us to work with drastically (10×) randomly time subsampled
wavefields (Louboutin and Herrmann, 2015). We mitigate artifacts induced by this time subsampling by
generating different jitter sampling sequences for each shot such that maximum time gaps are controlled
and coherent artifacts are prevented from building up. To avoid storage and explicit calculations of
gradients for each perturbed model, we approximate the descent directions implicitly by weighted sums
evaluated at jittered time samples:

∇Φs(m) :=−∑
t∈Ī

[
diag(ū[t])(D>v[t])

]
, ū =

ti+1

∑
t=ti

αtu[t], D>v =
ti+1

∑
t=ti

αtD>v[t]. (6)

where Ī = [t1, t2, ..., tn] are the jittered time sampled from [1,2,3, ...,nt ]. We arrived as these expressions,
where αt > 0’s are random weights chosen such that ∑αt = 1, by expanding and factorizing the sum as a
function of common time-shifts. We avoid the need of extra storage because we calculate these averaged
wavefields on the fly and store them during forward propagation. The averaged adjoint wavefield is
computed during back propagation. Details of our implicit gradient sampling scheme are included in
Algorithm 1, where H−1 is the inverse of quasi-Newton Hessian.

Algorithm 1 |11. End Caption: Time-Compressed Gradient Sampling FWI algorithm (TC-GSFWI)
Input: Measured data d and starting model m0
Result: Estimate of the square slowness mk+1 via Gradient Sampling adjoint state
1. Set the subsampling ratio for the wavefield τmax
2. For k=1:niter

3. For s=1:nsrc
4. Draw an new set of time indices Ī for the wavefields for each shot
5. Compute the average forward wavefield ū via Equation 3 & [#ubar] (on the fly sum)
6. Compute the gradient via Equation 6 (on the fly sum of the adjoint)
7. Stack with the previous gradients g = g+∇Φs(mk)

8. End
9. Get the step length α via linesearch

10. Update the model mk+1 = mk−αH−1g

Example

We demonstrate our method on a synthetic 2D model and include results from conventional FWI for
comparison. To illustrate the advantage of our Time-Compressed Gradient Sampling FWI algorithm
(TC-GSFWI), we deliberately choose a poor starting model, yielding a conventional FWI result that is
cycle skipped (See Figure ), derived from the synthetic BG’s Compass model. Aside from being complex,
i.e., the model contains fine-scale heterogeneity constrained by well data, this model has a challenging
velocity kick back at 800 m depth that is not present in the starting model. In our experiment, we use 50
sources located at 100m intervals and at 25m depth, 201 receivers at 25m intervals at 100m depth (at the
ocean bottom) and a Ricker wavelet with a 15Hz peak frequency as a source. The total recording time is
4s and the shot records are sampled at 4ms. As described above, the subsampling ratio for our TC-GSFWI
algorithm is set according to the peak frequency of the wavelet, yielding jittered subsampled wavefields
at an average temporal sampling interval of only 100ms. Because the randomized jittering samples
on average at 25 % of Nyquist, we achieve a reduction in memory cost of 95% compared to memory
requirements of conventional FWI. The inversion itself is carried out with a projected quasi-Newton
method The inverted velocity models are shown in Figure 2. We observe that the initial velocity model
is indeed cycle skipped for FWI, as the result shows a global low velocity instead of the layered shape
structure of the true model. The inverted velocity with GSFWI, on the other hand, includes the main
features of the true velocity model. This result is consistent with the fact that gradient sampling uses
global information to minimize non-convex objectives—i.e., objectives with local minima due to cycle
skipping. While our method for this example is clearly less sensitive to the quality of the starting model,
the jitter sampling and implicit velocity perturbations lead to inversion artifacts. These artifacts can be
removed by either composing certain (smoothness) constraints on the model or by reusing this inversion
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as a starting model for conventional FWI with these constraints. This inversion result is exciting because
it reduces memory usage and was obtained at approximately the same computational cost as conventional
FWI.
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Figure 2: Inverted velocities

Conclusions

By combining randomized time subsampling in conjunction with the observation that random time
shits applied to the forward and reverse-time wavefields can be considered as proxies for wavefields
generated in randomly perturbed velocity models, we arrive at a computationally feasible formulation of
gradient sampling for full-waveform inversion. Compared to ordinary gradient based algorithms, gradient
sampling reaps global information making it suitable to minimize non-convex optimization problems.
While we do not have a formal proof of our method, there are indication that our method is less sensitive
to cycle skips. As a byproduct of the randomized sampling, we are also able to significantly reduce the
storage requirements of gradient calculations making our method suitable for 3D models.
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