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Abstract

Full-waveform inversion (FWI) relies on accurate estimation of signal amplitudes in order to
produce reliable and practical results. Approximations made during the inversion process, as well
as unknown or incomplete information, cause amplitude mismatch effects at various levels: shot
gather absolute magnitude, trace-by-trace scaling and time-varying relative amplitudes. Rewriting the
problem in an amplitude free formulation allows to mitigate the amplitude ambiguity and improve
successful convergence. We present strategies to eliminate shot-gather and trace-by-trace amplitude
uncertainty; we derive update directions, compare and analyze the effect of each of the normalization
schemes.



Introduction

Full Waveform Inversion (FWI) is a seismic inverse problem that aims to match observed data and
numerically simulated synthetic data sample by sample to produce high-quality, high-resolution velocity
models of the subsurface. The sample-wise nature of the matching operation between the two datasets
requires that a reasonable amplitude coherency between the two datasets exist. Amplitude corrections
range from a single scalar to an array with the same size as the data. The former, single scalar represents
a general scaling factor that can be applied to the observed data as a pre-processing step. On the other
end of the spectrum, we have strategies aimed at matching relative amplitudes (Rajagopalan, 1987),
which compensate for the inaccurate physics in the numerical approximation of the wave equation;
these time-varying schemes are difficult to differentiate to obtain suitable expressions for their objective
function gradients. We propose two intermediate schemes: shot-by-shot and trace-by-trace normalization.
In the presented examples we assume that both amplitude and phase spectral shapes are known but their
absolute sizes are not and we explore the effects of correcting these various scaling mismatches in the
objective function definition and in the adjoint source.

Formulations

We describe strategies that are applied to synthetic and observed data, restricting our analysis to methods
that apply the same normalization method to both datasets. Because the normalization schemes we
introduce are data dependent, we differ from normalization techniques that apply the same normalization
factor to both dataset and keep the gradients and adjoint sources expressions unchanged. We derive here
analytical expressions for the objective functions, adjoint sources and gradients non-linear normalization
schemes. We restrict ourselves to the `2 norm, but extensions to other norms is currently investigated.

Non-normalized FWI

Consider the usual adjoint-state FWI formulation (Virieux and Operto, 2009, Haber et al. (2012)):

minimize
m

Φ(m) =
1
2
‖ds−d0‖2

2

ds = PrA(m)−1q
(1)

where m is the squared slowness, u is the forward wavefield, A(m) is the discretized wave equation, q
is the source and d is the observed data. The main pitfall of this formulation is amplitude fitting. The
amplitude of the synthetic wavefield u depends on the space and time discretization and the magnitude of q.
Considering the unknown velocity, density, . . . , it is very unlikely to simulate a wavefield with amplitudes
matching the observed data. Amplitude fitting is then necessary and, with non-linear normalization,
requires an adequate rewrite of the objective function. We introduce two normalized optimization
problems that accept any solution aligned with the observed data (of the form ds = αd0 for any α > 0) as
a minimizer, or from a data side, tries to find a model that generates data only differing by a constant
from the true data.

Normalized objective

At first, we look at a normalized objective function. The normalization is done on the objective function
side and normalizes both datasets by their respective norms.

minimize
m

Φ(m) =
1
2

∥∥∥∥ ds

‖ds‖2
− d0

‖d0‖2

∥∥∥∥2

2
. (2)

The normalization is non-linear (depends on the synthetic data and therefore on the velocity) in this case
and the gradient with respect to the square slowness m has to be derived taking the normalization into
account. Following differential calculus basic rules results in the following expression for the gradient
(where the synthetic data is denoted by ds to simplify the expression):

∇mΦ(m) = JT r =−(d2u
dt2 )

T A(m)−T PT
r r.

r =
1
‖ds‖2

(
ds

‖ds‖2

dT
s d0

‖ds‖2 ‖d0‖2
− d0

‖d0‖2
)

(3)
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where J is the Jacobian operator of the usual non-normalized adjoin-state formulation. The term dT
s d0

in this expression is correcting for the phase mismatch between the observed and synthetic data in the
adjoint source.

Normalized adjoint source

For the second method, we choose the adjoint source to be a normalized data residual and derive the
corresponding objective function from it. The adjoint source is chosen to be

r =
ds

‖ds‖2
− d0

‖d0‖2
. (4)

and the FWI gradient is then
∇mΦ(m) = JT r. (5)

Knowing JT PrA(m)−1q
‖PrA(m)−1q‖2

=
d‖PrA(m)−1qs‖2

dm , we obtain the corresponding objective function:

minimize
m

Φ(m) =
∥∥PrA(m)−1q

∥∥
2−

(PrA(m)−1q)T d0

‖d0‖2
(6)

This objective function is not quadratic with respect to the residuals anymore but compares how aligned
with d0 the synthetic data is. The objective function in this case can also be rewritten as

minimize
m

Φ(m) = (PrA(m)−1q)T
(

PrA(m)−1q
‖PrA(m)−1q‖2

− d0

‖d0‖2

)
. (7)

Similarly to conventional FWI, the difference between the synthetic and observed data is still taken
into account. Moreover, the objective function also considers how much the observe correlates with the
synthetic data. The gradient on the other hand is a straightforward FWI gradient with a normalized adjoint
source (the forward wavefield is unchanged), but the correct objective function formula is required for
any optimization algorithm assessing minimum decrease of the objective to update the model.

Shot-by-shot vs trace-by-trace

Shot-by-shot or trace-by-trace strategies will have different consequences. On one hand, normalizing on
a shot-by-shot basis acts as a very crude form of source estimation in the sense that we are after a scalar
that matches the energy of both ds and d0 for the whole shot gather. This strategy conserves the natural
amplitude decay with offset. Normalization trace-by-trace, on the other hand, has a strong influence
on the energy balance in the gradients since traces at larger offsets contribute as much to the gradient
formation as those at close offsets. This results in a better balanced illumination coverage (as offset from
the source increase), but has the disadvantage that traces that are more likely to be cycle-skipped (long
offset) have the same weight as traces that are at short offsets, increasing the risk of falling in a local
minimum if the starting model is not good enough.

Objective function shapes

We show the shape of the objective functions in a simple two dimensional case for the non-normalized,
normalized objective and normalized adjoint source cases on Figure 1. The equivalent geophysical setup
would be a single trace experiment with two time samples. The displayed images represent the objective
functions values for a range of traces around the true solution. We observe that FWI only accepts the true
solution as the minimizer while both normalized formulations accept any solution aligned (d0 = αds,
α > 0) with the true solution as a minimizer removing any amplitude uncertainty. The slice of the
objective functions shows that the objective function associated with a normalized adjoint source is much
narrower/steeper allowing better progress toward the solution.

Example

We illustrate the impact of our normalization methods on the Marmousi-ii model (Versteeg, 1994). The
model size is 4kmx16km discretized with a 10m grid in both directions. We use a 8Hz Ricker wavelet
with 5s recording. The receivers are placed at the ocean bottom every 12.5m. The initial velocity model
is a smoothened version of the true velocity model by a Gaussian filter and is accurate enough to consider
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Figure 1: Shape of the objective function for two normalization strategies
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Figure 2: Marmousi-ii model

the non-normalized FWI gradient computed with the true source as a reference. We show the true model,
initial model and true perturbation on Figure 2.

To enforce amplitude error in the data fit, we use a wrongly scaled version of the true source for inversion.
The FWI gradient obtained with the true source, corresponding to the most ideal case, is then used as
reference. The gradients obtained with the proposed methods are shown on Figure 3.

As expected from a good initial model, the FWI gradient with the true source shows most of the features
present in true perturbation and is a good update direction for inversion. The gradient obtained with
both normalization methods using a shot-by-shot strategy is very similar to the true source gradient and
the true perturbation as well demonstrating the amplitude free property of our methods. On the other
hand, we see that a trace-by-trace normalization strategy with a normalized objective generates a cycle
skipped gradient and will not update the model properly. This is a consequence of the phase correction
on the adjoint source at large offsets and highlights the risks of a trace-by-trace strategy discussed earlier.
Finally, we see that a trace-by-trace strategy or the normalized adjoint source formulation still provides a
good update direction, even though the gradient contains less details than the shot-by-shot results but has
a better illumination balance between the shallow and the deeper part of the model.
Conclusion

We showed that data normalization provides an automatic way to mitigate amplitude uncertainties
and improves the inversion results compared to a naive FWI implementation when there are errors
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Non-normalized FWI gradient with true source
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Non-normalized FWI gradient with wrong source
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Shot-by-shot normalized objective
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Trace-by-trace normalized objective
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Shot-by-shot normalized adjoint source
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Trace-by-trace normalized adjoint source

Figure 3: FWI gradients for several normalization strategies

in the absolute source magnitude. Our results suggest that trace normalization is less reliable than
shot normalization even though a normalized adjoint source formulation is more robust to large offset
mismatches. Secondly, we showed that shot-by-shot normalization strategies are well suited for amplitude
mismatch correction in seismic inversion. Considering that a complete algorithm for FWI uses iteratively
gradient information, the behaviour observed in a single gradient should extend to the inversion result.
Even though this methods require a known source time signature, one could combine it with a source
estimation method and guarantee that any amplitude ambiguity in the source estimation would be
cancelled out.
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