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Observation: the scaling(shift) ambiguity is still there 
  
      

 
   

Th P6 07 

Solving the optimization problem (method of multipliers) 

Pluto1.5 data Resolving the scaling issue with an         penalty 
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Blind deconvolution  

      
  The problem is ill-posed—has scaling and shift ambiguities. 
    Regularization CANNOT avoid these ambiguities. 
  
Usual assumptions and regularizations 
      

      
 

y = w ⇤ x = (↵w) ⇤ ( 1
↵

x) = w(t� t0) ⇤ x(t+ t0)

y = w ⇤ x� w ⇤ x ⇤ x+ w ⇤ x ⇤ x ⇤ x · · ·
= w ⇤ x� y ⇤ x

`1/`2

ŷ = x̂(ŵ � ŷ) = x̂↵(ŵ↵ � ŷ)

Clean data, 30 traces SNR 13dB, 40 traces 

• w is short in time

• x is nearly sparse

• `2 penalty on w

• `1 penalty on x

Figure 1. row 1: original signal, kernel and convolution

row 2: scaling ambiguity

row 3: shift ambiguity

row 4: other ambiguity

Figure 3.Which norm to

choose? How do kx↵k0,
kx↵k1 and kx↵k1/kx↵k2
change with ↵?
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• Assume w is short in time: w = Ch, C = [I, 0].

• Put `1 penalty on x, (ŵ, x̂) = argmin

w,x

ky � w ⇤ x+ y ⇤ xk2 + �kxk1

• Alternatively update x and w.

Initial guess: w = 0, x = normalized random Gaussian vector

(a) (b) (c)

Figure 2: Recovered wavelet (a), recovered x1 (b) and data fit for f1 (c) using the EPSI model (2).
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min

x,w

log(kxk1/kxk2)

subject to kŷ � diag(ŵx̂

T
)� diag(ŷx̂

T
)k2  ✏

kxk1  1

Original problem (non-convex, non differentiable) 

Split x into positive and negative parts (non-convex, differentiable at            ) x = x+ � x�x 6= 0

subject to kŷ � diag(ŵx̂

T
)� diag(ŷx̂

T
)k2  ✏

0  x+, x�, 1

hx+, x�i = 0

Lifting: Mitigate local minima 

n : length of x

k : length of w

r : lifted rank

w

1

n

k
1

1

!

x+

x�n

X+

X�

W
�
r

Original variables Lifted variables 

Z

L1 norm 

L2 norm 

Final optimization problem 

min

X+,X�,W,�
Trace(ZTZ)� kZTZkF + log

1T
(X+ +X�)(X+ +X�)

T1

Trace(X+ �X�)(X+ �X�)T

Reconstruct  (x,w) from Z

So we will use the             constraint and solve   

min

x,w

log(

X
x+ +

X
x�)/(kx+ + x�k2)

data constraint

box constraint

non-overlapping constraint

extract the first left singular vector v,
and singular value � of Z

x+ = �v(1, .., n)

x� = �v(n+ 1, ..., 2n)

w = �v(2n+ 1, ..., 2n+ k)

Low rank penalty 

min log

kxk1
kxk2

subject to ky � w ⇤ x+ y ⇤ xk2  ✏

`1/`2

where w↵ = ↵w, x̂↵ =
x̂

(↵� 1)x̂+ ↵

data constriant

box constriant
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Figure 2. Left: original kernel

and signal kxk1 ⇡ 0.74

Right: scaled kernel and

signal, kx̂↵k1 ⇡ 0.59

with ↵ = 2.
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subject to kŷ � diag(

ˆW ˆXT
)� diag(ŷ( ˆX�T

)

T
)k2  ✏

0  X+, X�  1

hX+, X�i = 0

k�k2 = 1

data constraint

box constraint

non-overlapping constraint

weights sum up to 1
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