Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

Fast "online" migration with Compressive Sensing

Felix J. Herrmann

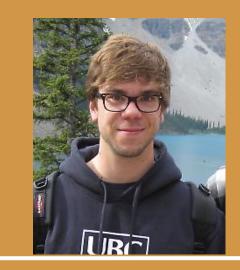
University of British Columbia

Fast "online" migration with Compressive Sensing

Felix J. Herrmann, Ning Tu, and Ernie Esser

with help from Mengmeng Wang & Phil

University of British Columbia



Motivation

Push from processing to inversion exposes challenges w.r.t.

- handling IO for larger and larger datasets
- computational resources needed by wave-equation based inversions

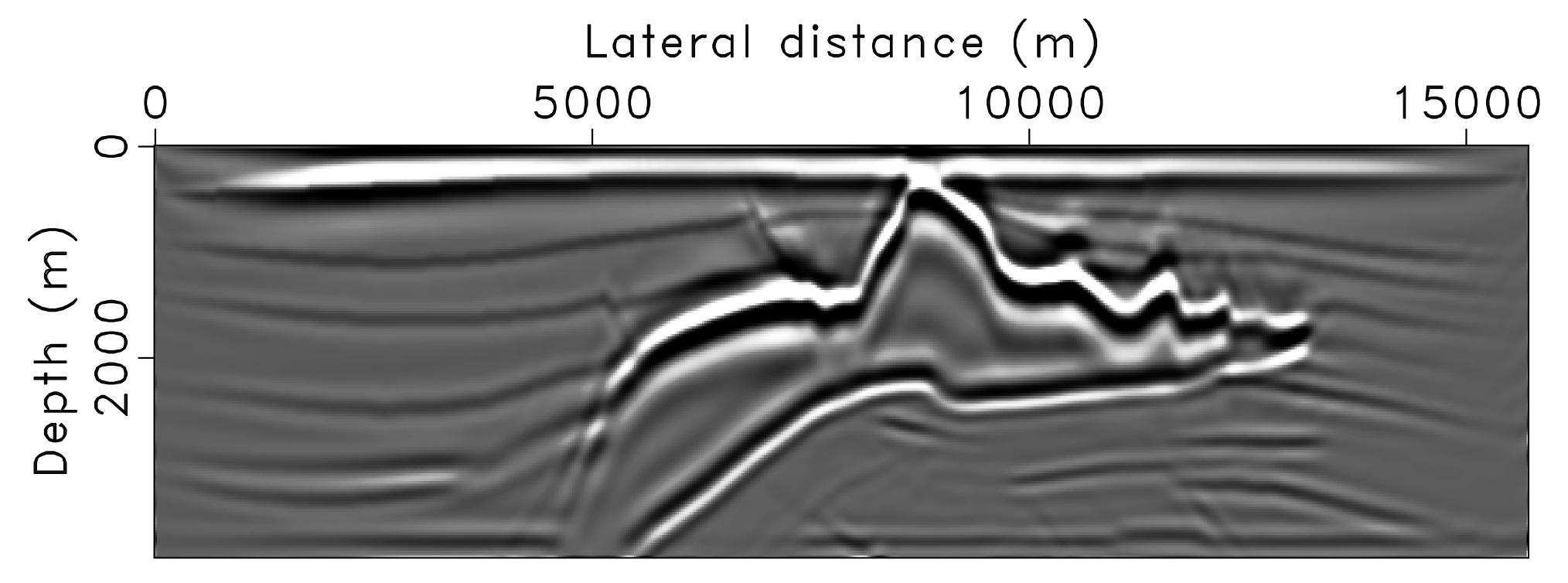
Sparsity-promoting inversions:

- produce hifi/high-resolution results
- but require too many computations & passes through the data (IO), and
- are algorithmically complex

Stifles uptake by industry...

Inversion vs processing

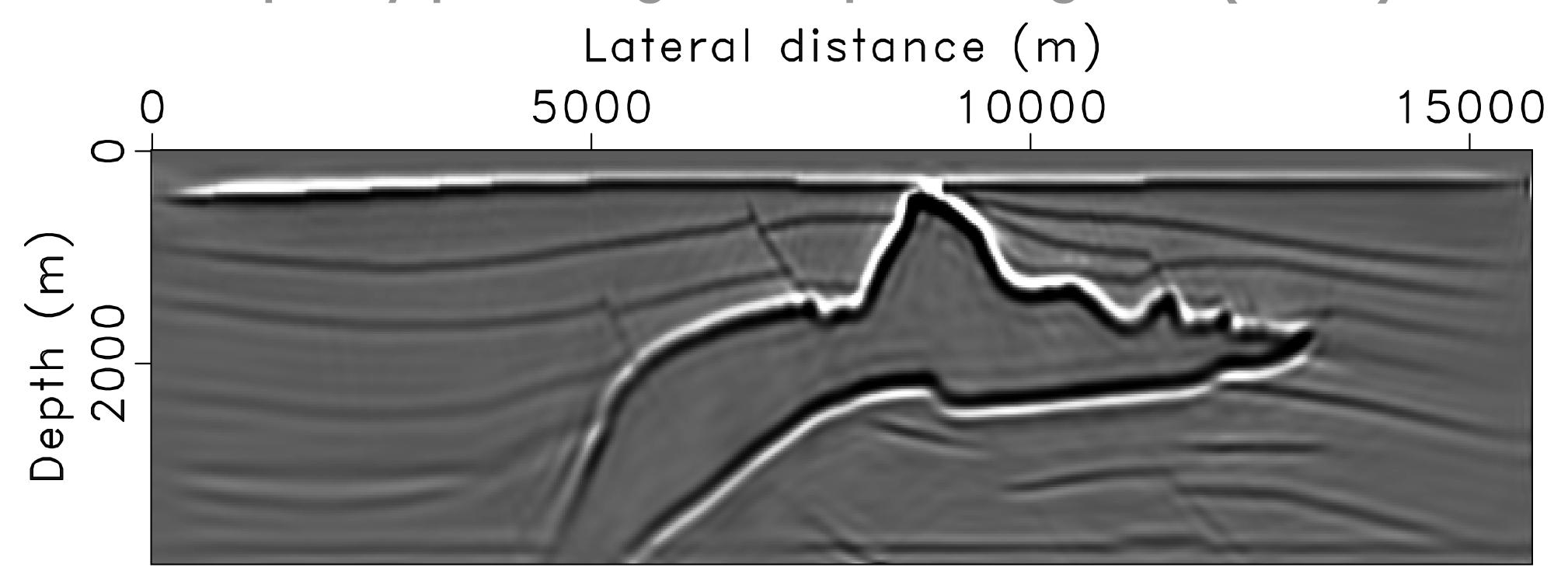
- reverse-time migration (RTM)



RTM imaging via adjoint, high-pass filtered to remove low-wavenumber RTM artifacts

Inversion vs processing

- sparsity-promoting least-squares migration (SPLSM)



SPLSM image via inversion, # of wave-equation solves roughly equals 1 RTM w/ all data

Contributions

New "online" scheme that provably inverts large-scale problems by

- working on small randomized subsets of data (e.g. shots) only
- making the objective strongly convex by thresholding the dual variable

Extremely simple "three liner" implementation that

- ▶ limits # of passes through data & offers flexible parallelism
- is easily extendible to include e.g. on-the-fly source estimation & multiples

Application areas include:

least-squares migration & AVA

Sparsity promotion

Basis Pursuit (BP):

minimize
$$\|\mathbf{x}\|_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

- undergirds most sparse recovery problems & compressive sensing (CS)
- designed for underdetermined systems
- needs many iterations

ISTA

- Iterative Shrinkage Thresholding Algorithm

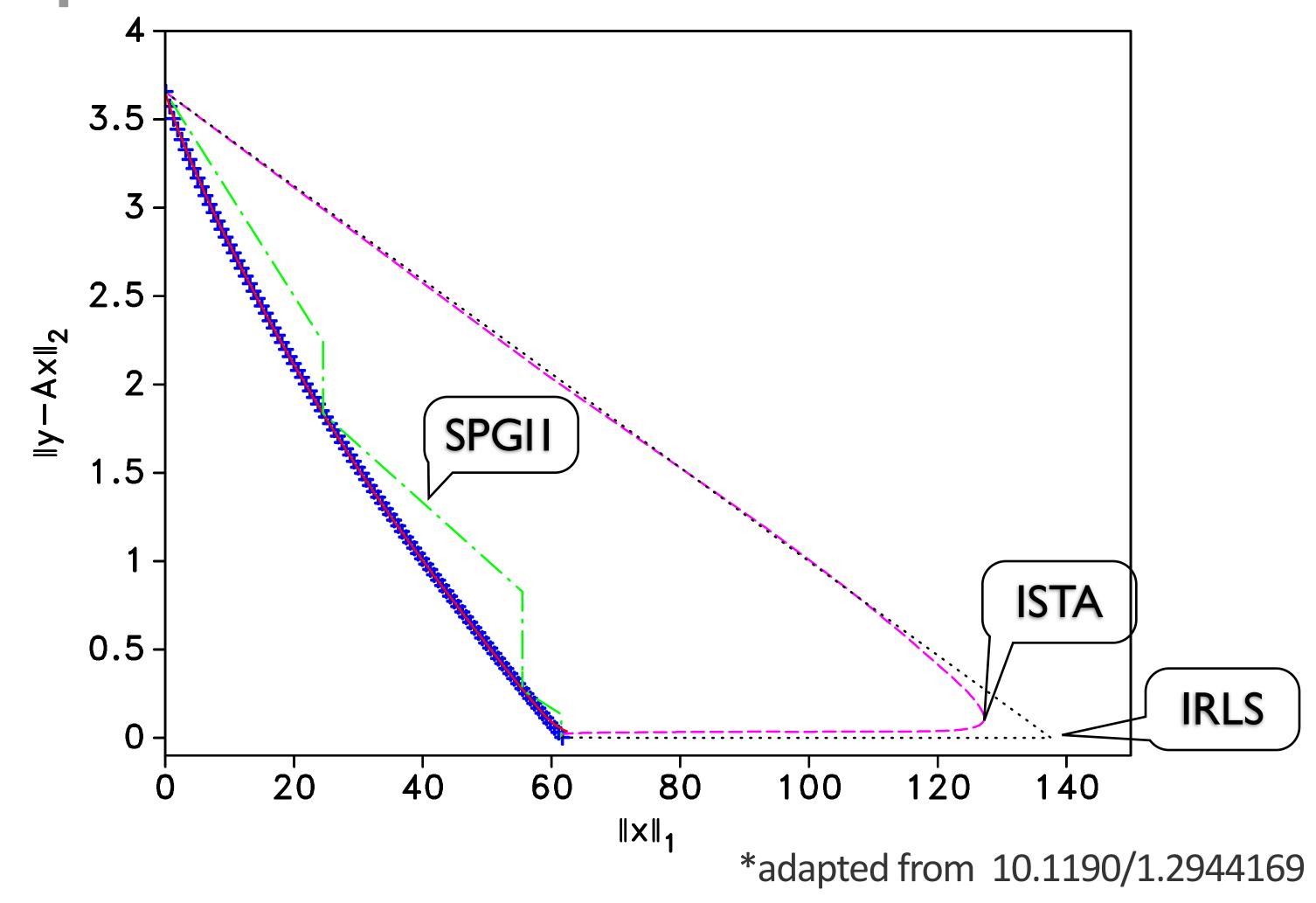
1. **for**
$$k = 0, 1, \cdots$$

2. $\mathbf{z}_{k+1} = \mathbf{x}_k - t_k \mathbf{A}^* (\mathbf{A} \mathbf{x}_k - \mathbf{b}_k)$
3. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$
4. **end for**

*where $S_{\lambda}(x) = \text{sign}(x) \cdot \max(|x| - \lambda, 0)$ is soft thresholding and t_k are step lengths

- lacktriangleright simple but converges slowly, especially for λ small
- \blacktriangleright BP corresponds to non-trivial limit $\lambda \to 0^+$
- \blacktriangleright requires (complicated) continuation strategies for λ

Solution paths



Observations

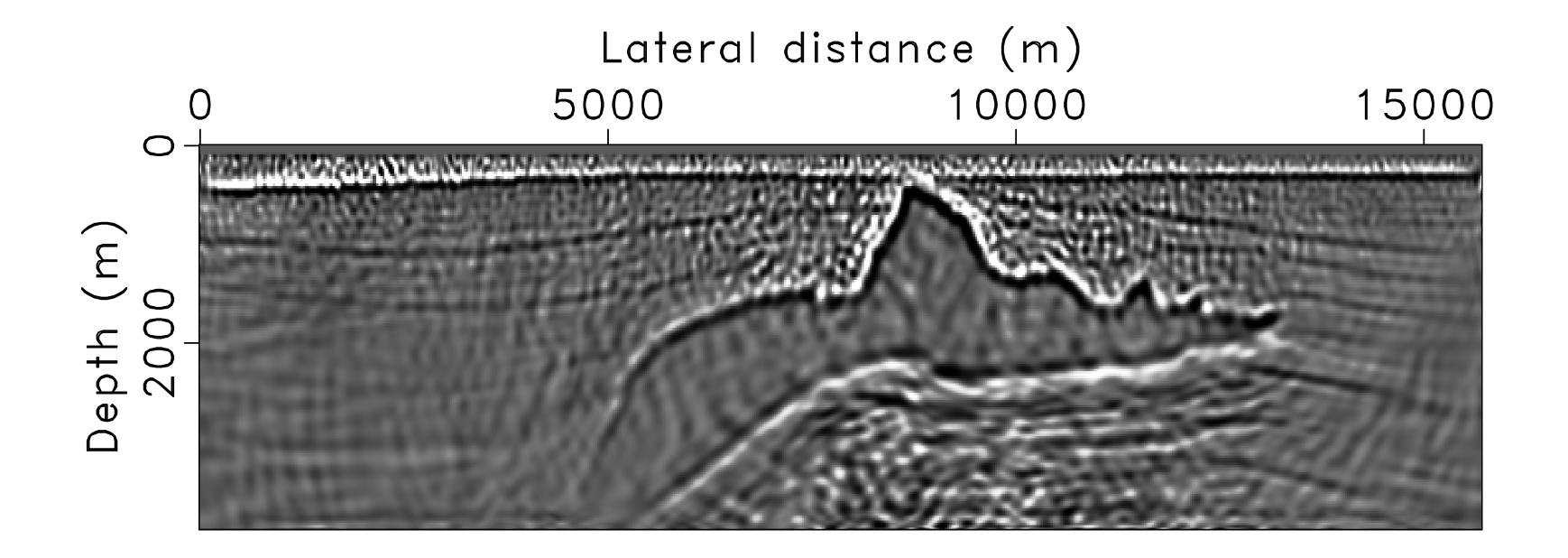
Contributions from "optimizers" yielded robust solvers such as SPGI1

- relatively fast because of continuation methods that relax the constraint
- black boxes with clever state-of-the-art "tricks"

But, their

- convergence is too slow for realistic seismic problems w/ expensive matvecs & IO
- ▶ implementation is rather complicated & somewhat inflexible
- design is not optimized for overdetermined problems

SPLSM w/ CS - slow convergence

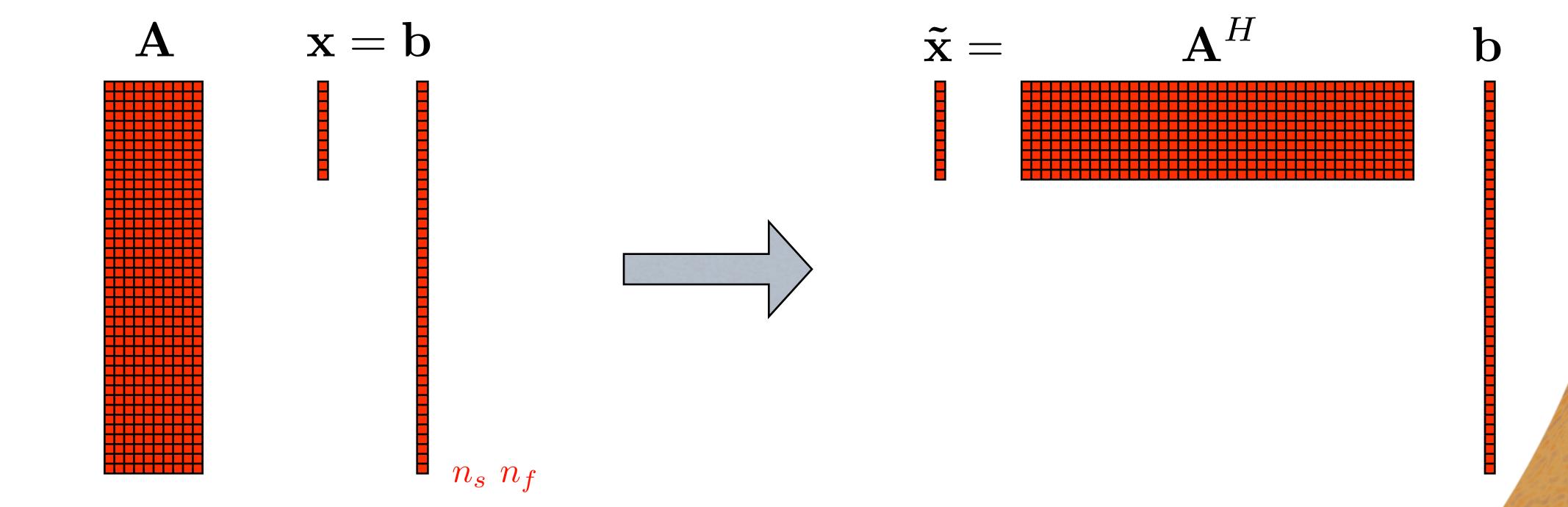


SPLSM image via inversion w/ fixed randomized simultaneous shots and in the presence of modelling errors

Migration

Seismic problems are

- often overdetermined
- often "inverted" by applying the (scaled) adjoint (e.g. migration)



Least-squares inversion

Consistent & inconsistent overdetermined systems can be solved by

$$\underset{\mathbf{x}}{\text{minimize}} \quad \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2}$$

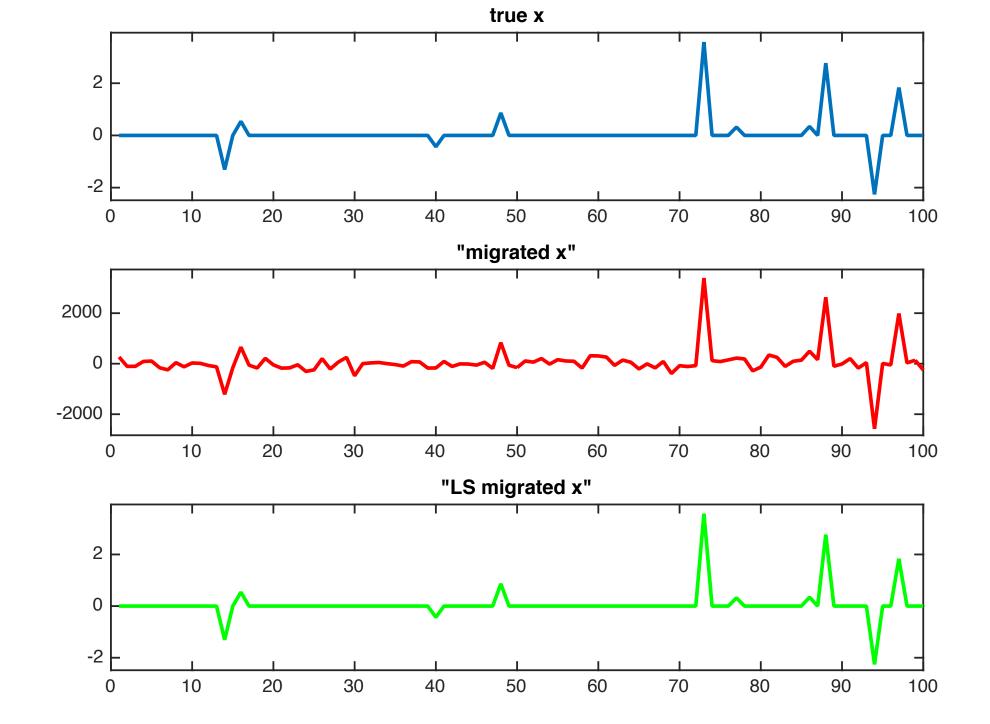
which requires

- multiple matrix-free actions of $\{\mathbf{A}, \mathbf{A}^H\}$
- multiple paths through the data (= many wave-equation solves), and
- does not exploit structure in X

Example - noise-free

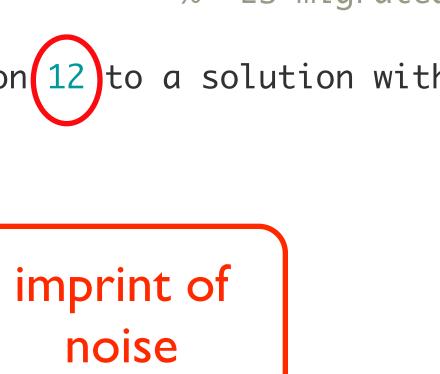
```
m=1000; % Number of rows
n=100; % number of columns
nnz=10; % Number of nonzeros
x0 = zeros(n,1);
x0(randperm(n,nnz))= randn(nnz,1); % Sparse vector
A = randn(m,n);
                                  % Tall system
b = A*x0;
                                  % data
xcor = A'*b;
                                  % "Migrate image"
                                  % "LS-migrated
xls = lsqr(A,b);
image"
lsqr converged at iteration (12) to a solution with
relative residual 9e-07.
```

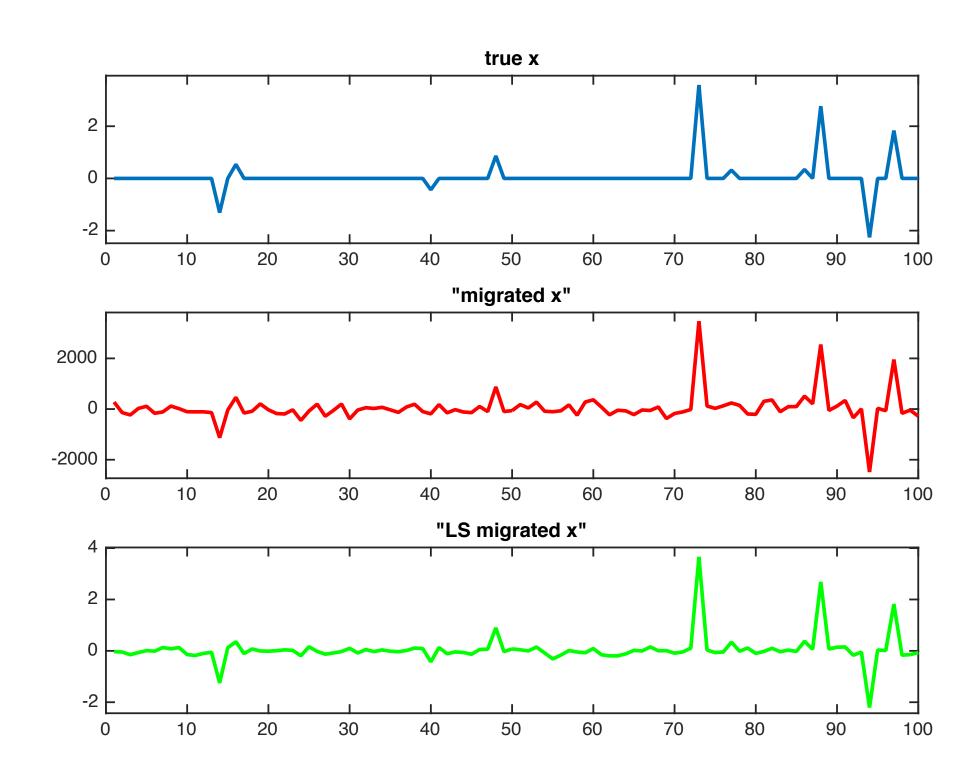
12 passesthrough data



Example - noisy

```
m=1000; % Number of rows
        % number of columns
n=100;
nnz=10; % Number of nonzeros
x0 = zeros(n,1);
x0(randperm(n,nnz))= randn(nnz,1); % Sparse vector
A = randn(m,n);
                                  % Tall system
                                  % data
b = A*x0;
b = b+0.5*std(b)*randn(m,1);
                                  % noisy data
xcor = A'*b;
                                   % "Migrate image"
                                   % "LS-migrated
xls = lsqr(A,b);
image"
lsqr converged at iteration (12) to a solution with
relative residual 0.44.
```





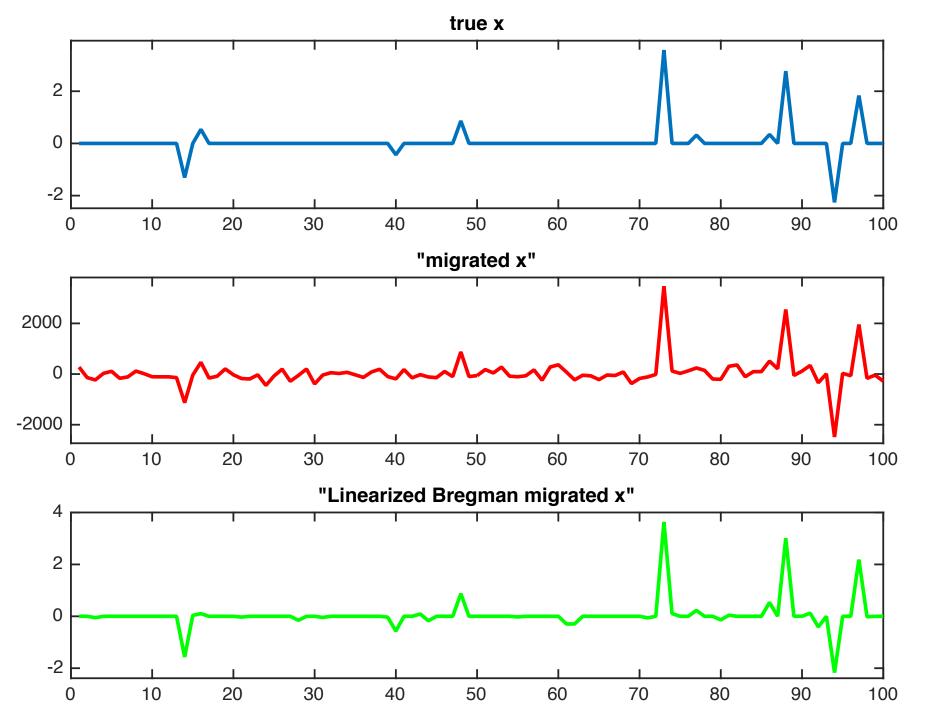
Example - proposed method

```
for k=1:niter

inds = randperm(m);
rk =inds(1:batch);
Ark = A(rk,:);
brk = b(rk);

tk = norm(Ark*xk-brk)^2/norm(Ark'*(Ark*xk-brk))^2;
zk = zk-tk*Ark'*(Ark*xk-brk);
xk = sign(zk).*max(abs(zk)-lambda,0)

end
```



Fast randomized least squares

Hot topic in "big data" and randomized algorithms

sketching techniques that randomly sample rows & solve [Li, Nguyên & Woodruff, '14]

minimize
$$\frac{1}{2} \|\mathbf{RM}(\mathbf{Ax} - \mathbf{b})\|_2^2$$

- randomized preconditioning, e.g. w/ QR factorization on reduced system [Avron et. al., '10]
- randomized Kaczmarz [Strohmer & Vershynin, '09; Zouzias & Freris, '13]

These do not exploit structure (e.g. sparsity) & may require infeasible storage.

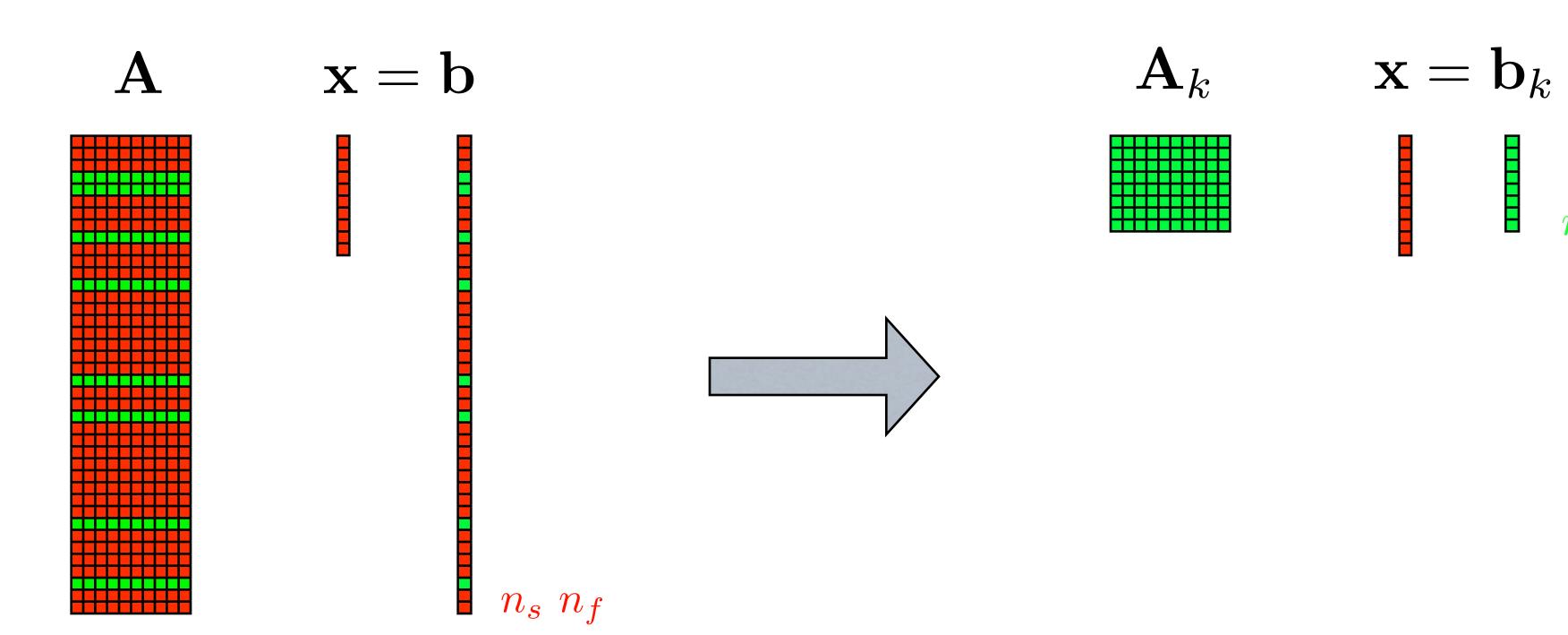
Ning Tu and Felix J. Herrmann, "Fast imaging with surface-related multiples by sparse inversion", Geophysical Journal International, vol. 201, p. 304-317, 2015

Leveraging the fold & threshold

- Randomized Iterative Shrinkage Thresholding Algorithm (RISTA)

Work /w for each iteration w/ independent randomized subsets of rows only

- simultaneous sourcing/phase encoding
- compressive sensing



RISTA

Randomized Iterative Shrinkage Thresholding Algorithm

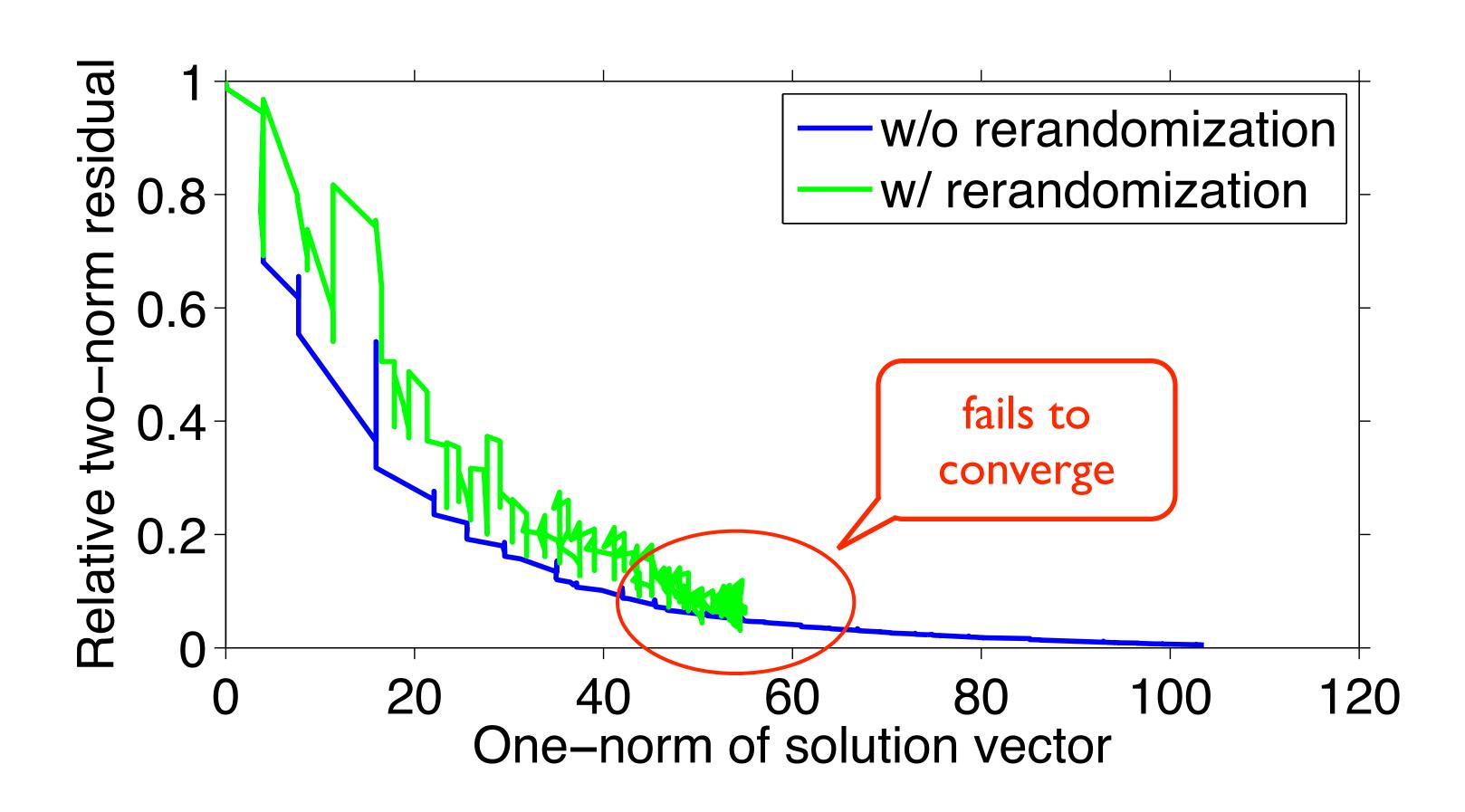
1. **for**
$$k = 0, 1, \cdots$$

2. $\mathbf{z}_{k+1} = \mathbf{x}_k - t_k \mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$
3. $\mathbf{x}_{k+1} = S_{\lambda_k} (\mathbf{z}_{k+1})$
4. **end for**

*where $S_{\lambda}(x) = \text{sign}(x) \cdot \max(|x| - \lambda, 0)$ is soft thresholding and t_k are step lengths

- relates to delicate "approximate" message passing theory [Montanari, '09]
- reduces IO & works on "small" subsets of (block) rows in parallel
- only converges for special $\{{f A},\,{f A}^H\}$ and tuned λ_k 's
- havocs continuation strategies & does not converge

Solution path



Relaxed sparsity objective

Consider $\lambda \to \infty$

minimize
$$\lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

- strictly convex objective known as "elastic" net in machine learning
- lacktriangle corresponds to Basis Pursuit for "large enough" λ
- corresponds to [Lorentz et. al., '14]
 - sparse Kaczmarz for single-row \mathbf{A}_k 's
 - linearized Bregman for full ${f A}$'s

RISKA

- Randomized IS Kaczmarz Algorithm w/ linearized Bregman

1. **for**
$$k = 0, 1, \cdots$$

2. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$
3. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$
4. **end for**

*where
$$t_k = \frac{\|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2}{\|\mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2)}$$
 are the step lengths

- exceedingly simple flexible "three line" algorithm
- gradient descend on the dual problem, which provably converges
- lacktriangleright total different role for λ

RISKA

Randomized IS Kaczmarz Algorithm w/ linearized Bregman

1. **for**
$$k = 0, 1, \cdots$$

2. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$
3. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$
4. **end for**

*where
$$t_k = \frac{\|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2}{\|\mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2)}$$
 are the step lengths

- exceedingly simple flexible "three line" algorithm
- gradient descend on the dual problem, which provably converges
- lacktriangleright total different role for λ

Felix J. Herrmann, "Accelerated large-scale inversion with message passing", in SEG Technical Program Expanded Abstracts, 2012, vol. 31, p. 1-6.

RISTA

- Randomized Iterative Shrinkage Thresholding Algorithm

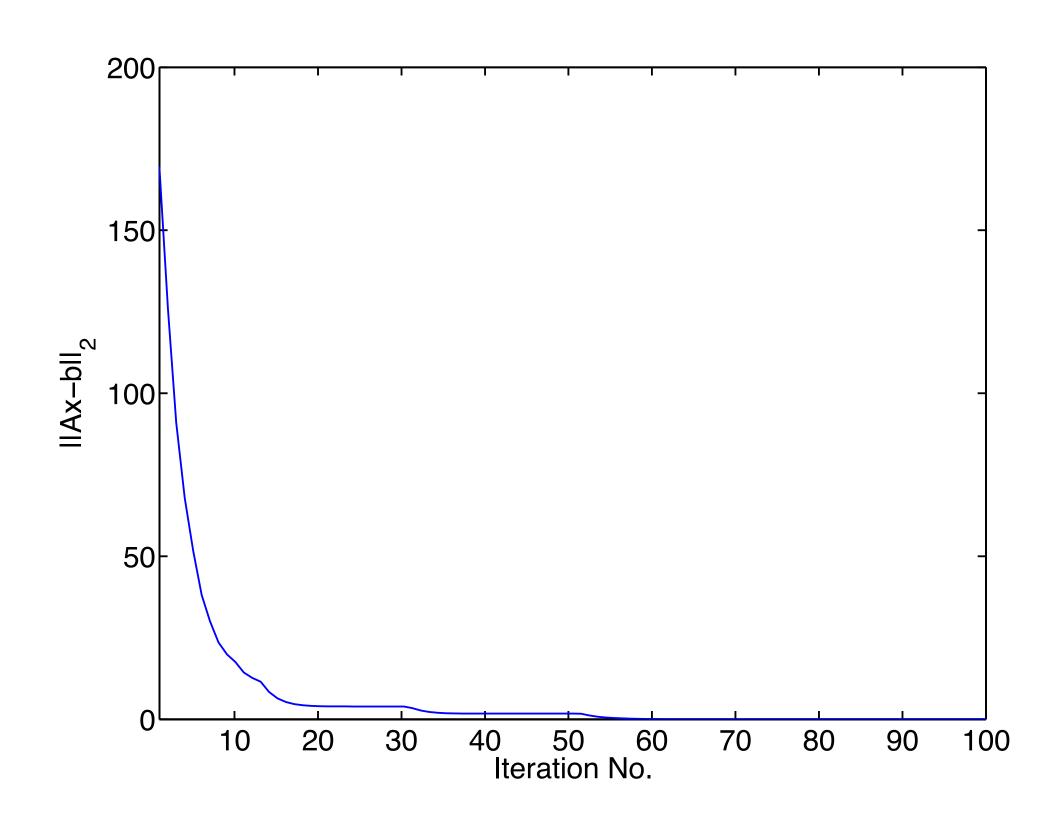
1. **for**
$$k = 0, 1, \cdots$$

2. $\mathbf{z}_{k+1} = \mathbf{x}_{k} - t_{k} \mathbf{A}_{k}^{*} (\mathbf{A}_{k} \mathbf{x}_{k} - \mathbf{b}_{k})$
3. $\mathbf{x}_{k+1} = S_{\lambda_{k}} (\mathbf{z}_{k+1})$
4. **end for**

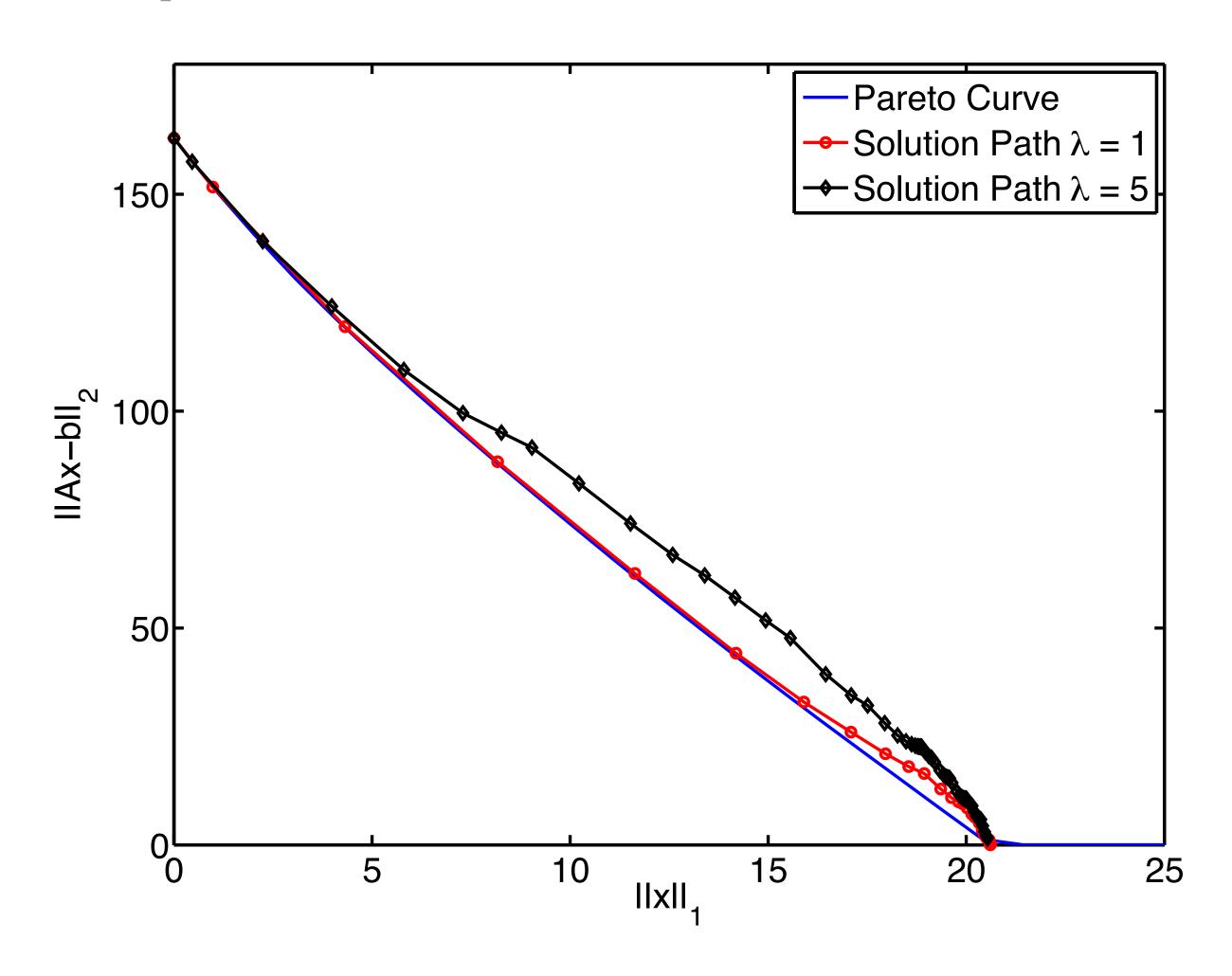
*where $S_{\lambda}(x) = \text{sign}(x) \cdot \max(|x| - \lambda, 0)$ is soft thresholding and t_k are step lengths

- relates to delicate "approximate" message passing theory [Montanari, '09]
- reduces IO & works on "small" subsets of (block) rows in parallel
- only converges for special $\{{f A},\,{f A}^H\}$ and tuned λ_k 's
- havocs continuation strategies

Converges



Solution paths



Extension

- inconsistent systems

minimize
$$\lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\| \le \sigma$

via projections onto norm balls

1. **for**
$$k = 0, 1, \cdots$$

2.
$$\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* \mathcal{P}_{\sigma} (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$$

$$3. \qquad \mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$$

4. end for

*where
$$\mathcal{P}_{\sigma}(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k) = \max\{0, 1 - \frac{\sigma}{\|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|}\} \cdot (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$$

Role of threshold

$$\lambda o \infty$$

- solution corresponds to BP (or BPDN)
- difficult to solve (like $\lambda \to 0^+$ for ISTA)
- thresholded components first step guaranteed to be in support

$$1 \ll \lambda \ll \infty$$

- iterations "auto tune" and do not wander off too far from optimal Pareto curve
- when threshold too large RISTA still makes progress
- room for acceleration w/ kicking techniques

Application

Least-squares (RTM) migration:

$$\delta \mathbf{m} = \sum_{ij} \nabla \mathbf{F}_{ij}^H(\mathbf{m}_0, \mathbf{q}_{ij}) \delta \mathbf{d}_{ij}$$

- too expensive to invert
- can we invert by touching data once?

-w/randomized source subsets

minimize
$$\lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$$

subject to $\sum_{ij} \|\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{q}_{ij}) \mathbf{C}^* \mathbf{x} - \delta \mathbf{d}_{ij}\| \le \sigma$

By iterating

1. **for** $k = 0, 1, \cdots$ 2. $\Omega \in [1 \cdots n_f], \ \Sigma \in [1 \cdots n_s]$ for $\#\Omega \ll n_f, \ \#\Sigma \ll n_s$ 3. $\mathbf{A}_k = \{\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \bar{\mathbf{q}}_{ij})\mathbf{C}^*\}_{i \in \Omega, j \in \Sigma}$ with $\bar{\mathbf{q}}_{ij} = \sum_{l=1}^{n_s} w_l \mathbf{q}_{i,l}$ 4. $\mathbf{b}_k = \{\delta \bar{\mathbf{d}}_{ij}\}_{i \in \Omega, j \in \Sigma}$ with $\delta \bar{\mathbf{d}}_{ij} = \sum_{l=1}^{n_s} w_l \delta \mathbf{d}_{i,l}$ 5. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* \mathcal{P}_{\sigma}(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$ 5. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$ 6. **end for**

- experimental setup

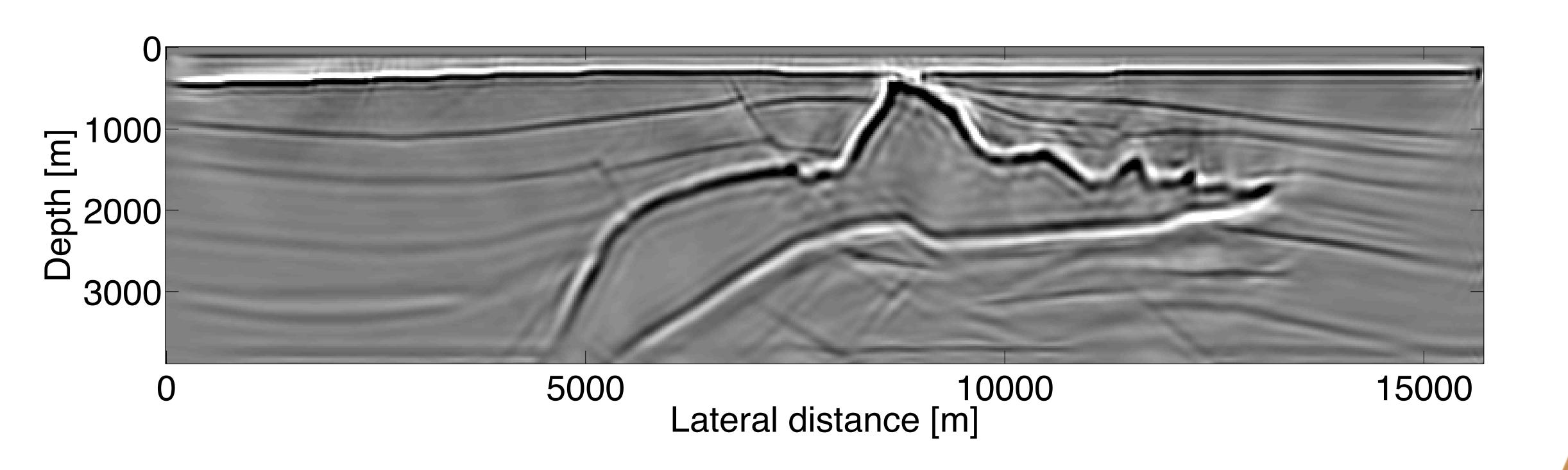
Data:

- ▶ 320 sources and receivers
- ▶ 72 frequency slices ranging from 3 12 Hz
- ullet $\delta \mathbf{d} = \mathbf{F}(\mathbf{m}) \mathbf{F}(\mathbf{m}_0)$, generated with separate modeling engine

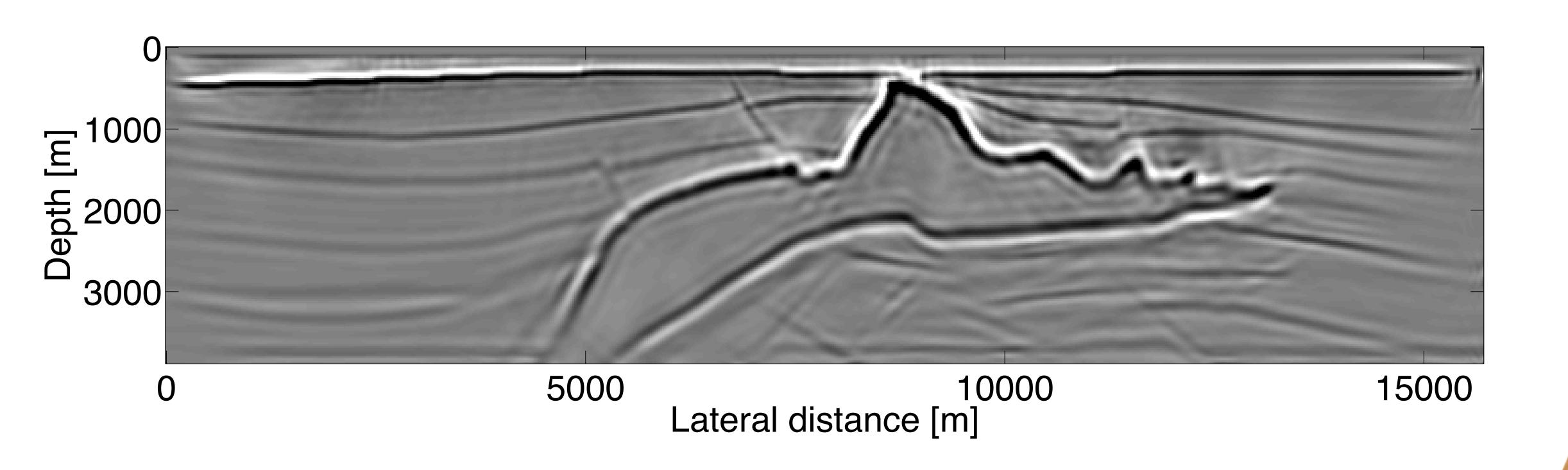
Experiments:

- one pass through the data with different batch/block sizes
- simultaneous vs sequential shots
- choose λ according to $\max \left(t_1 \cdot \mathbf{A}_1^* \mathbf{b}_1\right)$ and number of iterations
- ▶ no source estimation use correct source for linearized inversions

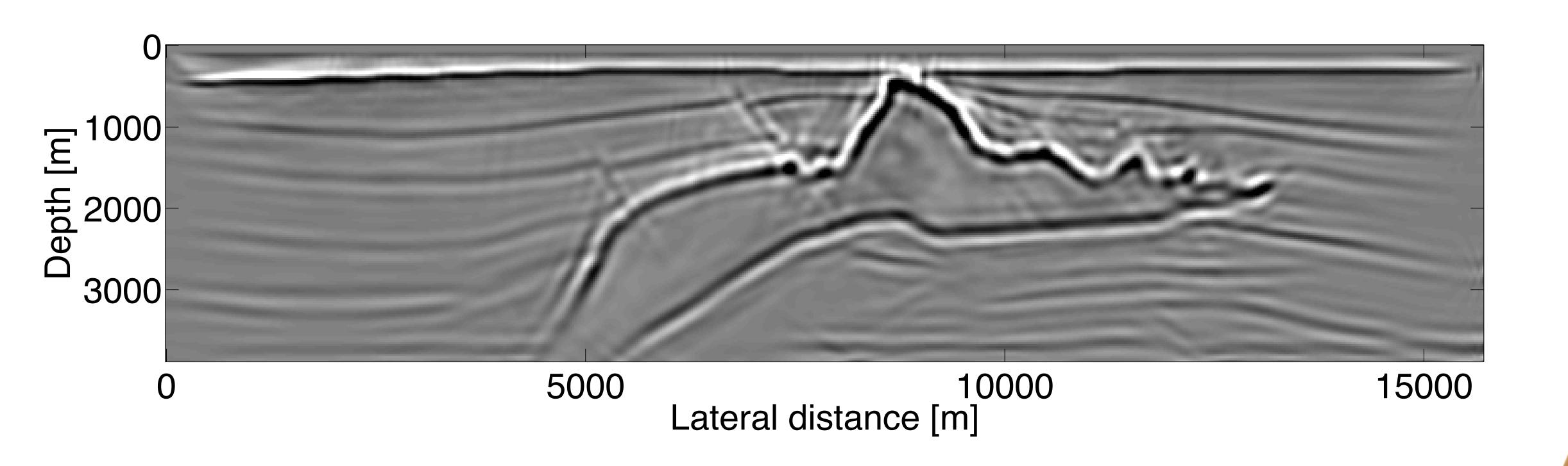
- 360 iterations, each w/ 8 frequencies/sim. shots



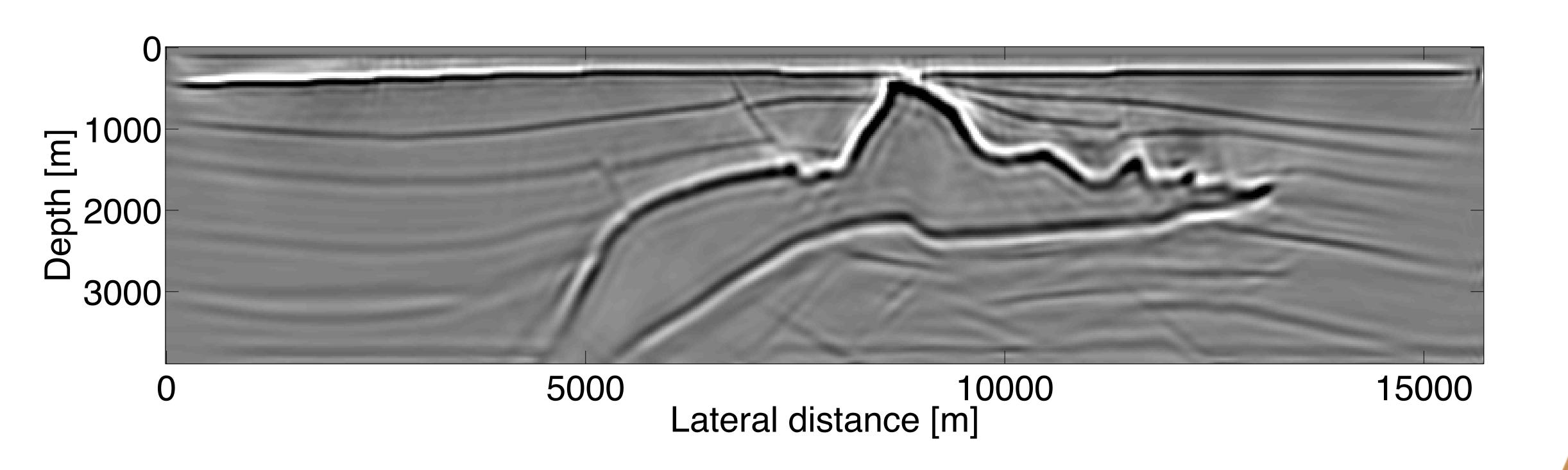
– 90 iterations, each w/ 16 frequencies/sim. shots



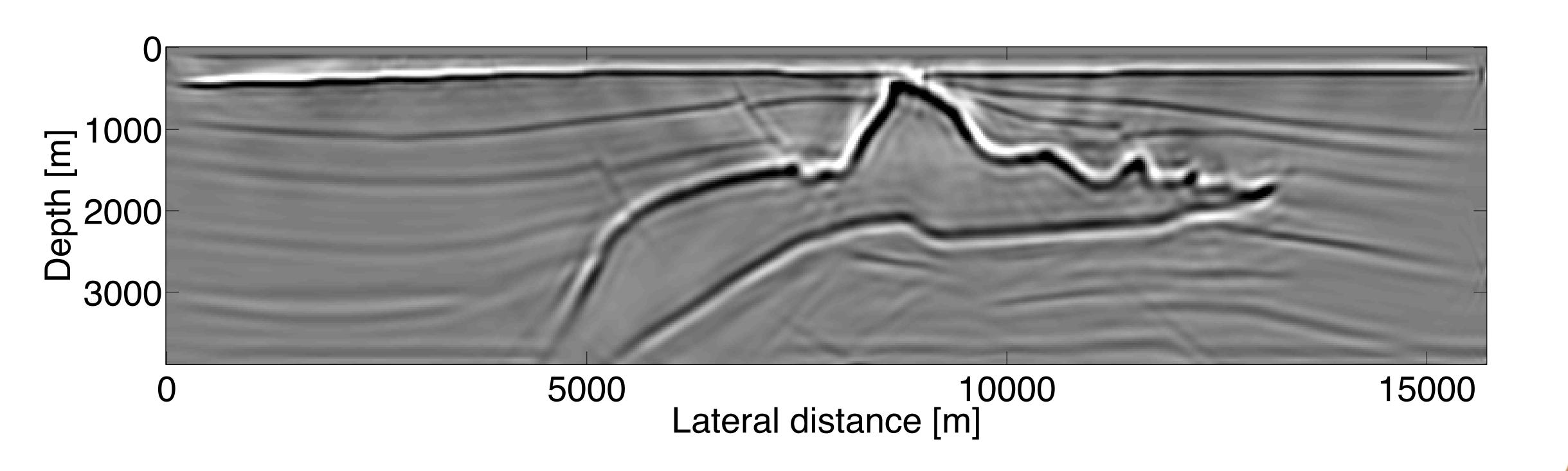
- 23 iterations, each w/ 32 frequencies/sim. shots



– 90 iterations, each w/ 16 frequencies/sim. shots



- 90 iterations, each w/ 16 frequencies/sequential shots



Fast SPLSM w/ CS

- on-the-fly source estimation

end for

minimize
$$\lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$$

subject to $\sum_{ij} \|\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{q}_{ij}) \mathbf{C}^* \mathbf{x} - \delta \mathbf{d}_{ij} \| \leq \sigma$

By iterating

```
1. for k = 0, 1, \cdots

2. \Omega \in [1 \cdots n_f], \ \Sigma \in [1 \cdots n_s]  for \#\Omega \ll n_f, \ \#\Sigma \ll n_s

3. \mathbf{A}_k = \{\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{s}_i \bar{\mathbf{q}}_{ij}) \mathbf{C}^*\}_{i \in \Omega, j \in \Sigma}  with \bar{\mathbf{q}}_{ij} = \sum_{l=1}^{n_s} w_l \mathbf{q}_{i,l}

4. \mathbf{b}_k = \{\delta \bar{\mathbf{d}}_{ij}\}_{i \in \Omega, j \in \Sigma}  with \delta \bar{\mathbf{d}}_{ij} = \sum_{l=1}^{n_s} w_l \delta \mathbf{d}_{i,l}

5. \mathbf{s}_i = \frac{\sum_{j \in \Sigma} \langle \delta \bar{\mathbf{d}}_{i,j}, \nabla \mathbf{F}[\mathbf{m}_0, \bar{\mathbf{q}}_j] \mathbf{C}^* \mathbf{x} \rangle}{\sum_{j \in \Sigma} \langle \nabla \mathbf{F}[\mathbf{m}_0, \bar{\mathbf{q}}_j] \mathbf{C}^* \mathbf{x} \rangle}, \mathbf{A}_k = \{\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{s}_i \bar{\mathbf{q}}_{ij}) \mathbf{C}^*\}_{i \in \Omega, j \in \Sigma}

6. \mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* \mathcal{P}_{\sigma}(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)

7. \mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})
```

- experimental setup

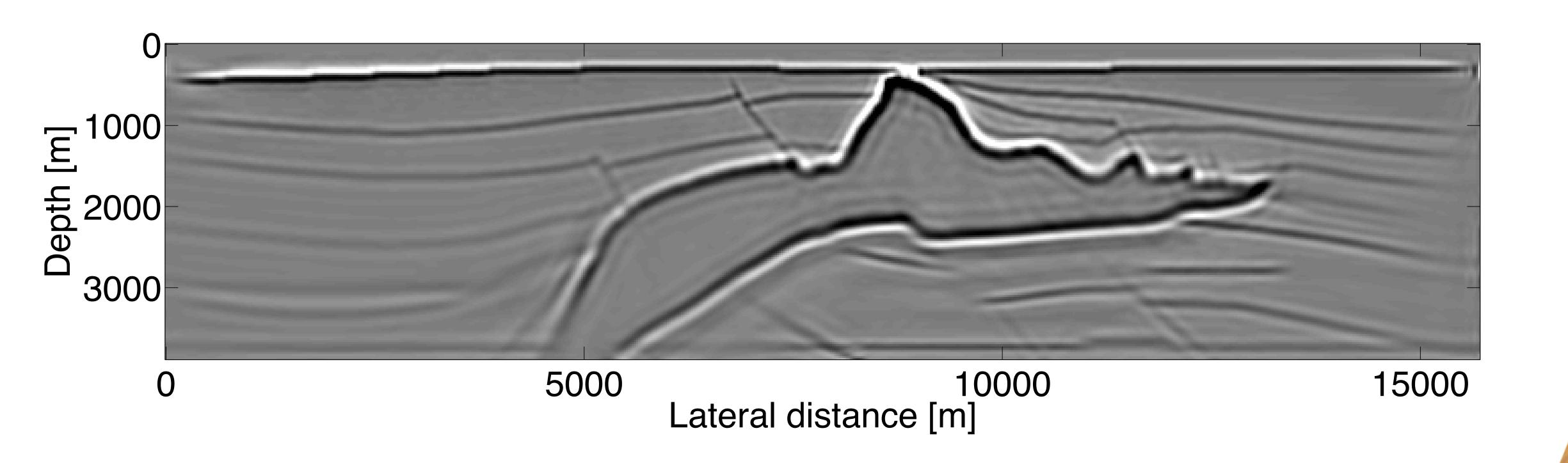
Data:

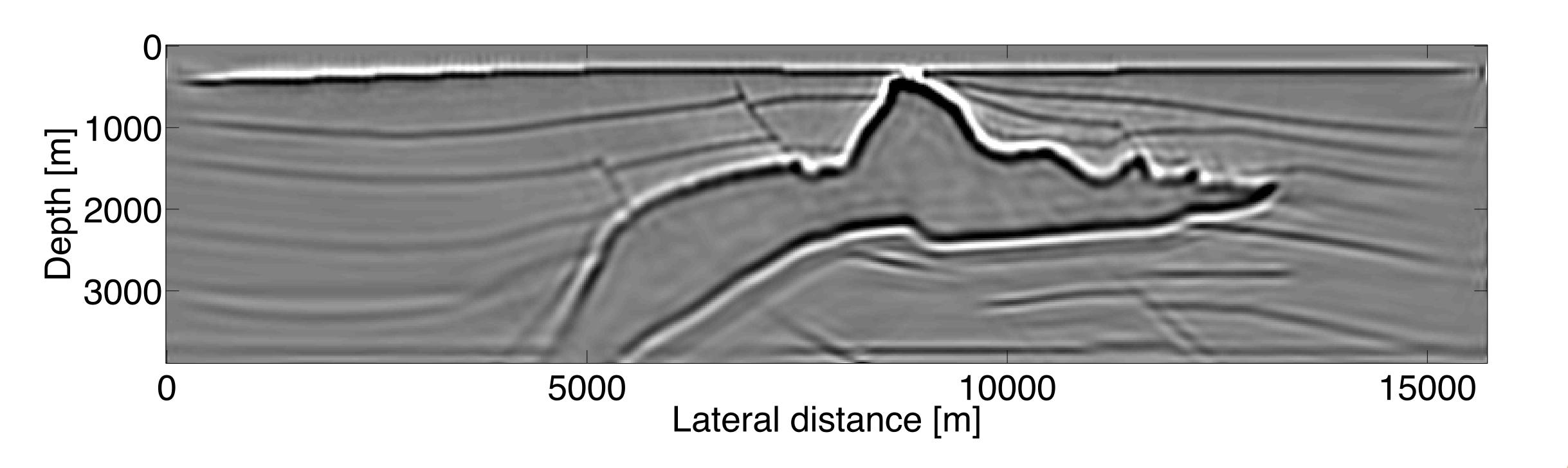
- ▶ 320 sources and receivers
- ▶ 72 frequency slices ranging from 3 12 Hz
- \mathbf{b} $\delta \mathbf{d} = \nabla \mathbf{F} \delta \mathbf{m}$ inverse crime data

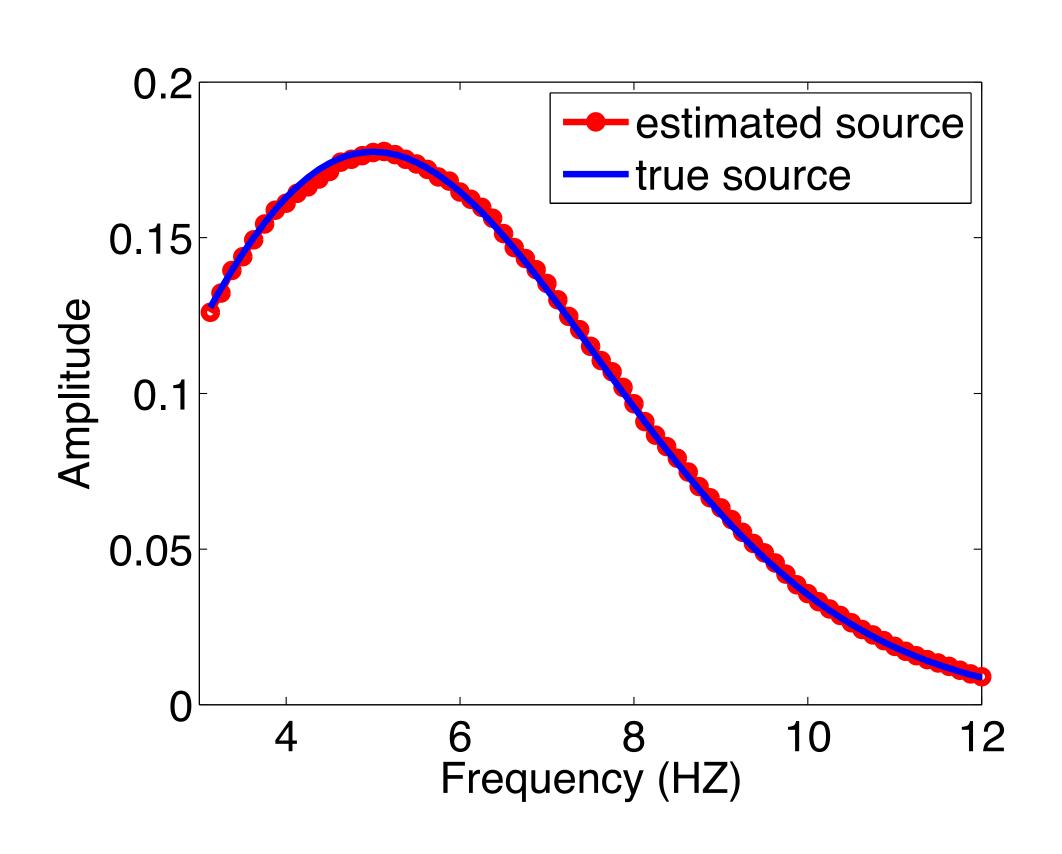
Experiments:

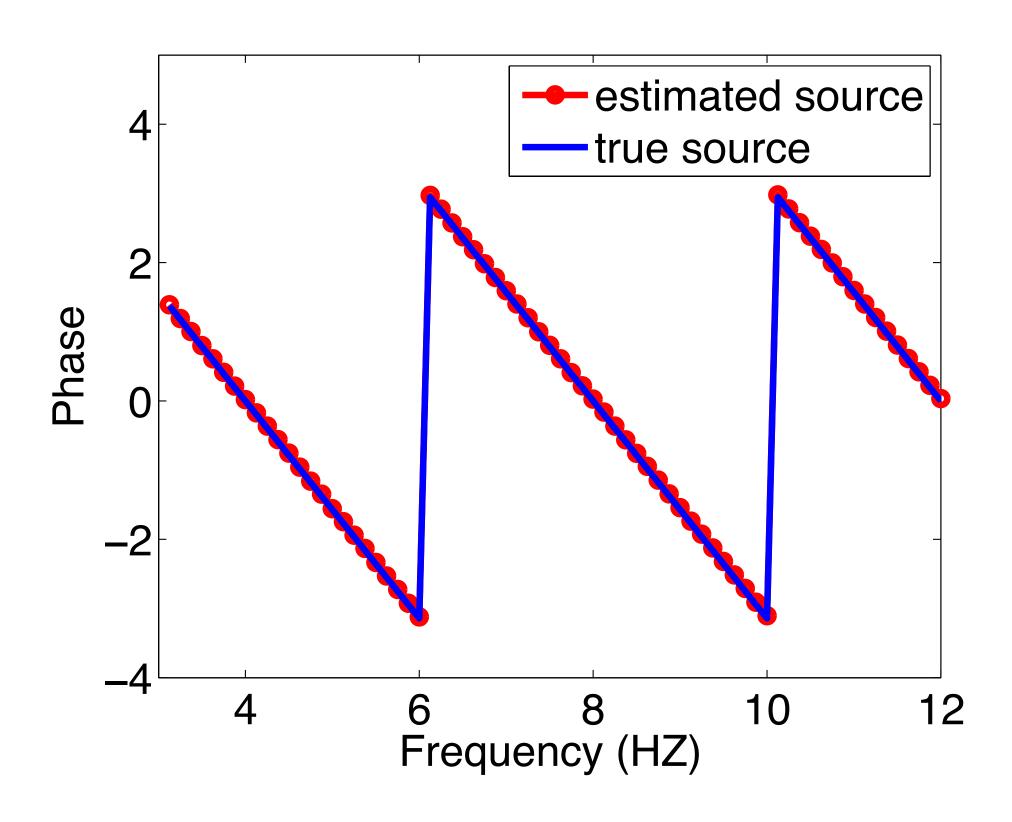
- one pass through the data with the same block size & different frequncyshot ratios
- lack simultanæous sources $\max (t_1 \cdot \mathbf{A}_1^* \mathbf{b}_1)$
- choose according to
- source estimation with delta Dirac as initial guess
- estimated source scaled w.r.t. true source

-80 iterations, each w/72 frequencies/4 sim. shots & true source

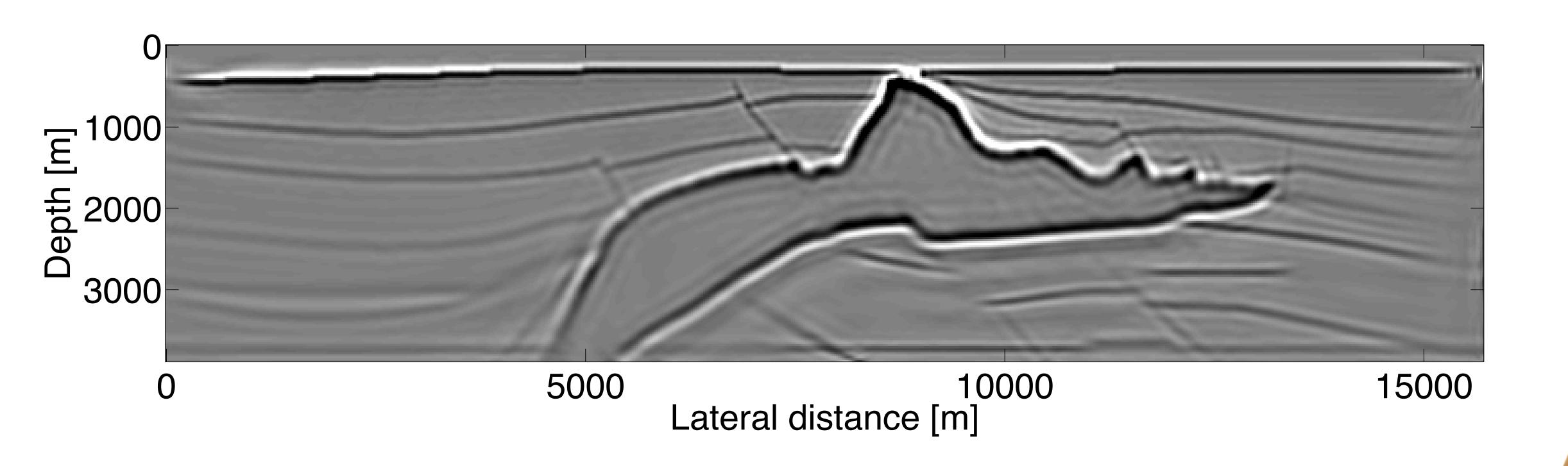


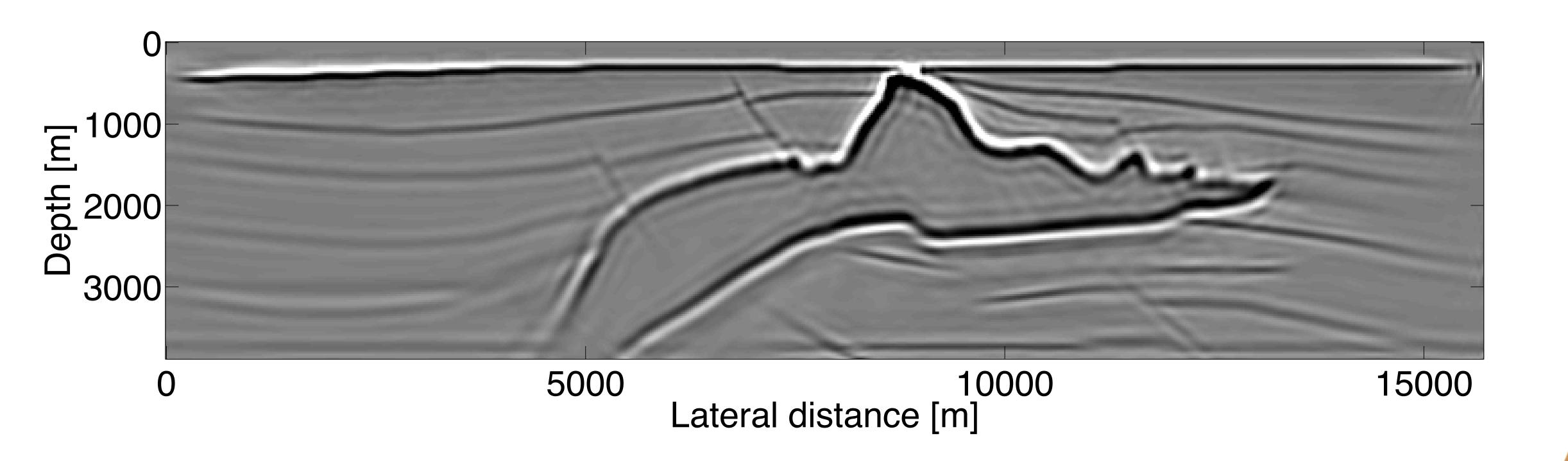


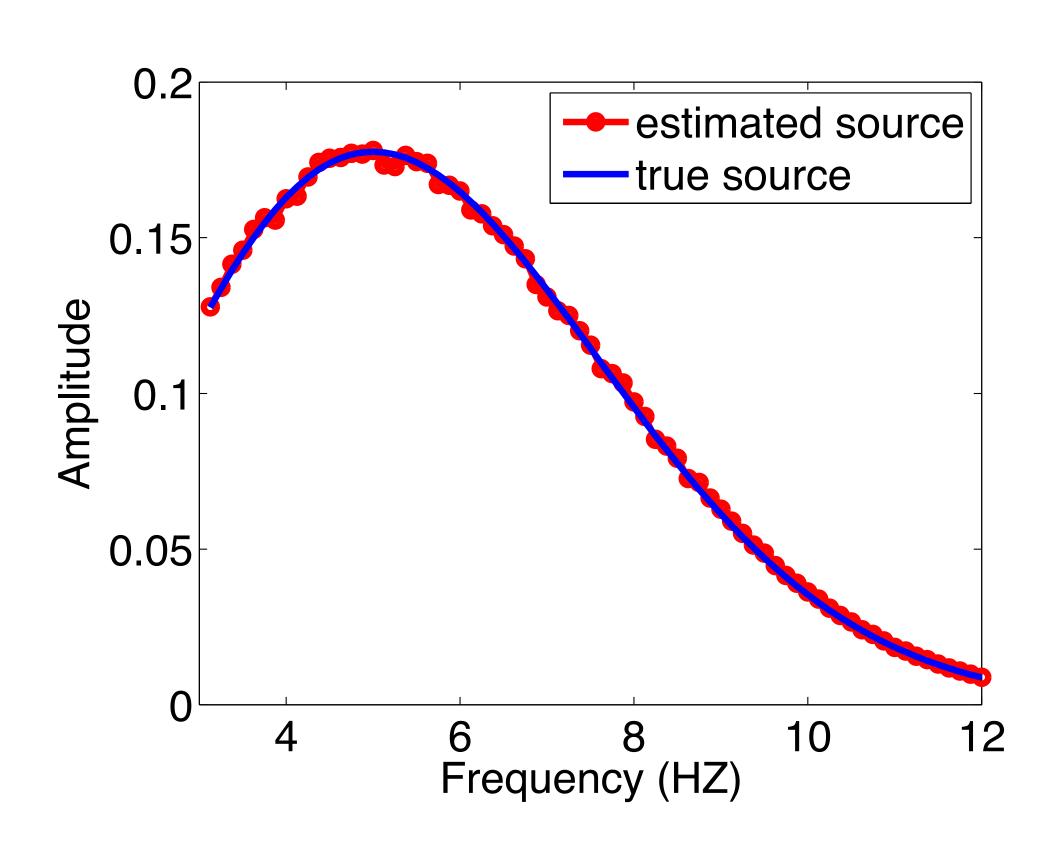


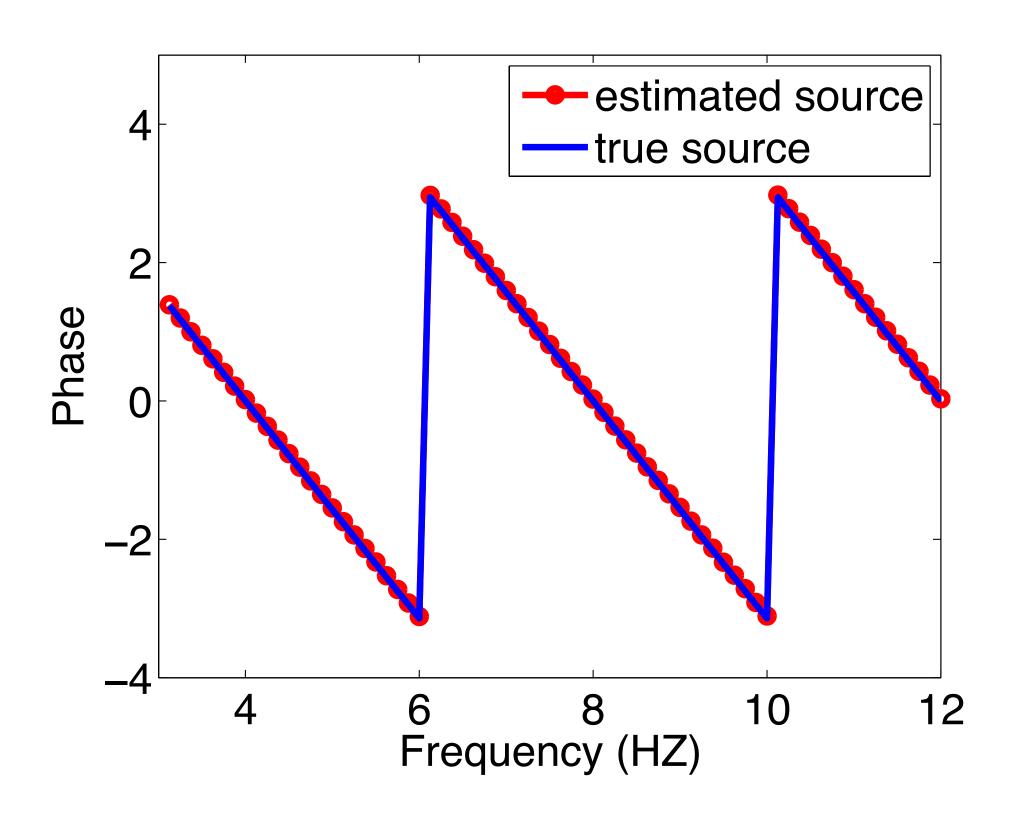


– 90 iterations, each w/ 16 frequencies/16 sim. shots w/ true source

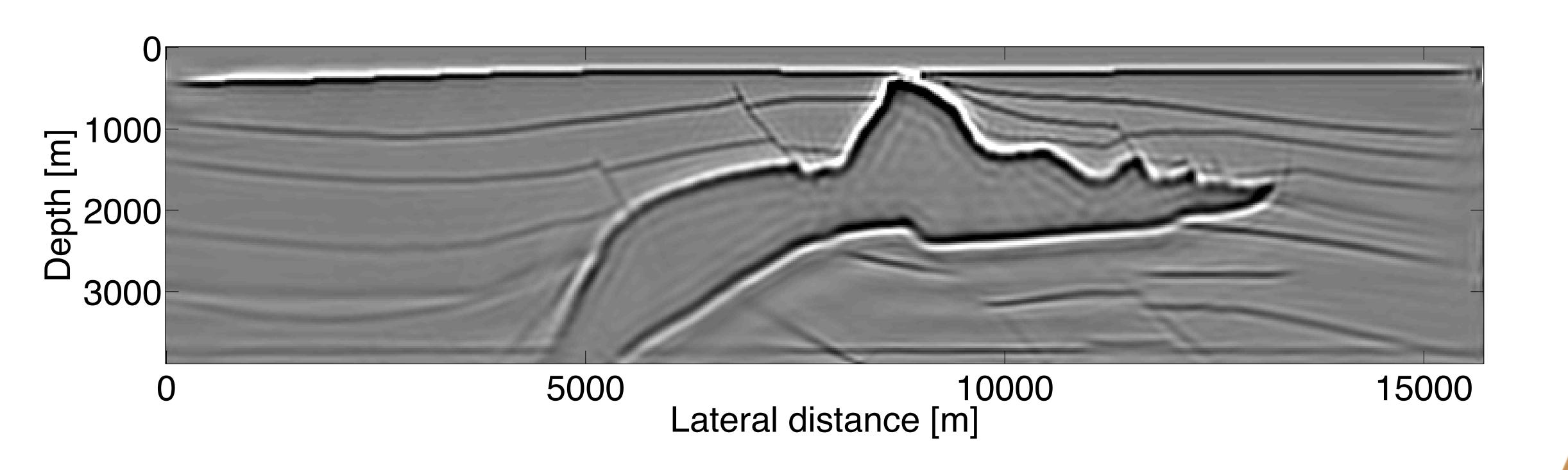


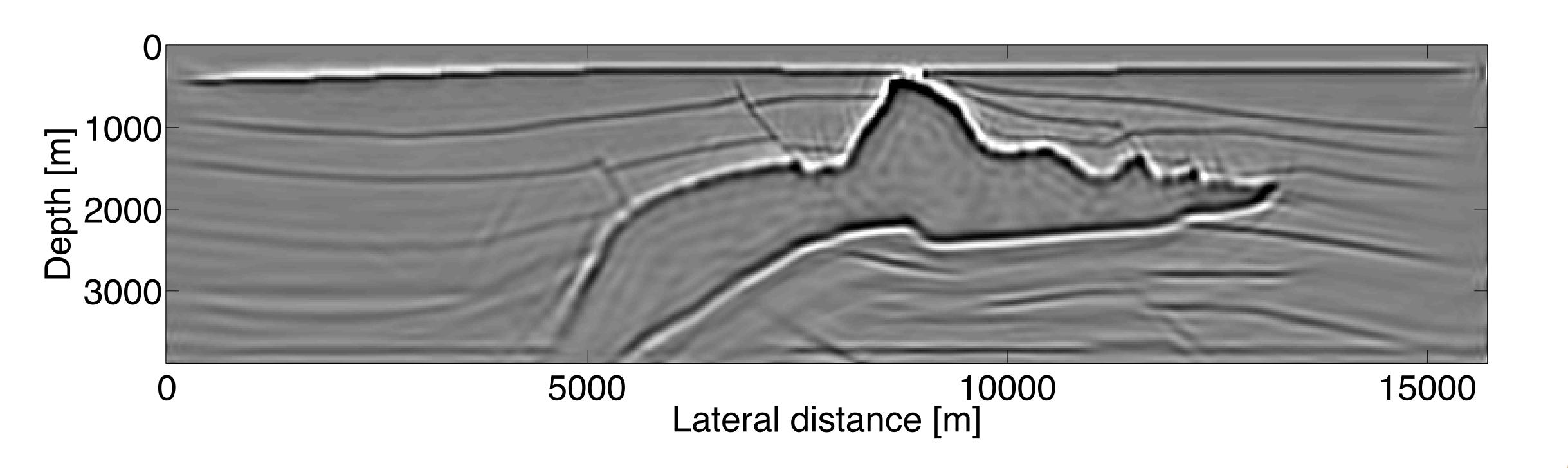


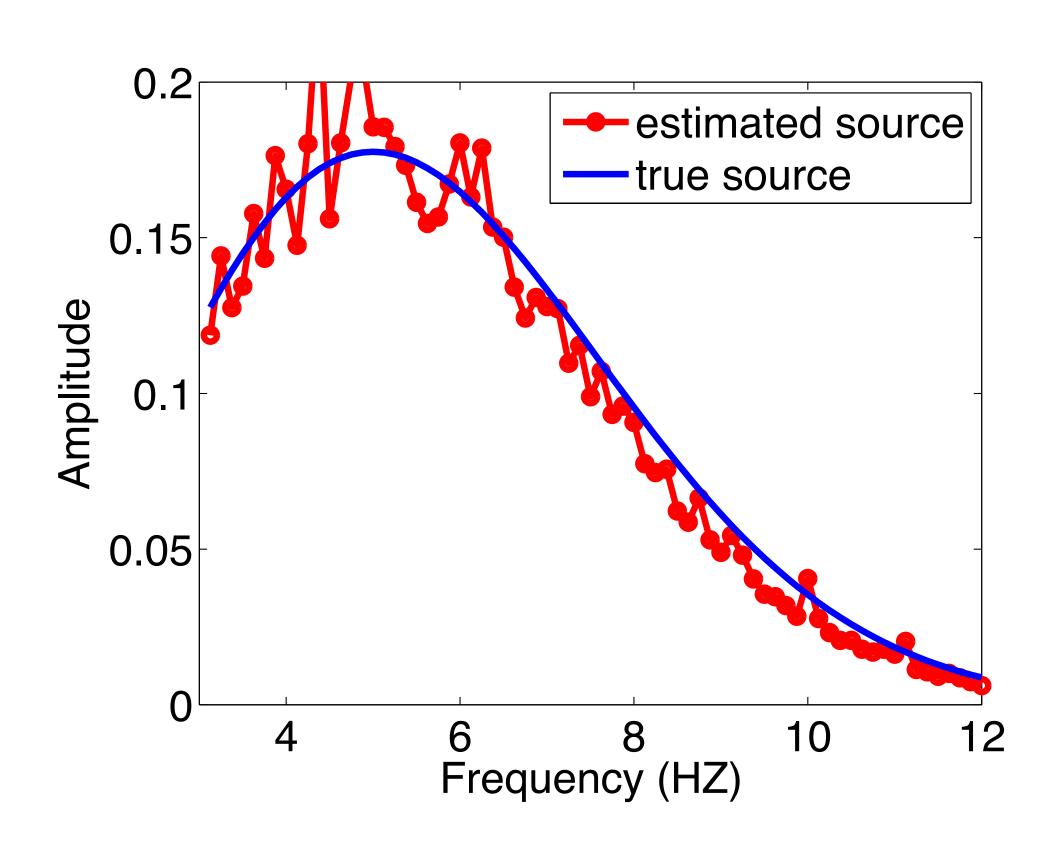


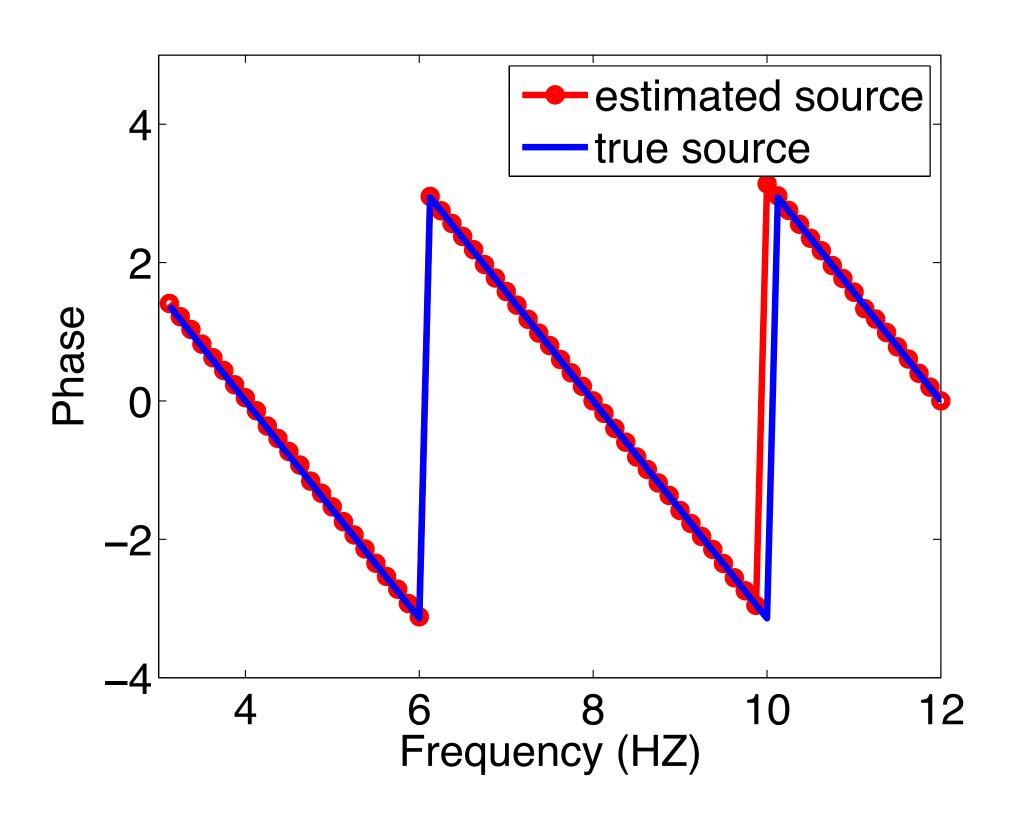


- 90 iterations, each w/ 4 frequencies/64 sim. shots w/ true source









Observations

Inversions can be carried out at cost (= batch size X # iterations) of ~1 RTM

For known source function:

- quality is best for intermediate batch size & # of iterations
- results for randomly selected sources are of similar quality
- offers flexibility for parallelism

For unknown source function:

- source function is best estimated when # of frequencies is not too low
- quality is similar to cases where the source function is known

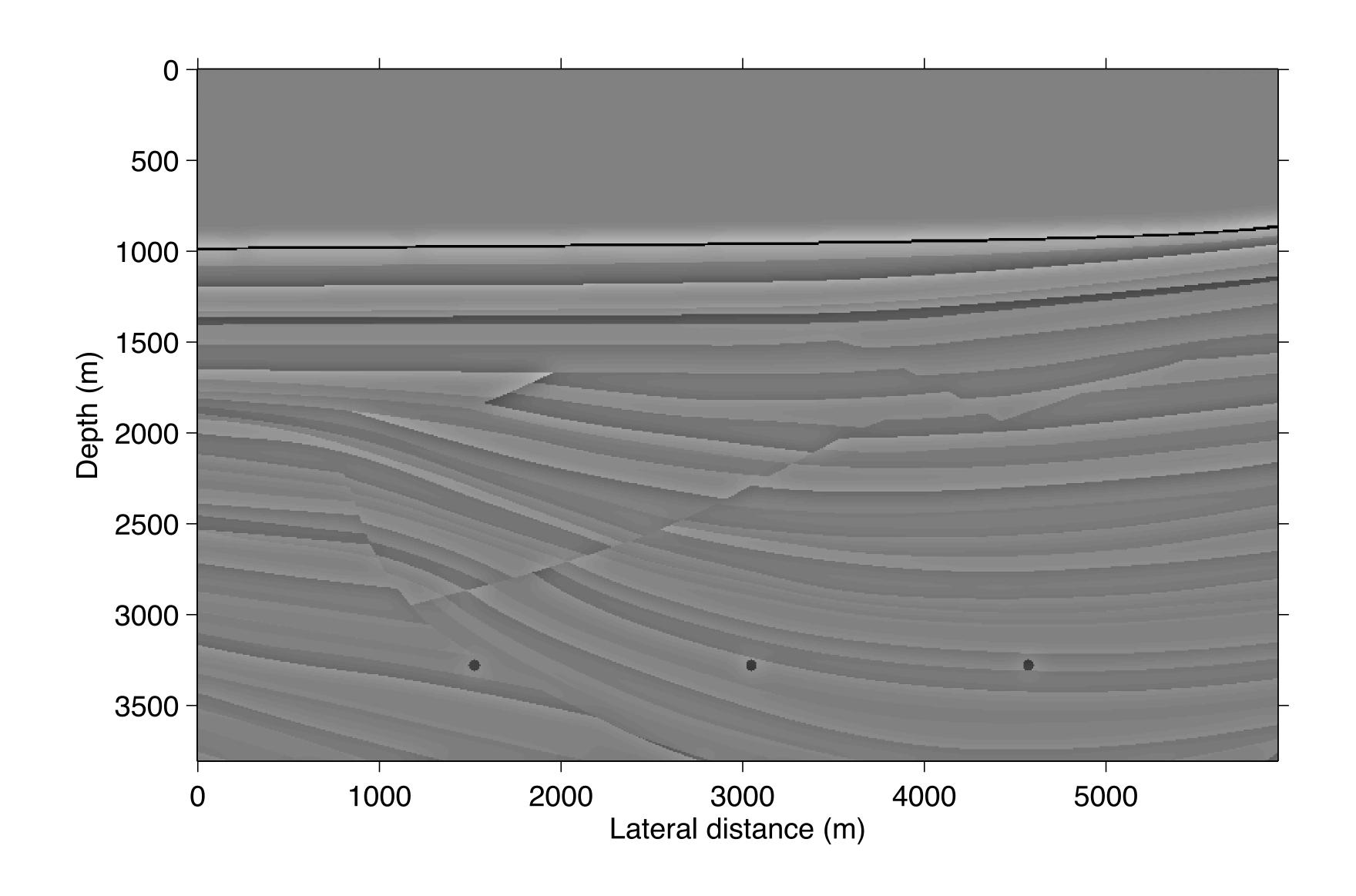
Extension

- imaging w/ surface-related multiples

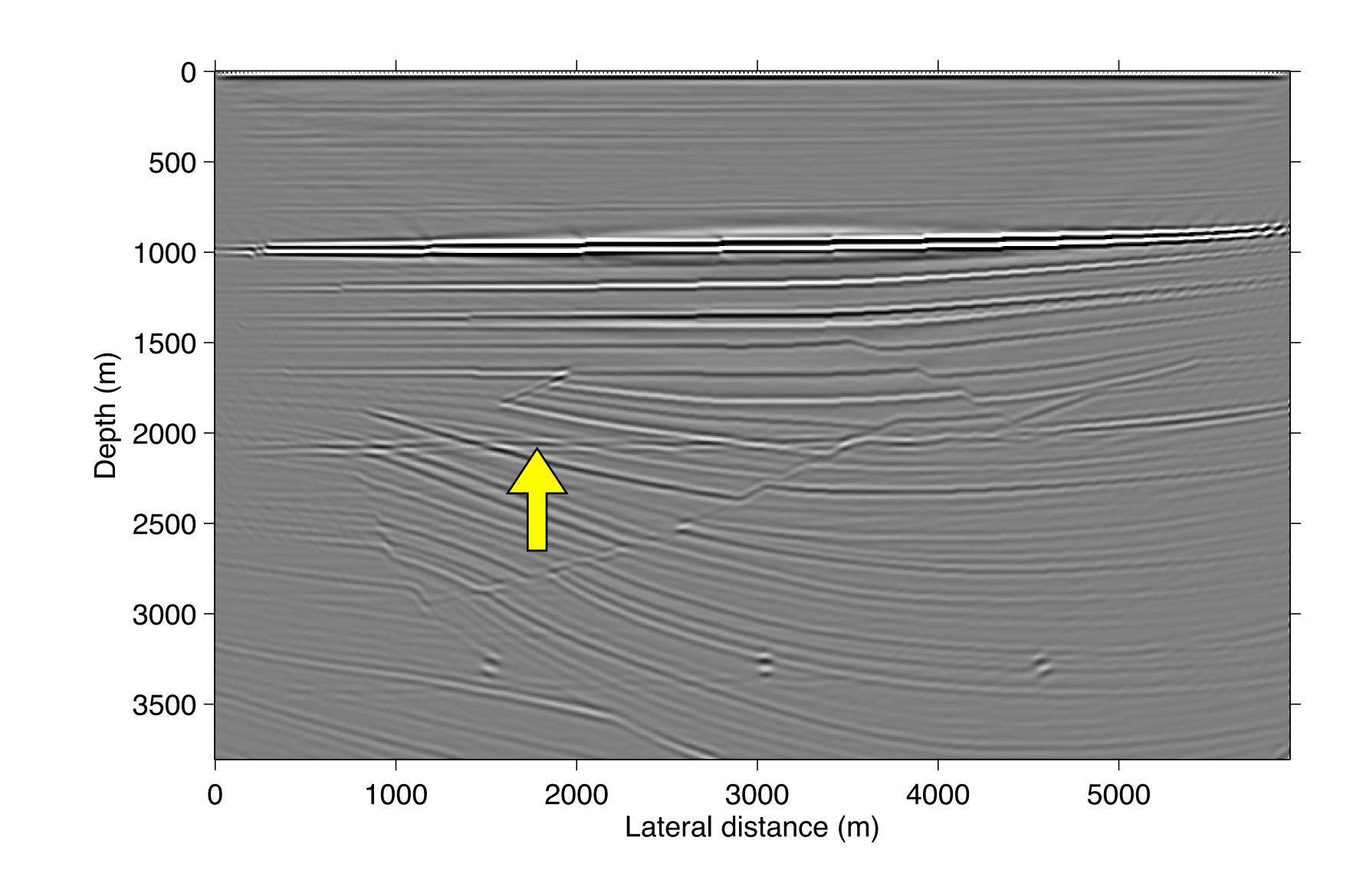
Incorporate predictor of surface-related multiples via areal sources

$$f(\mathbf{x}, \boldsymbol{w}) \doteq \sum_{i \in \Omega} \sum_{j \in \Sigma} \|\boldsymbol{\delta} \bar{\mathbf{d}}_{i,j} - \nabla \mathbf{F}[\mathbf{m}_0, \boldsymbol{s}_i \bar{\mathbf{q}}_j - \boldsymbol{\delta} \bar{\mathbf{d}}_{i,j}] \mathbf{C}^* \mathbf{x} \|_2^2$$

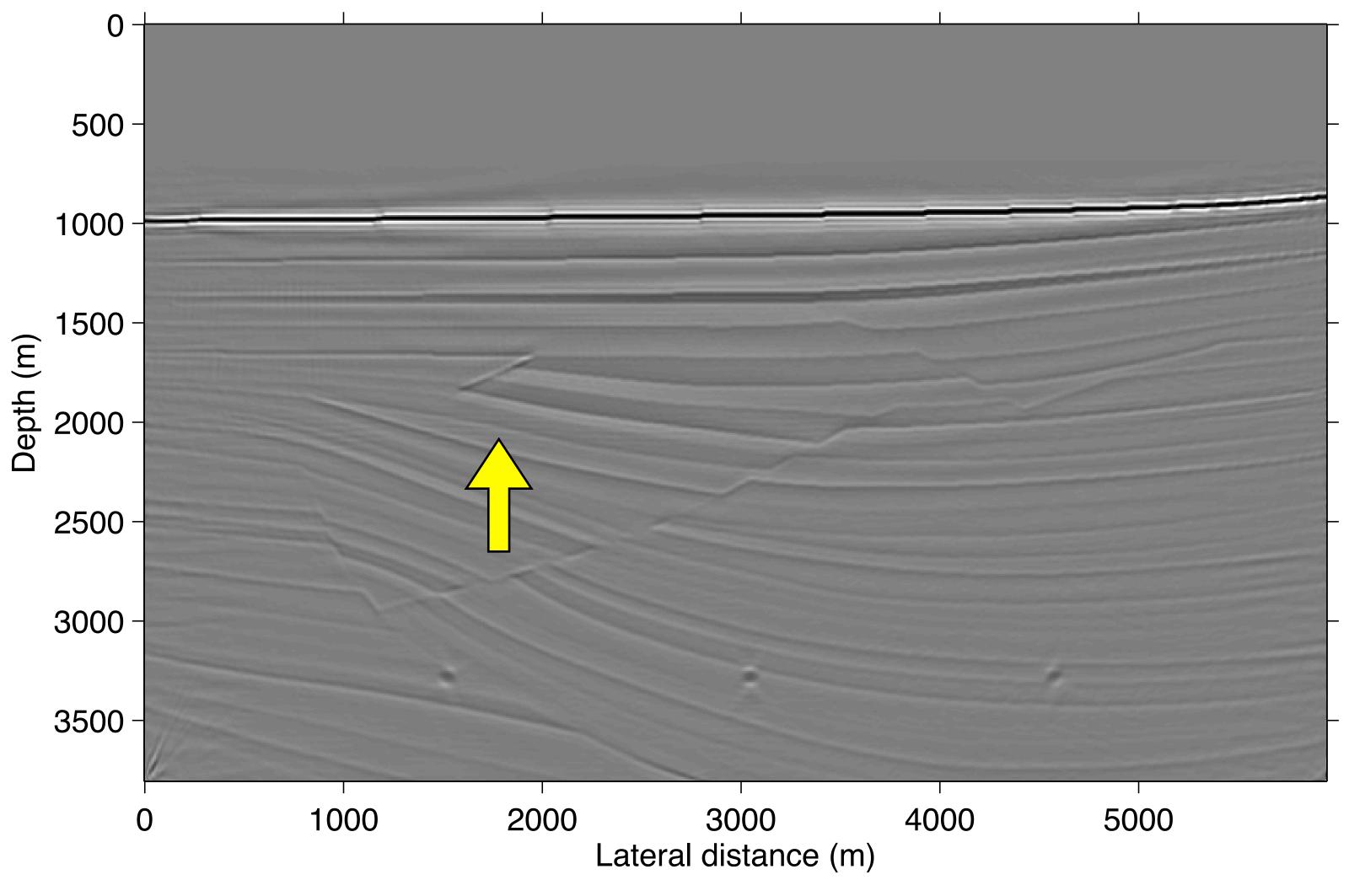
True image



RTM w/ multiples

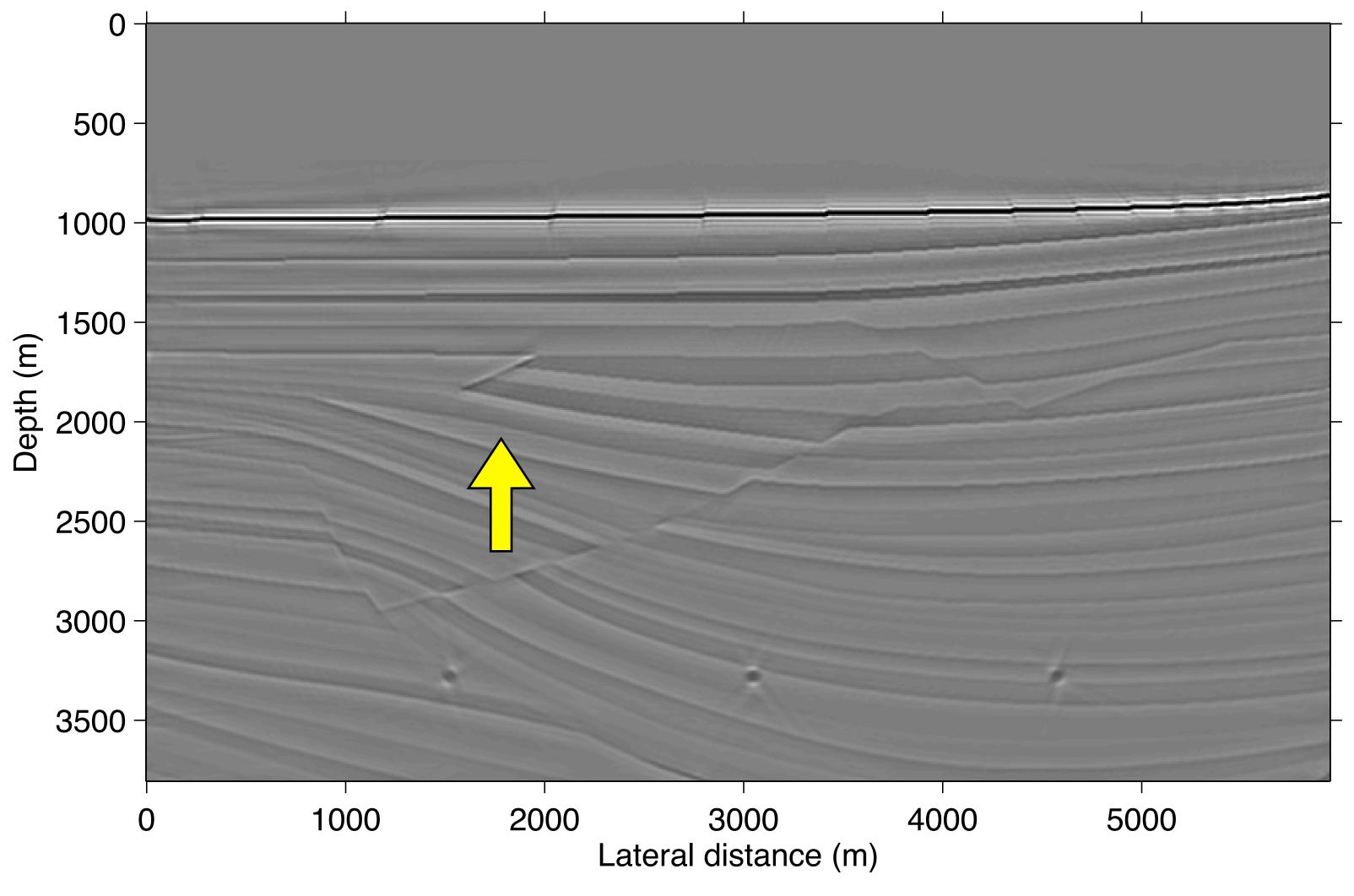


Fast SPLSM w/ multiples by SPGI1



Simulation cost ~1 RTM using all the data

Fast SPLSM w/ multiples by RISKA



Simulation cost ~1 RTM using all the data

Bottom line

- what you need

Access to
$$\{\mathbf{A}, \mathbf{A}^H\}$$
 or $\{\mathbf{A}^H, \mathbf{A}^H\mathbf{A}\}$

- migration, demigration or migration, Gauss-Newton Hessian
- norms for residual & gradient

Ability to subsample data

- randomized supershots or randomly selected shots in RTM
- or randomized traces (source/receiver) pairs in Kirchhoff migration

Some idea of max entry of $\mathbf{A}_k^*\mathbf{b}_k$

Conclusions & extensions

Algorithm:

- simple, converges & has very few tuning parameters
- offers maximal flexibility for
 - implementations that strike a balance between data- and model-space parallelism
 - extensions such as source estimation & imaging w/ multiples
 - other overdetermined problems such as AVO
- gets hifi/high-resolution images touching the data only once

Simple structure also offers flexibility to do

- adaptive sampling
- on-line recovery while randomized data streams in

John "Ernie" Esser (May 19, 1980 – March 8, 2015)

Acknowledgements

Thank you for your attention!

https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Subsalt Ltd, WesternGeco, and Woodside.