Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Affordable omnidirectional subsurface extended image volumes

Rajiv Kumar

Affordable omnidirectional subsurface extended image volumes

Tristan van Leeuwen and Felix J. Herrmann

- n

Why we need image gathers?

Full subsurface offset volumes allow us to conduct

- AVA analysis
- Geological dip estimation
- Velocity analysis in complex geological enviornment

as

where

- - Q:source
 - D:data matrix
- - squared-slowness **m** :

• Given two-way wave equations, source and receiver wavefields are defined

 $H(\mathbf{m})U = P_s^T Q$ Forward propagation $H(\mathbf{m})^*V = P_r^T D$ Backward propagation

 $H(\mathbf{m})$: discretization of the Helmoltz operator

 P_s, P_r : samples the wavefield at the source and receiver positions

- Organize wavefields in monochromatic data *matrices* where each column represents a common shot gather
- Express image volume tensor for single frequency as a matrix

E =

$$UV^*$$
$$H^{-1}P_s^T Q D^* P_r H^{-1}$$

example for one layer

Impediments

Prohibitively expensive to compute and store

Biondi and Symes, 2004, Sava and Biondi, 2004, Sava and Vasconcelos, 2011, Yang and Sava, 2015

Current Workflow

- Compute all the source and receiver wavefields
- Severely subsample the image volume in the subsurface coordinates
- Allowed limited interactions in predefined directions
 - horizontal or vertical based upon geology of interest

Motivation

Can we avoid computing all of the wavefields if not forming the full image volumes?

Motivation

Can we gleans information from the full image volume without requiring a-priori knowledge of the geology?

• Probe volume with tall matrix $W = [\mathbf{w}_1, \ldots, \mathbf{w}_l]$

where $\mathbf{w}_i = [0, \dots, 0, 1, 0, \dots, 0]$ represents single scattering points

 $\widetilde{E} = EW = H^{-1}P_s^T Q D^* P_r H^{-1} W$

van Leeuwen 2012

Computation

• *mat-vec* with extended image :

$\widetilde{E} = EW = H^{-1}P_s^T Q D^* P_r H^{-1} \mathbf{w}$

- $\widetilde{\mathbf{d}} = P_r H^{-1} \mathbf{w}$
- $\widetilde{\mathbf{y}} = QD^*\widetilde{\mathbf{d}}$
- $\widetilde{E} = H^{-1} P_s^T \widetilde{\mathbf{y}}$
- (one subsurface source) (surface source function) (one surface source)

Computation

computation of an *image point gather*

	# of PDE solves	"flops for correlations"
conventional	2Ns	$N_s \times N_h$
ours	2N _x	$N_s \times N_r$

 N_s - # of sources N_r - # of receivers N_h - # of subsurface offsets N_x - # of sample points

Computation

computation of an image point gather

	time (s)	memory (MB)
conventional	23.6	103
ours	2.02	0.03

Application to WEMVA

Biondo & Symes, '04, Symes 2008, Sava & Vasconcelos, '11

 \star stand for element-wise multiplication

.*

Focusing [propose method]

$E \operatorname{diag}(\mathbf{x}) \approx \operatorname{diag}(\mathbf{x}) E$

 \star matrix-matrix multiplication

Focusing

where \mathbf{x} represents horizontal, vertical or all offset.

Yang and Sava, 2015, van Leeuwen et. al. 2015

Why do we need all offsets

Common image gathers Horizontal reflector

Common image gathers Vertical reflector

Common image point gathers

Fast WEMVA w/ randomized probing

- Measure the error in some norm $\min ||E(\mathbf{m})\mathbf{d}|$ m
- - $||A||_{F}^{2} =$

where
$$\sum_{i=1}^{K} \mathbf{w}_i \mathbf{w}_i^T \approx I$$

$$\mathsf{iag}(\mathbf{x}) - \mathsf{diag}(\mathbf{x}) E(\mathbf{m}) ||_2^2$$

• The Frobenius norm can be estimated via randomized trace estimation : Avron and Toledo, 2011

$$= \operatorname{trace}(A^{T}A)$$

$$\approx \sum_{i=1}^{K} \mathbf{w}_{i}^{T} A^{T}A \mathbf{w}_{i} = \sum_{i=1}^{K} ||A \mathbf{w}_{i}||_{2}^{2}$$

Randomized probing [reflection]

Randomized probing [reflection]

•Exact

• Error bar of approximated objective function (different color represents different random realization)

Lens Model

True model Init

Initial model

WEMVA

Lens Model [image gathers]

True model

0

Initial model

Least-squares RTM Images

True model

0.5 z(km) 1 1.5 1.4 1.6 offset(km) 1.2 1.8

Initial model

WEMVA

Conclusions

• probings allows us to get offset information for all sub-surface direction

- Prior knowledge of geology is not required
- randomized trace estimation allows us to compute WEMVA objective cheaply

Image gathers w/ surface-related multiples NingTu

Why need multiples?

Tu and Herrmann, 2015

Least-squares imaging: *primary-only* shot gather

Least-squares imaging: *multiple-only* shot gather

Verschuur et. al. '92

Motivation

- Leverage benefits of SRME
 - highly accurate data-driven multiple prediction
- All in one go method
 - we combine SRME within the extended imaging condition

Extended imaging with multiples

$$\widetilde{E} = EW = H^{-1}P_s^T(Q - P)$$

where

(Q - P) : areal source

P : total upgoing wavefield

 $P^*P_rH^{-1}W$

Kumar et. al. '14

Least-square extended imaging $\underset{\widetilde{E}}{\text{minimize}} \quad \frac{1}{2} \| \mathcal{F}(\widetilde{E}) - P \|_{F}^{2},$

where

 $\mathcal{F}(\widetilde{E}) = P_r H^{-1} E W^T H^{-1} P_s^T (Q - P),$

Velocity model

True model

Initial model

Least-squares RTM images

Primary only

Primary + multiples w/o areal sources

Primary + multiples with areal sources

400 **Primary + multiples** with areal sources

Conclusions

Multiples can be used with primaries to form subsurface image gathers via least-squares inversion.

Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

