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Abstract

Low-rank matrix completion techniques have recently become an effective tool for seismic trace
interpolation problems. In this talk, we consider an alternating optimization scheme for nuclear norm
minimization and discuss the applications to large scale wave field reconstruction. By adopting a
factorization approach to the rank minimization problem we write our low-rank matrix in bi-linear
form, and modify this workflow by alternating our optimization to handle a single matrix factor
at a time. This allows for a more tractable procedure that can robustly handle large scale, highly
oscillatory and critically subsampled seismic data sets. We demonstrate the potential of this approach
with several numerical experiments on a seismic line from the Nelson 2D data set and a frequency
slice from the Gulf of Mexico data set.



Introduction

Densely sampled seismic data is crucial for accurate inversion and imaging procedures such as Full
Waveform Inversion, Reverse Time Migration and multiple removal methods (EPSI, SRME) where oth-
erwise subsampled sources and receivers would result in unwanted image artifacts. To this end, various
missing trace interpolation methodologies have been proposed that exploit some low dimensional struc-
ture of seismic data such as sparsity (Herrmann and Hennenfent (2008), Mansour et al. (2013)) and
low-rank (Yang et al. (2012), Aravkin et al. (2014)), two key themes of compressive sensing literature.
Thus, low-rank matrix completion techniques (Candès and Plan (2009), Candès and Recht (2009)) have
recently become relevant in seismic trace interpolation problems. In work by Aravkin et al. (2014), the
authors utilize the low-rank structure of seismic data in midpoint-offset domain to allow for successful
seismic data reconstruction. Furthermore, by allowing the data matrix to be factorized in bi-linear form
as implemented by Recht et al. (2010), these authors propose LR-BPDN a rank penalizing formulation
that is suitable for large scale seismic interpolation problems.
While this approach yields state of the art results, it is subject to suboptimal performance when faced
with increasingly complicated problems due to large scale, oscillatory data, or highly subsampled data.
Since such cases encompass a large part of practical interest we see that we would greatly benefit from
a more robust optimization procedure. The goal of this talk is to improve LR-BPDN in these aspects
by proposing a modified optimization scheme, we consider a rank minimization work flow that alter-
nates the optimization procedure between the bi-linear matrix factors. In this way we tackle one matrix
factor at a time, which allows for a more tractable procedure that can overcome these impediments with-
out increasing time complexity. Experiments on the Nelson 2D seismic line and Gulf of Mexico 7 Hz
frequency slice demonstrate the potential of the new approach.

Matrix Completion: Large Scale Implementation

The goal of low-rank matrix completion is to accurately estimate the unobserved entries of a given in-
complete data matrix from the observed entries and the prior knowledge that the matrix has few nonzero
or quickly decaying singular values, i.e. the matrix exhibits low-rank structure. If we let Ω be the set of
observed entries, we can define our sampling operator PΩ by its action as:

PΩ(X) =

{
Xi j if (i, j) ∈Ω

0 otherwise

where X ∈Cn×m. If X is our true matrix of interest, then our observations are given by b = PΩ(X)+n,
where n encompasses our corruption by noise. As introduced by Fazel (2002) and shown by Recht et
al. (2010) we can approximately solve the rank minimization problem by instead minimizing the best
convex approximation of the rank function, the nuclear norm. This convex relaxation gives us our data
estimate X ] as the argument output of the optimization procedure:

min
Y∈Cn×m

||Y ||∗ s.t. ||PΩ(Y )−b||F ≤ ε (1)

where ||n||F ≤ ε is the noise level in our observations, ||Y ||∗ is the nuclear norm of the matrix Y and
||X ||F denotes the Frobenius norm of the matrix X . This procedure exploits the knowledge that X has
low-rank structure while making sure we agree with our observations up to some known noise level.
Many implementations to solve (1), such as singular value projection and singular value tresholding (Jain
et al. (2010), Cai et al. (2010)) require numerically expensive SVD computations of our data matrix at
each iteration and furthermore require full matrix storage. Since these issues can make (1) impractical
for large data matrices, Recht et al. (2010) and Aravkin et al. (2014) propose a matrix factorization
approach to overcome this impediment. By choosing r� min(n,m), the authors write the matrix in
bi-linear form X = LRH , where L ∈Cn×r, R ∈Cm×r and RH denotes the Hermitian transpose of R. As
shown by Srebro (2004) and Recht et al. (2010), the fact that ||X ||∗ = min{L,R:X=LRH}

1
2(||L||

2
F + ||R||2F)
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allows us to solve (1) by instead solving:

min
L∈Cn×r,R∈Cm×r

1
2
(||L||2F + ||R||2F) s.t. ||PΩ(LRH)−b||F ≤ ε. (2)

If we choose our factorization parameter, r, significanly smaller than the ambient dimensions n and m,
we have reduced our memory requirements from mn to rn+ rm while implementing a rank penalization
scheme that avoids computing SVD of our potentially large data matrix.
In this talk we adopt formulation (2) and consider the following algorithm for this purpose:

Algorithm 1 Rank Minimization via Alternating Optimization
Require: PΩ, b, r, T

1: initialize: L0 to be the top-r singular vectors of b
2: for t = 0 to T −1 do
3: Rt+1←min{R∈Cm×r}

1
2 ||R||

2
F s.t. ||PΩ(LtRH)−b||F ≤ ε

4: Lt+1 ←min{L∈Cn×r}
1
2 ||L||

2
F s.t. ||PΩ(L(Rt+1)H)−b||F ≤ ε

5: end for
6: return (X ] = LT (RT )H)

The key component of Algorithm 1, is to allow our optimization to focus on a single matrix factor at a
time in steps 2−5. As we will see in the experiments section, this choice of implementation results in a
favorable output for cases where our data matrix is large, highly oscillatory or critically subsampled.
Similar alternating techniques have been proposed and discussed by Jain et al. (2013) and Xu and Yin
(2013). However the approach considered by Jain et al. (2013) does not penalize the rank and while
Algorithm 1 is a consequence of the work in Xu and Yin (2013), the authors do not provide a specific
implementation to achieve steps 3 and 4. For this purpose we utilize a generalization of the SPGl1
solver (Berg and Friedlander (2008)) which at step t given Lt solves step 3 of Algorithm 1 by solving a
sequence of LASSO subproblems:

min
{R∈Cm×r}

||PΩ(LtRH)−b||F s.t.
1
2
||R||2F ≤ τ

Where τ is a regularization parameter updated appropriately by SPGl1 so that the LASSO optimization
procedure is equivalent to solving step 3. Solving such LASSO subproblems requires us to minimize a
convex funtion (||PΩ(LtRH)−b||F as a function of R only) and project onto 1

2 ||R||
2
F ≤ τ , which is easily

achieved by appropriate scalar multiplication. We thus end up with a sequence of tractable convex prob-
lems that do not require expensive SVD computations and effectively penalize the rank. Solving step 4
of Algorithm 1 can be done in a similar manner.

Seismic Data Reconstruction via Rank Minimization: Experiments

We allow our monochromatic frequency slice, X ∈Cn×m, to be organized as a matrix in midpoint-offset
(m-h) domain. As Aravkin et al. (2014) discuss, implementing (2) in m-h domain allows us to achieve
low-rank structure and furthermore results in successful low-rank matrix completion since in m-h do-
main missing sources and receivers result in missing matrix entries whose structure disrupts the low-rank
properties of our complete matrix. Furthermore we simulate the effect of missing traces by applying a
subsampling mask that removes a desired percentage of sources in a jittered random manner. As men-
tioned by Kumar et al. (2014) jittered subsampling allows for randomness in our sampling scheme,
a key component in compressive sensing applications, while controlling the allowed gap sizes of our
missing data, an important consideration for interpolation techniques.
We offer two experiments to demostrate our interpolation scheme, where for the sake of comparison
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we also implement LR-BPDN proposed by Aravkin et al. (2014). The first is conducted on a single
7 Hz frequency slice extracted from the Gulf of Mexico dataset with 4001 sources and 4001 receivers.
We apply a sampling mask that removes 90% of sources in a jittered random manner. For Algorithm
1 we choose a total of T = 10 alternations with 15 iterations of SPGl1 per alternation. For fairness of
comparison we run LR-BPDN with 300 iterations of SPGl1 and choose factorization parameter r = 80
for both methods. The results (Figure 1) demonstrate a drastic benefit offered by our approach. Results
of LR-BPDN introduce more noise than signal in the reconstruction with and SNR of -.9 dB, whereas
the results of Algorithm 1 give output with SNR of 6.7 dB. This critical difference in results shows how
our proposed method does indeed improve results in large scale and highly subsampled cases.
The second experiment is conducted on a seismic line from the Nelson dataset with 401 sources, 401
receivers and 1024 time samples where we interpolate in the 1-97 Hz frequency band. For this experi-
ment we subsample by removing 80% of sources in a jittered random manner. In this case we choose
T = 6 alternations with 15 iterations of SPGl1 per alternation for Algorithm 1, 180 iterations of SPGl1
for LR-BPDN and choose the same factorization parameters adjusted from low to high frequency. We
observe in Figure 2 that implementation of Algorithm 1 offers an average improvement in SNR by a
factor of .5 dB when compared to LR-BPDN. We further notice that reconstruction improvements are
most apparent in the higher frequency slices (50-70 Hz), which enforces our previous statement that
Algorithm 1 is most beneficial in cases where our data is highly oscillatory and critically subsampled.
We remind the reader that while this might not seem like a critical improvement, we are not increasing
the time complexity of LR-BPDN.

Figure 1 Comparison of interpolation results on a 7 Hz frequency slice shown in source-receiver domain
from the Gulf Of Mexico dataset. (top left) Ground truth. (top middle) 90% jitter random subsampled
ground truth data. (top right) Recovery via LR-BPDN with SNR of -.9 dB. (bottom left) Difference plot
of LR-BPDN recovery. (bottom middle) Recovery via Algorithm 1 with SNR of 6.7 dB. (bottom left)
Difference plot of Algorithm 1 recovery.

Conclusions

We proposed a modified optimization workflow for seismic data interpolation via low-rank matrix com-
pletion. In order to implement the nuclear norm minimization problem (1), we proceed as Aravkin et
al. (2014) but offer a different rank minimization approach. By allowing our optimization scheme to
alternate between matrix factors and implementing the Pareto curve approach (SPGl1) we are left with a
sequence of tractable convex problems that do not require expensive SVD computations and effectively
penalize the rank. This results in a more robust procedure, where the experimental results clearly high-
light the reconstruction SNR improvements in cases where our data matrix is large, highly oscillatory
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Figure 2 Plot of frequency versus recovery SNR from implementation of Algorithm 1 and LR-BPDN on
the seismic line from the Nelson dataset for 1-97 Hz frequency band.

and critically subsampled when compared to the LR-BPDN implementation.
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