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Abstract

Seismic data interpolation via rank-minimization techniques has been recently introduced in the
seismic community. All the existing rank-minimization techniques assume the recording locations
to be on a regular grid, e.g. sampled periodically, but seismic data are typically irregularly sampled
along spatial axes. Other than the irregularity of the sampled grid, we often have missing data.
In this paper, we study the effect of grid irregularity to conduct matrix completion on a regular
grid for unstructured data. We propose an improvement of existing rank-minimization techniques
to do regularization. We also demonstrate that we can perform seismic data regularization and
interpolation simultaneously. We illustrate the advantages of the modification using a real seismic
line from the Gulf of Suez to obtain high quality results for regularization and interpolation, a key
application in exploration geophysics.



Introduction
Due to budgetary and/or physical constraints, Wide-azimuth (WAZ) data sets are coarsely sampled at
irregular locations i.e., the samples are unstructured because they do not fall on a periodic grid. Seismic
data regularization and/or interpolation are one of the keys pre-processing steps to provides the regularly
sampled data, with a dense sampling rate (without aliasing) in all the spatial directions. Various method-
ologies have been proposed to perform regularization and interpolation. The simplest regularization
process is called bin-centering, which moves traces from their recording locations to locations on a reg-
ular grid. Based upon the method used to perform bin-centering, amplitude of the traces may be altered
and some traces may be discarded that can lead to serious errors, for example, as reported by Hennenfent
et al. (2010). More recently, rank-minimization based techniques have been introduced to interpolate
the seismic data (Oropeza and Sacchi, 2011; Kumar et al., 2013). The key idea of rank-minimization
is to exploit the low-rank structure of seismic data in some "transform-domain" when organized in a
matrix. The low-rank structure corresponds to a small number of nonzero singular values or quickly
decaying singular values. Kumar et al. (2013) showed that the monochromatic frequency slices of the
fully sampled data matrix on a regular grid have low-rank structure in the midpoint-offset (m-h) domain,
while sub-sampled seismic-data matrices do not. Missing traces increase the rank or make the singular
values decay less quickly in the m-h domain, an essential feature for rank-minimization techniques to
be effective. The existing rank-minimization techniques assume the input data is on a regularly sam-
pled grid. As a result, these methods are less efficient when applied to an unstructured grid because
discarding (binning) the actual recording locations of the input traces introduces errors. The objec-
tive of this paper is to establish the benefits of incorporating the unstructured sampling operator inside
rank-minimization framework via performing regularization and interpolation of seismic data that are
regularly sampled along receivers, time, and irregularly sampled along sources. We demonstrate the
efficacy of the proposed extension on a real seismic line from the Gulf of Suez.

Regularization
During acquisition, seismic data is acquired in an irregular fashion i.e., sources and receivers may lie
on an unstructured grid. The goal of data regularization is to preserve the low-rank structure of seismic
data in transform-domain while creating a regular sampled data at the specified bins from the irregular
input data. To illustrate the effects of regularization on the low-rank structure of seismic data in the m-h
domain, we plot the decay of singular values in the m-h domain. We extract a fully sampled monochro-
matic frequency slice from a regularly sampled seismic line at high frequency (35 Hz) and transformed
it into the m-h domain as shown in Figures 1(a). The 355 sources and receivers position for this fre-
quency slice are at the centre of 12.5m, contiguous bin. From this fully sampled frequency slice; we
generate 355 new sources at uniformly random locations within each bin. The data at unstructured grid
is either binned using nearest-neighbor interpolation (Figure 1b) or regularized using unstructured sam-
pling operator based rank-minimization (Figure 1c). Notice that, the decay of singular values is faster
for the original data at structured grid in m-h domain. Regularization using bin-centering slow down the
decay of singular values in m-h domain since binning breaks the continuity along the wavefields, while
unstructured sampling operator based rank-minimization preserves the continuity along the wavefields,
therefore, does not changes the decay of singular values in m-h domain (Figure 1d). Hence, incorpo-
ration of the unstructured sampling operator in rank-minimization perpetuates the low-rank structure of
seismic data in the transform-domain.

Regularization and interpolation
In reality, seismic data is under sampled either along sources or receivers on irregular grids. Thus,
regularization and missing trace interpolation problem can be perceived as a matrix-completion problem.
Let X0 in Cn×m be a regularly sampled data matrix and let A be a linear measurement operator that maps
from Cn×m→ Cp with p� n×m. Recht et al. (2010) showed that under certain general conditions on
the operator A , the solution to the rank-minimization problem can be found by solving the following
nuclear norm minimization problem:

min
X
||X ||∗ s.t. ‖A (X)−b‖2 ≤ ε, (BPDNε )
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where b is a set of measurements, ‖X‖∗ = ‖σ‖1, and σ is the vector of singular values. The linear mea-
surement operator is defined as A := RS H , where R is the sampling operator, S is the transformation
operator from the source-receiver domain to the midpoint-offset domain and H denotes the Hermitian
transpose. The (BPDNε ) formulation require regularly sampled data along all spatial axes, which is
challenging in practice since a set of measurements b is always under sampled on an irregular grid. For
that reason, we replace R with an unstructured sampling operator U which output the irregularly sampled
data in the physical-domain by applying the fast Fourier transform followed by inverse non-equispaced
fast Fourier transform (Potts et al., 2001; Kunis, 2006). To solve the nuclear-norm minimization prob-
lem, we combined the Pareto curve approach for optimizing (BPDNε ) formulations with the SVD-free
matrix factorization methods, following Aravkin et al. (2013).

Experimental results
The data set we use is a real seismic line from the Gulf of Suez with Nn = 355 sources, Nm = 355
receivers on a periodic interval of 12.5m and Nt = 1024 time samples with a temporal sampling of 0.004s.
The 355 sources positions of this reference seismic line are at the center of 12.5m, contiguous bin. Most
of the energy of the seismic line is concentrated inside 10-60 Hz frequency band. From this regularly
sampled source positions (Figures 2a), we generate 355 new sources at uniformly random locations
within each bin (Figures 2b). We use an unstructured sampling operator based on bi-cubic splines (Keys,
1981). This operator models taking samples from a densely periodically sampled data at source locations
that are not on a grid. The nominal spatial sampling remains 12.5m. In all the subsequent experiments,
we use 150 iterations of SPG`1 for all frequency slices. To map the data to a structured grid and to avoid
binning errors, we conduct the regularization and compare it to the bin-centering techniques. Figure 3a
shows the resulting 12.5 m binned dataset using nearest-neighbor interpolation. Figure 3c shows the
detail along late times. The wiggle traces are the binned data and the grayscale image in the background
is the ground truth. We can see that binning institute large errors (Figure 3b), yielding a signal-to-noise
ratio (SNR) of 7.3 dB since wavefronts need to be smooth and that needs to be dealt with properly in
the sampling and binning does not do that properly. Figures 3d, 3f show the regularization results using
unstructured (BPDNε ) with a SNR of 18.6 dB. We can see that difference plot (Figure 3e) shows very
low-residual between the regularized data (Figure 3d) and the ground truth (Figure 2a). As mentioned
before, seismic data are often inadequately or irregularly sampled along spatial axes. To imitate the under
sampled data on an irregular grid, the fully sampled source locations at unstructured grid (Figure 2b)
is used to generate 177 new sources at uniformly random locations (Figure 2c) where the minimum
distance between two consecutive sources is 12.5m and the maximum distance is 130m. To show the
benefits of incorporating the unstructured sampling operator in the rank-minimization, we also conduct
a combined interpolation and regularization using rank-minimization techniques (Kumar et al., 2013),
where we accomplish binning and interpolation simultaneously. Figure 4a shows the regularized and
interpolated data on unstructured grids using (BPDNε ) with a SNR of 19.3 dB. Figure 4c shows the
details along late times. The difference plot (Figure 4b) shows very low-residual, which explains that,
the incorporation of grid irregularity in rank-minimization helps to achieve better regularization and
interpolation results.

Conclusion
We demonstrate the benefits of incorporating the grid irregularity for an unstructured data in the rank-
minimization to achieve data regularization and interpolation. We establish that irregularity along spatial
axes benefits the unstructured sampling operator based rank-minimization to perform better regulariza-
tion of fully sampled irregular data resulting in minimal loss of coherent energy, since unstructured
sampling operator preserves the low-rank structure of data in the transform-domain. We also illustrate
that the proposed alteration of rank-minimization can be used to perform regularization and interpola-
tion, simultaneously, from irregular and/or aliased data.
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(a) (b) (c) (d)
Figure 1 Impact of regularization on singular values decay in the transform-domain. Monochromatic
frequency slice at 35 Hz in the m-h domain, (a) ground truth, (b) binning using nearest-neighbor inter-
polation, (c) unstructured sampling operator based rank-minimization. (d) Singular values decay in the
m-h domain. Notice that, the decay of singular values is faster for the original data at a regularly sam-
pled grid in m-h domain, and that regularization using bin-centering slow down the decay of singular
values in m-h domain, while unstructured sampling operator based rank-minimization does not changes
the decay of singular values in m-h domain. Therefore, incorporation of the unstructured sampling
operator in rank-minimization preserve the low-rank structure of seismic data in the transform-domain.

(a) (b) (c)
Figure 2 Ground truth (common receiver gather). (a) structured grid. (b) unstructured grid. (c) 50%
subsampled data at unstructured grid.
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(d) (e) (f)

Figure 3 Regularization. (a) Recovered data, binned using nearest-neighbor interpolation at nominal
spatial sampling of 12.5 m. (d) Recovery using proposed rank-minimization on unstructured grid at
12.5 m. (c) and (f) zooms on late times. The grayscale image in the background is the ground truth, the
wiggle traces are the binned data of (a) and (d), respectively. (b) and (e) are difference plots at the same
scale as (a) and (d).

(a) (b)

(c)
Figure 4 Regularization and Interpolation. (a,b) Recovery and difference using proposed rank-
minimization on unstructured grids with a SNR of 19.3 dB. (c) zooms on late times. The grayscale
image in the background is the ground truth, the wiggle traces are the regularized-interpolated data of
(a) respectively. We can see that incorporation of structured grid irregularity in rank-minimization helps
to achieve better regularization and interpolation results.
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