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Abstract

We propose a modification to a sparsity constraint based on the ratio of `1 and `2 norms for solving
blind seismic deconvolution problems in which the data consist of linear convolutions of different sparse
reflectivities with the same source wavelet. We also extend the approach to the Estimation of Primaries
by Sparse Inversion (EPSI) model, which includes surface related multiples. Minimizing the ratio of
`1 and `2 norms has been previously shown to promote sparsity in a variety of applications including
blind deconvolution. Most existing implementations are heuristic or require smoothing the `1/`2 penalty.
Lifted versions of `1/`2 constraints have also been proposed but are challenging to implement. Inspired
by the lifting approach, we propose to split the sparse signals into positive and negative components
and apply an `1/`2 constraint to the difference, thereby obtaining a constraint that is easy to implement
without smoothing the `1 or `2 norms. We show that a method of multipliers implementation of the
resulting model can recover source wavelets that are not necessarily minimum phase and approximately
reconstruct the sparse reflectivities. Numerical experiments demonstrate robustness to the initialization as
well as to noise in the data.
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Introduction

The problem of recovering a source wavelet w and sparse reflectivity signals x j from redundant traces f j

can be modeled as a blind deconvolution problem. We assume w is the same for each included trace and
consider two convolution models. The simplest model, as described for example in (Ulrych and Sacchi,
2006), is given by

f j = x j ∗w , j = 1, ...,n , (1)

which represents seismic data as a linear convolution of a stationary source wavelet with the primary
reflectivity. The Estimation of Primaries by Sparse Inversion (EPSI) model used in (Verschuur et al.,
1992; van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2014) takes into account surface related
multiples, leading to the series f j = x j ∗w− x j ∗ x j ∗w+ x j ∗ x j ∗ x j ∗w−+ · · · , which sums to

f j = x j ∗w− x j ∗ f j , j = 1, ...,n . (2)

Both the standard and EPSI blind deconvolution problems are ill-posed and can’t be solved without
additional assumptions about w and x j. A classical strategy is to assume the reflectivity is statistically
white, which makes it possible to estimate the autocorrelation of the source wavelet from the data. Then
the wavelet can be recovered by assuming it has minimum phase (White and O’Brien, 1974).

If w is known, then sparse x j can be estimated by solving `1 minimization problems as in (Claerbout and
Muir, 1973; Santosa and Symes, 1986; Donoho, 1992; Dossal and Mallat, 2005). However, we want to
recover arbitrarily shaped wavelets, and we also don’t want to rely on statistical whiteness assumptions.
We will therefore only assume that the x j are sparse.

Unfortunately, when both w and the x j are unknown, `1 regularization on x j is not sufficient to make the
standard blind deconvolution model (1) well posed (Benichoux, 2013). Nonetheless, there are successful
blind seismic deconvolution methods based on nonconvex sparsity promoting penalties such as minimum
entropy deconvolution (Wiggins, 1978) and variable norm deconvolution (Gray, 1979).

Minimizing the ratio of `1 and `2 norms has also been shown to promote sparsity in a variety of
applications including blind seismic deconvolution (Repetti et al., 2014). The method in (Repetti et al.,
2014) smooths the `1/`2 penalty and uses alternating forward backward iterations. An alternative to
smoothing an `1/`2 penalty is to lift an `1/`2 constraint as was done in (D’Aspremont et al., 2007; Long
et al., 2014). We propose a related approach that simplifies the constraint by splitting x into positive and
negative parts. This leads to a more easily implementable `1/`2 constraint, which we use to promote
sparsity of the x j for both the standard and EPSI blind deconvolution models.

The extension to the EPSI convolution model is of particular interest because combining an `1/`2 sparsity
constraint with the EPSI model eliminates the shift and scale ambiguity that is inherent in (1). With the
EPSI model, if the true x j are sparse, and if the true w is scaled or shifted, then in order to fit the data the
x j usually have to change in a way that increases ‖x j‖1

‖x j‖2
.

A promising application is to multiscale EPSI methods (Lin and Herrmann, 2014) that require solving
more difficult yet smaller blind deconvolution problems at coarser scales. The wavelet is effectively wider
at coarser scales, so more sophisticated regularization is needed to resolve the sparse signals, and yet the
smaller problem sizes mean that more expensive algorithms are still computationally feasible.

Model

The main idea behind simplifying the constraint ‖x‖1
‖x‖2
≤
√

κ is to rewrite it as ‖x‖2
1−κ‖x‖2

2 ≤ 0, which
can be lifted to 1T |xxT |1− κ tr(xxT ) ≤ 0. Here, κ is a sparsity parameter, 1 is a vector of ones and
tr is the sum of diagonal entries of a matrix. Although this can be directly implemented using many
inequality constraints that are linear in xxT (Long et al., 2014), the absolute values can be simplified
by splitting x into positive and negative parts so that x = xp− xm for xp ≥ 0 and xm ≥ 0. An additional
constraint of the form xT

p xm = 0 ensures that xp and xm are never simultaneously nonzero, in which
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case |x| simplifies to the sum |x| = xp + xm. In this way we can obtain a lifted sparsity constraint

1T (xp + xm)(xp + xm)
T 1−κ tr((xp + xm)(xp + xm)

T )≤ 0 that is linear in the matrix
[

xp

xm

][
xT

p xT
m
]
.

Lifting here refers to the strategy of relaxing an optimization problem in x to a larger but possibly simpler
problem in the positive semidefinite matrix corresponding to xxT . In (Ahmed et al., 2012) they use lifting
to model a blind deconvolution problem as a convex optimization problem. Representing w = Bh and
x =Cm, the convolution f = x∗w can be written as f = A f (hmT ) for a linear measurement operator A f .
For good B and C matrices they show that solving minY ‖Y‖∗ subject to A f (Y ) = f is likely to have a
unique rank one solution at Y = hmT , where the nuclear norm ‖Y‖∗ is the sum of singular values of Y .

In our setting, B and C are zero padding matrices, and we can’t expect nuclear norm minimization to
yield a unique rank one solution. We will still write w = Bh, xp =Cu and xm =Cv and lift (h,u,v) to a
matrix Z. Then we can consider an optimization problem that combines a lifted data constraint, the lifted
`1/`2 sparsity constraint, constraints to ensure u and v have nonoverlapping support and consistent signs,
and a low rank penalty on Z.

Solving for the full lifted matrix Z is too computationally expensive. A compromise is to explicitly
represent Z as a rank r matrix in factored form. We are already seeing good numerical results in the
rank one case, which can be written in a much simpler form than when r > 1. For the standard blind
deconvolution model, in the r = 1 case we solve the nonconvex problem

min
h,u,v

1
2
‖Γh‖2

2 +
n

∑
j=1

1
2
‖u j + v j‖2

2 subject to

Data constraints: ‖ f j−A f (huT
j −hvT

j )‖2 ≤ ε

Sparsity constraints: 1T (u j + v j)(u j + v j)
T 1−κ(u j + v j)

T (u j + v j)≤ 0

Support and sign constraints: uT
j v j = 0 , u j ≥ 0 ,v j ≥ 0

Wavelet normalization: hT h = 1 .

(3)

The matrix Γ in the objective can be zero and the model still works well for n large enough. For small
n it helps to choose Γ to penalize energy in the wavelet at later times, thus preferring more impulsive
wavelets as in (Lamoureux and Margrave, 2007; Esser and Herrmann, 2014).

Only minor changes are needed for the EPSI model. The data constraints change to

‖ f j−A f (huT
j −hvT

j )+Ag( f juT
j − f jvT

j )‖2 ≤ ε , (4)

where Ag is linear and Ag( f juT
j − f jvT

j ) corresponds to x j ∗ f j in (2). The wavelet normalization constraint
is no longer needed and can for instance be relaxed to hT h≥ c for some small c. Finally, to prevent spikes
in x j at early times, we let C be of the form C =

[
0 I 0

]T .

Method

We use the Method of Multipliers for problems of the general form

min
x

F(x) subject to hi(x) ∈Ci (5)

under the assumption that the Ci are convex and the functions F and hi are differentiable with Lipschitz
continuous gradients. The model (3) and its EPSI extension are both of this general form. The method of
multipliers finds a saddle point of the augmented Lagrangian

L(x, p) = F(x)+∑
i

1
2δi
‖DCi(pi +δihi(x))‖2

2−
1

2δi
‖pi‖2

2 , (6)
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where DCi(p) = p−ΠCi(p) is the distance from p to Ci and ΠCi denotes the orthogonal projection onto
Ci. It requires iterating

xk+1 = argmin
x

L(x, pk)

pk+1
i = DCi(pk

i +δihi(xk+1)) .
(7)

We approximately solve for xk+1 using the LBFGS implementation in (Schmidt, 2012), and we increase
the parameters δi as we iterate according to the progress made towards satisfying the constraints as
suggested in (Bertsekas, 1982).

Numerical Experiments

For our numerical experiments, we created synthetic data using randomly generated sparse signals x j

and a Ricker wavelet for w. Gaussian noise was added to the traces f j, which were then cropped to the
desired length in time of the observed data. A good initial guess is not required, and we simply used
random initializations for our experiments.

Blind Deconvolution Results

Results for the standard blind deconvolution model using n = 5 measurements with moderate noise (SNR
= 13.5) are shown in Figure 1. There is some shift ambiguity, and for small n we found that it helps
to choose Γ to prefer impulsive wavelets with most energy near time zero. With more measurements
there is less shift ambiguity and we can typically get good results with Γ = 0. The last two spikes are not
recovered in this example is because the observed data was not long enough to see them.

(a) (b) (c)

Figure 1: Recovered wavelet (a), recovered x1 (b) and data fit for f1 (c) using the standard model (1).

EPSI Blind Deconvolution Results

Compared to the standard model, there appears to be no shift or scale ambiguity in the wavelet recovered
from the EPSI model with an `1/`2 sparsity constraint. Results for the EPSI model with n = 50, moderate
noise (SNR = 14.2) and Γ= 0 are shown in Figure 2. Despite the noise and the absence of any assumption
about the support of the wavelet, both the wavelet and the largest spikes in the x j are well recovered.

Conclusions and Future Work

We showed that a Method of Multipliers implementation of a lifted `1/`2 constrained blind deconvolution
model can be used to solve sparse blind deconvolution problems that have redundant measurements.
Numerical results generally improve as the number of measurements increase. With more redundancy,
more noise can be handled. The wavelet estimates are also substantially better when using the EPSI
model, which doesn’t suffer from the same kind of shift and scaling ambiguities as the classical blind de-
convolution model. Future work will compare to alternative approaches and other `1/`2 implementations
as well as incorporate the method into a multilevel EPSI algorithm.
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Figure 2: Recovered wavelet (a), recovered x1 (b) and data fit for f1 (c) using the EPSI model (2).
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