Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2014 SLIM group @ The University of British Columbia.

Wave-equation based inversion with the penalty method: adjoint-state versus wavefield-reconstruction inversion Bas Peters, Felix J. Herrmann & Tristan van Leeuwen 76th EAGE Conference & Exhibition 2014

Motivation

- initial models and higher starting frequencies.
- mitigates the non-linearity of the problem to some extend.

• We would like to do seismic waveform inversion with more inaccurate

• There are indications that Wavefield Reconstruction Inversion (WRI)

Conventional FWI

Least-squares objective: $\phi_{\text{red}}(\mathbf{m}) = \frac{1}{2} \sum_{kl} \|PH_k(\mathbf{m})^{-1} \mathbf{q}_{kl} - \mathbf{d}_{kl}\|_2^2 = \frac{1}{2} \|\mathbf{d}_{\text{pred}} - \mathbf{d}_{\text{obs}}\|_2^2$

- m : model
- P: Restriction to receiver locations
- k, l: frequency and source index
- H_k : discrete Helmholtz system
- \mathbf{q}_{kl} : source term
- \mathbf{d}_{kl} : observed data

ver locations rce index system

Conventional FWI

Least-squares objective: $\phi_{\text{red}}(\mathbf{m}) = \frac{1}{2} \sum_{kl} \|PH_k(\mathbf{m})^{-1} \mathbf{q}_{kl} - \mathbf{d}_{kl}\|_2^2 = \frac{1}{2} \|\mathbf{d}_{\text{pred}} - \mathbf{d}_{\text{obs}}\|_2^2$

with the gradient (via the adjoint-state method):

$$\nabla_{\mathbf{m}}\phi_{\mathrm{red}} = \sum_{kl} G_{kl}^* \mathbf{v}_{kl}$$

where

 G_{kl}^* is the partial derivative of the discrete Helmholtz system \mathbf{v}_{kl} is the adjoint field/back propagated data residue

Wavefield Reconstruction Inversion [T. van Leeuwen & F.J. Herrmann, 2013] Data-misfit PDE-misfit Objective: tive: $\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum \|P\bar{\mathbf{u}}_{kl} - \mathbf{d}_{kl}\|_{2}^{2} + \frac{\lambda^{2}}{2} \|H_{k}(\mathbf{m})\bar{\mathbf{u}}_{kl} - \mathbf{q}_{kl}\|_{2}^{2}$ where $\bar{\mathbf{u}}_{kl} = \arg\min_{\mathbf{u}_{kl}} \left\| \begin{pmatrix} \lambda H_k(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u}_{kl} - \begin{pmatrix} \lambda \mathbf{q}_{kl} \\ \mathbf{d}_{kl} \end{pmatrix} \right\|_{\mathbf{q}_{kl}}$

and λ is a tradeoff parameter between PDE-fit and data-fit

Wavefield Reconstruction Inversion [T. van Leeuwen & F.J. Herrmann, 2013] Data-misfit PDE-misfit **Objective:**

$\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum \|P\bar{\mathbf{u}}_{kl} - \mathbf{d}_{kl}\|_2^2 + \frac{\lambda^2}{2} \|H_k(\mathbf{m})\bar{\mathbf{u}}_{kl} - \mathbf{q}_{kl}\|_2^2$

with gradient: $\nabla_{\mathbf{m}}\bar{\phi}_{\lambda} = \sum \lambda^2 G_{kl}(\mathbf{m}, \bar{\mathbf{u}})$ kl

$$(\mathbf{i}_{kl})^* (H_k(\mathbf{m}) \bar{\mathbf{u}}_{kl} - \mathbf{q}_{kl})$$

Non-linear waveform inversion

Example 1a (easy):

- Used the L-BFGS algorithm
- 64 equally distributed sources and receivers near the surface
- 18 frequency batches (10 iterations each) as {2 3}, {3 4}, ..., {19 20} Hertz
- No noise
- Solve least-squares problem using SuiteSparseQR.

[T.A. Davis, 2011]

Result reduced Lagrangian

Non-linear waveform inversion

Example 1b (difficult):

- Lots of low frequencies missing, 24 frequency batches (15 iterations each) with intervals {5 6}, {6 7}, ..., {28 29} Hertz. Each interval contains 5 frequencies.
- We use 2 cycles through the batches: {5 6}, {6 7},...,{28 29}, {5 6}, {6 7},...,{28 29}, {5 6}, {6 7},...,{28 29}
- Inaccurate initial model
- 103 sources and receivers near the surface, spread over the whole domain (6km). Source & receiver interval: 55m. Max. offset 6km.
- Shortest wavelength: 290m @ 5Hz. and 50m @ 29 Hz.
- Used Two-metric projection with L-BFGS Hessian for optimization with boundconstraints. [Bertsekas, 1982 ; Gafni & Bertsekas, 1982 ; Schmidt, Kim & Sra, 2009]

after 1st frequency batch

Result FWI

after 2nd frequency batch

Result FWI

after last frequency batch

Result FWI

After 1st cycle

Result WRI, $\lambda = 1$

After 2nd cycle

Result WRI, $\lambda = 1$

True and final models

Result WRI, $\lambda = 1$

True model

True and final models

Result WRI with noise, $\lambda = 1$

True model

Initial phase-residuals

- Phase residuals computed using the Helmholtz equation in the start model
- WRI does not work with exact wavefields
- WRI uses the 'data-augmented' wavefield
- for λ small enough, the phase residual will be 0.

$$\bar{\mathbf{u}}_{kl} = \arg\min_{\mathbf{u}_{kl}} \left\| \begin{pmatrix} \lambda H_k(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u}_{kl} - \begin{pmatrix} \lambda \mathbf{q}_{kl} \\ \mathbf{d}_{kl} \end{pmatrix} \right\|$$

Phase residual in startmodel Ex2, 5 Hz.

2

Cross sections

Objective and model error

$$\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum_{kl} \|P\bar{\mathbf{u}}_{kl} - \mathbf{d}_{kl}\|$$

- We can take a look at each part separately:
- Data-misfit can go up while iterating!

Observations about waveform inversion

- WRI performs much better for difficult problems
- WRI performs similar to FWI for not so difficult problems.
- Even for more difficult problems, only frequency continuation is required.
- No penalty parameter continuation was used, which can potentially increase quality and decrease the number of iterations.

Conclusions

• WRI:

- Similar results for easy problems.
- Not more sensitive to noise.
- No hidden parameters or fine-tuning of settings, just choose λ .
- 1 least-squares problem instead of the usual 2 PDE solves.

WRI vs. FWI

• Much better waveform inversion results for some difficult problems. Less sensitive to missing low frequencies and poor start models.

• Passing though the data twice can be beneficial for this method.

Work in progress.

- Application of WRI to a land data set, results look quite promising and consistent with the FWI results.
- Assess the added value to imaging.

Outlook

- Find most efficient ways to solve the least-squares problem (also using iterative methods
- Find 'optimal' combination of tradeoff parameter λ and inversion set up. (Results in this talk may not be the best possible)
- The WRI objective function offers some interesting possibilities for multi-parameter inversion which Lagrangian based methods do not

offer. (Will be presented at the SEG meeting in Denver later this year)

Acknowledgements

The SLIM students & postdocs

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Total SA, WesternGeco, and Woodside.

