Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2014 SLIM group @ The University of British Columbia.

Multilevel Acceleration Strategy for the Robust Estimation of Primaries by Sparse Inversion

Tim T.Y. Lin and Felix J. Herrmann Amsterdam, *EAGE 2014*

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

true primary wavefield

SRME-produced primary

$$\mathbf{P_o} = \mathbf{P} - A(f)\mathbf{P_o}\mathbf{P}$$

P total up-going wavefield

 $\mathbf{P_o}$ primary wavefield

4(f) "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

true primary wavefield

SRME-produced primary

$$\mathbf{P_o} \approx \mathbf{P} - A(f)\mathbf{PP}$$

SRMP

P total up-going wavefield

 $\mathbf{P}_{\mathbf{O}}$ primary wavefield

4(f) "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

adaptive
$$\min_{A} \sum_{f} \|\mathbf{P} - A(f)\mathbf{PP}\|$$
 subtraction

P total up-going wavefield

Po primary wavefield

A(f) "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

true primary wavefield

SRME-produced primary

$$\mathbf{P_o} = \mathbf{P} - A(f)\mathbf{P_o}\mathbf{P}$$

P total up-going wavefield

 $\mathbf{P_o}$ primary wavefield

4(f) "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

$$\mathbf{P} = \mathbf{P_o} + A(f)\mathbf{P_o}\mathbf{P}$$

P total up-going wavefield

Po primary wavefield

4(f) "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

$$\mathbf{P} = \mathbf{P_o} + A(f)\mathbf{P_o}\mathbf{P}$$

$$\mathbf{P_o} = \mathbf{QG}$$
$$A(f) = -\mathbf{Q}^{-1}$$

- P total up-going wavefield
- down-going source signature
- primary impulse response

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

$$P = QG - GP$$

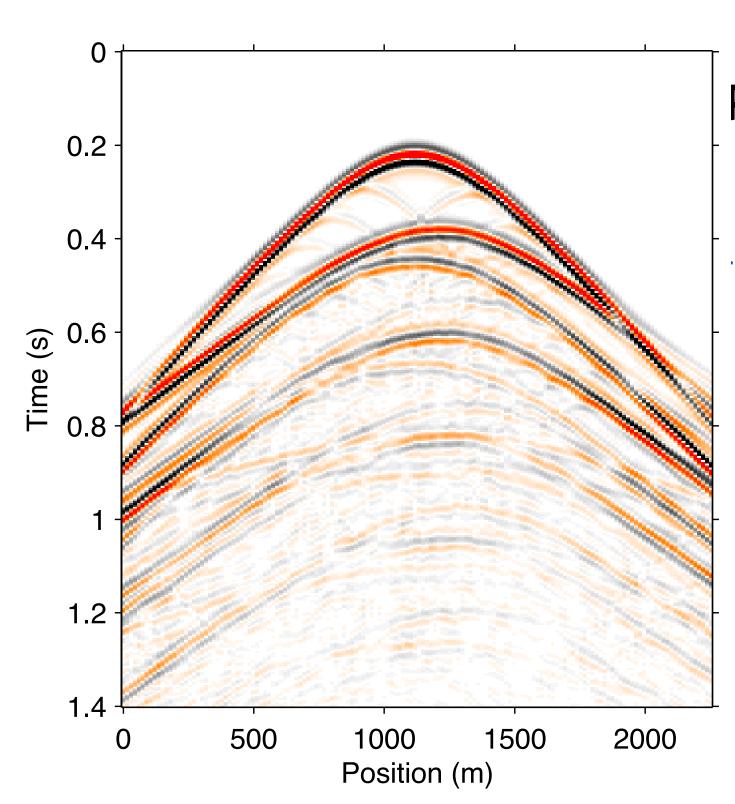
- P total up-going wavefield
- O down-going source signature
- primary impulse response

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

$$P = QG - GP$$

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} ||\mathbf{P} - (\mathbf{QG} - \mathbf{GP})||_2^2$$

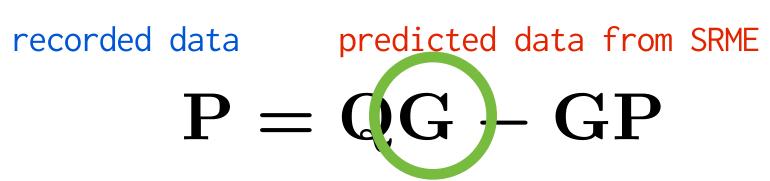


Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

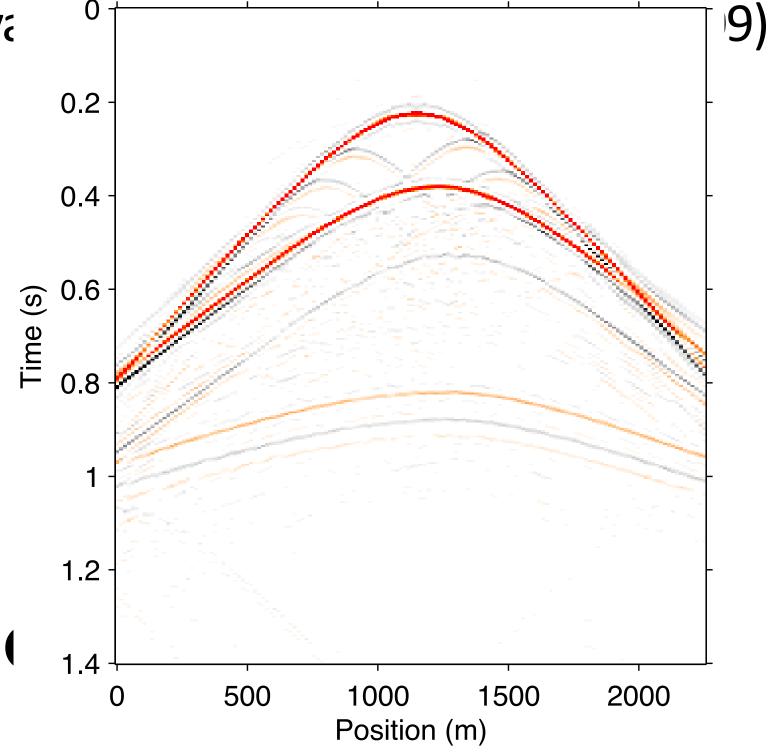
ed data predicted data from SRME
$$\mathbf{P} = \mathbf{QG} - \mathbf{GP}$$

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} ||\mathbf{P} - (\mathbf{QG} - \mathbf{GP})||_2^2$$

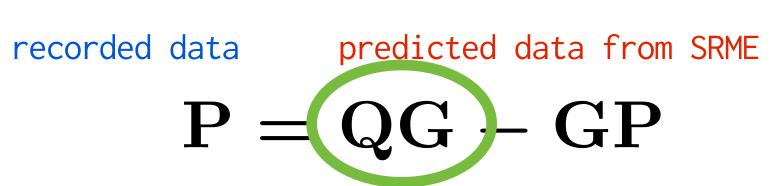
Based on Estimation of Primaries by Sparse Inversion (va



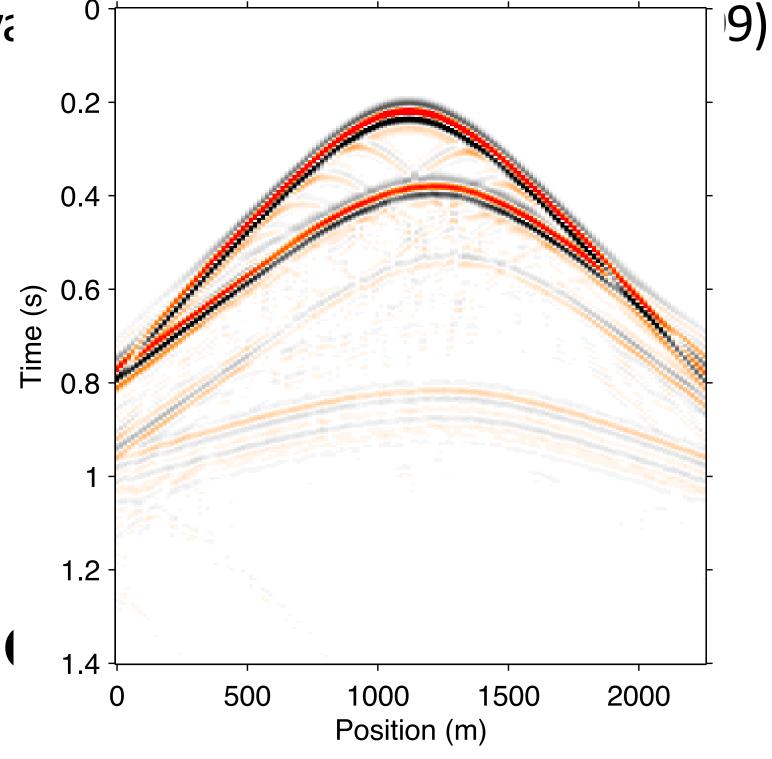
$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} || \mathbf{P} - (\mathbf{Q})||$$



Based on Estimation of Primaries by Sparse Inversion (va



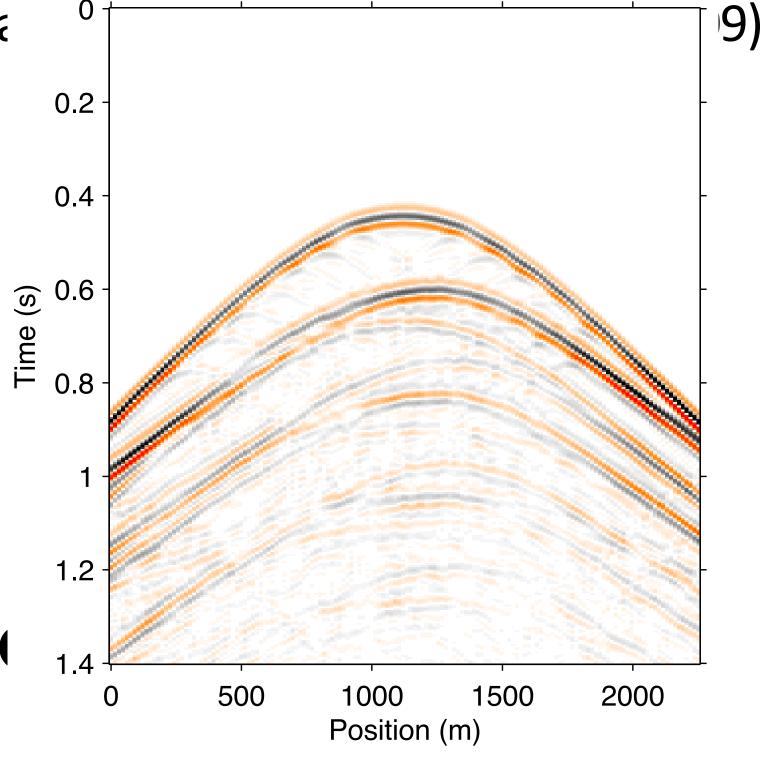
$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} || \mathbf{P} - (\mathbf{Q})||$$



Based on Estimation of Primaries by Sparse Inversion (va

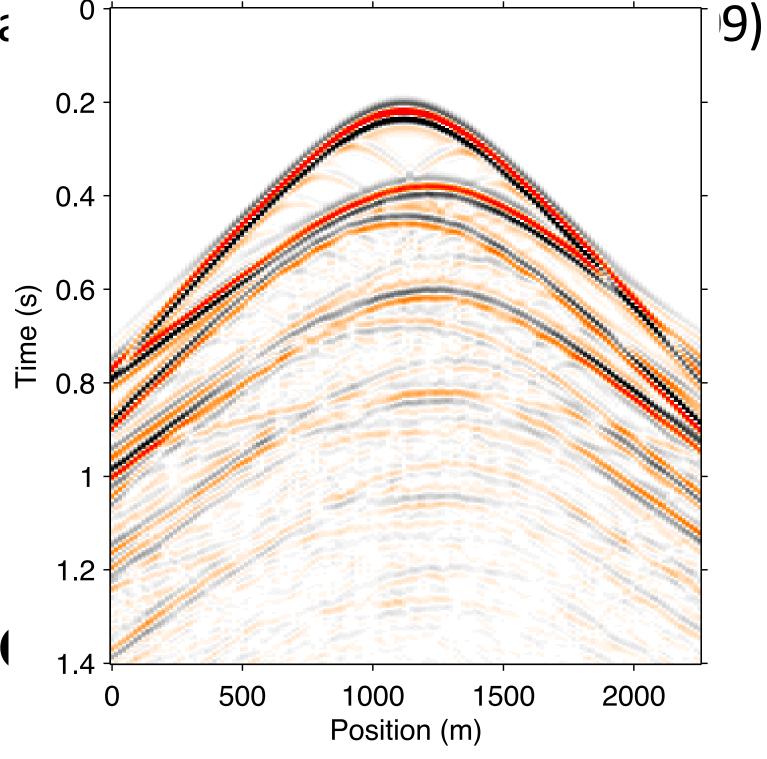


$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} || \mathbf{P} - (\mathbf{Q})||$$



Based on Estimation of Primaries by Sparse Inversion (va

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} || \mathbf{P} - (\mathbf{Q})||$$



Two ways to obtain the final primary wavefield

"Direct" Primary "Conservative" Primary
$$\mathbf{QG} = \mathbf{P} + \mathbf{GP}$$

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} ||\mathbf{P} - (\mathbf{QG} - \mathbf{GP})||_2^2$$

In time domain (lower-case: whole dataset in time domain)

recorded data predicted data from SRME

$$\mathbf{p} = \mathcal{M}(\mathbf{g}, \mathbf{q})$$

$$\mathcal{M}(\mathbf{g}, \mathbf{q}) := \mathcal{F}_{\mathrm{t}}^{\dagger} \mathrm{BlockDiag}_{\omega_{1} \cdots \omega_{nf}} [(q(\omega)\mathbf{I} - \mathbf{P})^{\dagger} \otimes \mathbf{I}] \mathcal{F}_{\mathrm{t}} \mathbf{g}$$

$$f(\mathbf{g}, \mathbf{q}) = \frac{1}{2} \|\mathbf{p} - \mathcal{M}(\mathbf{g}, \mathbf{q})\|_2^2$$

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

$$P = QG - GP$$

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} ||\mathbf{P} - (\mathbf{QG} - \mathbf{GP})||_2^2$$

Robust EPSI

L1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 *Geophysics*]

While
$$\|\mathbf{p} - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$$

determine new τ_k from the Pareto curve

$$\mathbf{g}_{k+1} = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \le \tau_k$$

$$\mathbf{q}_{k+1} = \underset{\mathbf{q}}{\operatorname{arg\,min}} \|\mathbf{p} - \mathbf{M}_{g_{k+1}}\mathbf{q}\|_{2}$$

Solving the EPSI problem

Linearizations

$$\mathbf{p} = \mathcal{M}(\mathbf{g}, \mathbf{q})$$

$$\mathbf{M}_{ ilde{q}} = \left(rac{\partial \mathcal{M}}{\partial \mathbf{g}}
ight)_{ ilde{q}}$$

$$\mathbf{M}_{ ilde{g}} = \left(rac{\partial \mathcal{M}}{\partial \mathbf{q}}
ight)_{ ilde{g}}$$

In fact it is bilinear:

$$\mathbf{M}_{ ilde{q}}\mathbf{g} = \mathcal{M}(\mathbf{g}, \tilde{\mathbf{q}}) \qquad \mathbf{M}_{ ilde{g}}\mathbf{q} = \mathcal{M}(\mathbf{q}, \tilde{\mathbf{g}})$$

Robust EPSI

L1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 *Geophysics*]

While
$$\|\mathbf{p} - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$$

determine new τ_k from the Pareto curve

$$\mathbf{g}_{k+1} = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \le \tau_k$$

$$\mathbf{q}_{k+1} = \underset{\mathbf{q}}{\operatorname{arg\,min}} \|\mathbf{p} - \mathbf{M}_{g_{k+1}}\mathbf{q}\|_{2}$$

Robust EPSI

L1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 *Geophysics*]

While
$$\|\mathbf{p} - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$$

determine new τ_k from the Pareto curve

Emits sparse, or "deconvolved" solution

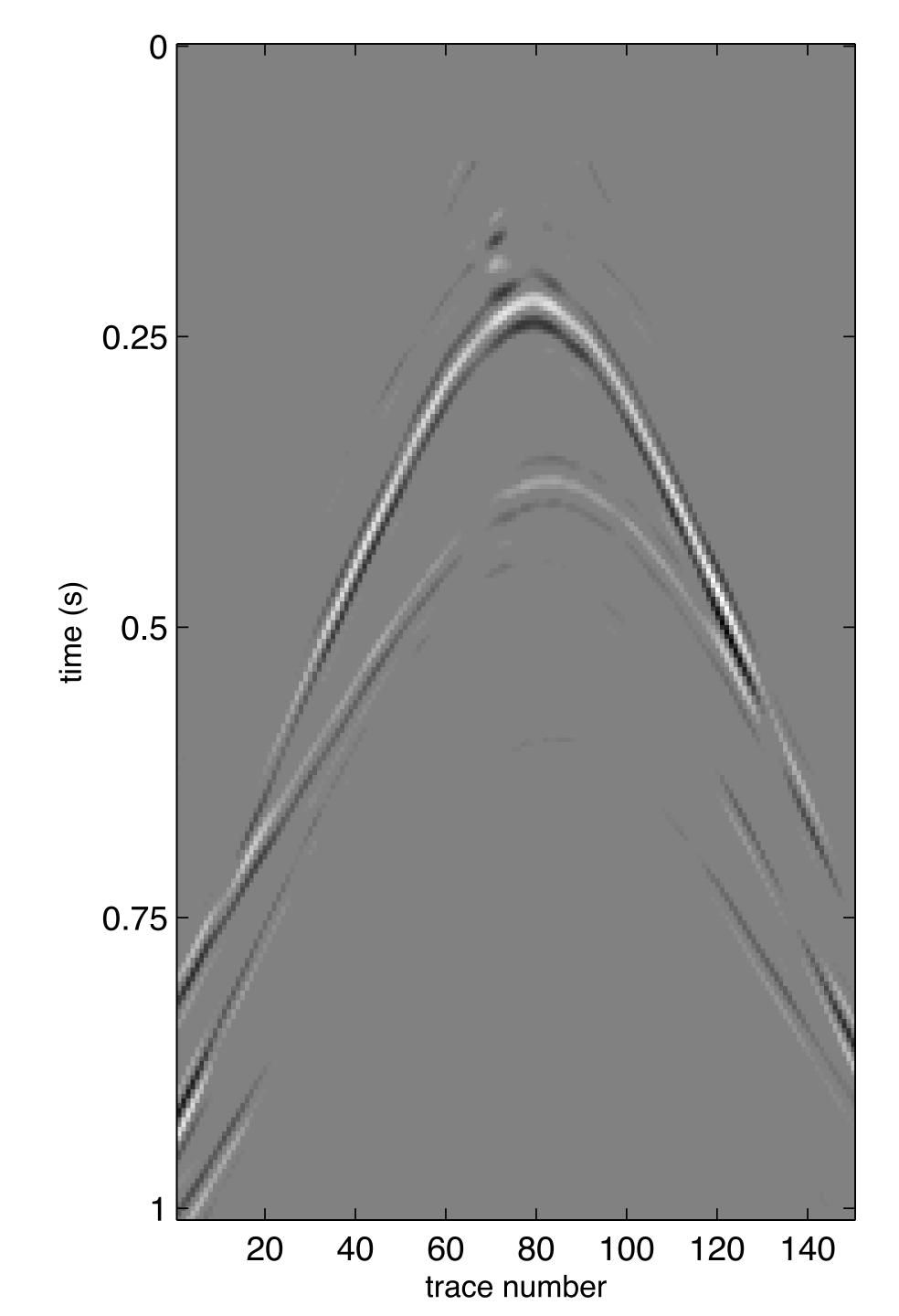
$$\mathbf{g}_{k+1} = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \le \tau_k$$

$$\mathbf{q}_{k+1} = \underset{\mathbf{q}}{\operatorname{arg\,min}} \|\mathbf{p} - \mathbf{M}_{g_{k+1}} \mathbf{q}\|_2$$

L1 projection and sparsity

variable g at beginning of LASSO

$$\mathbf{g}_{k+1} = rg \min_{\mathbf{g}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \le \tau_k$$

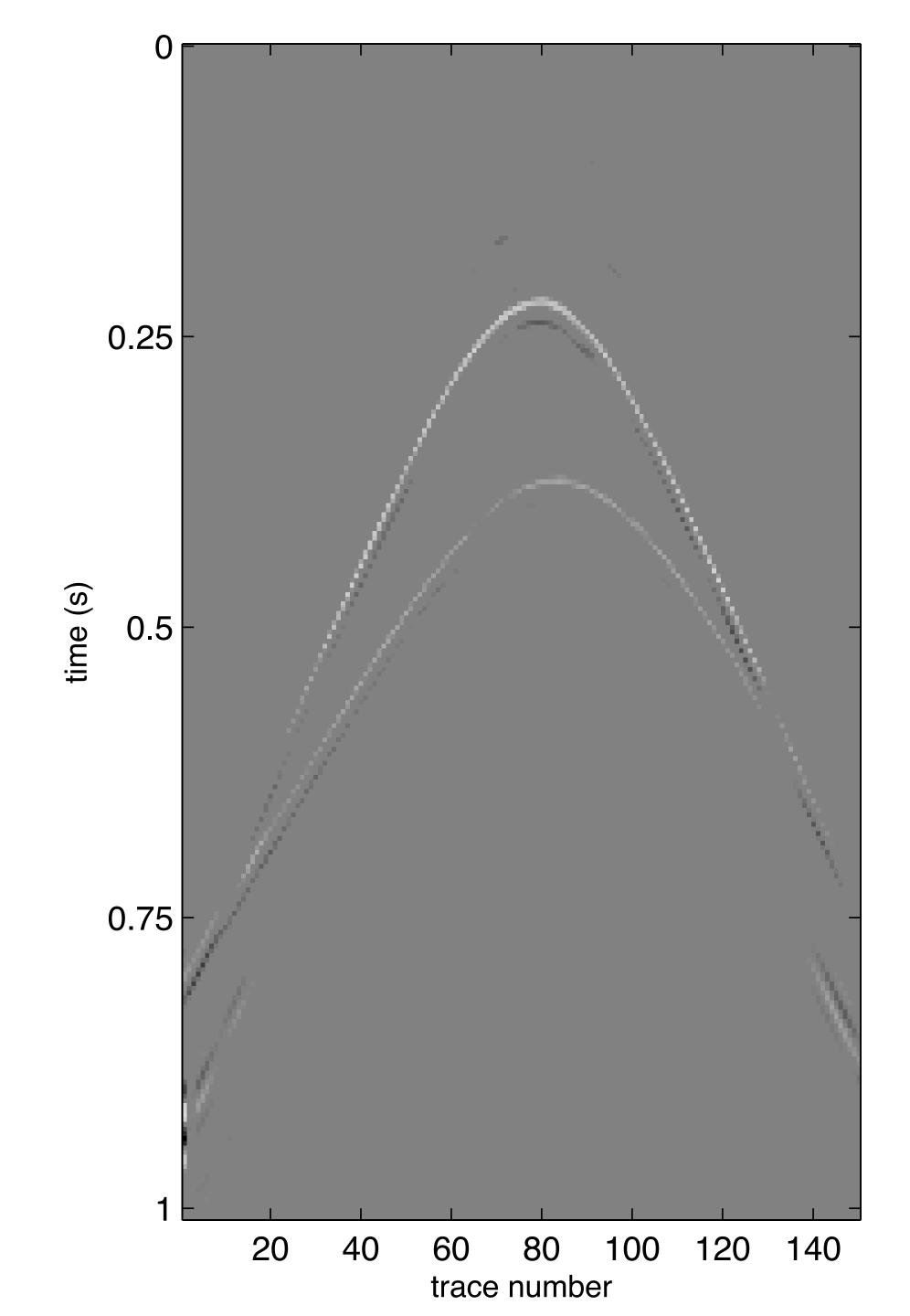


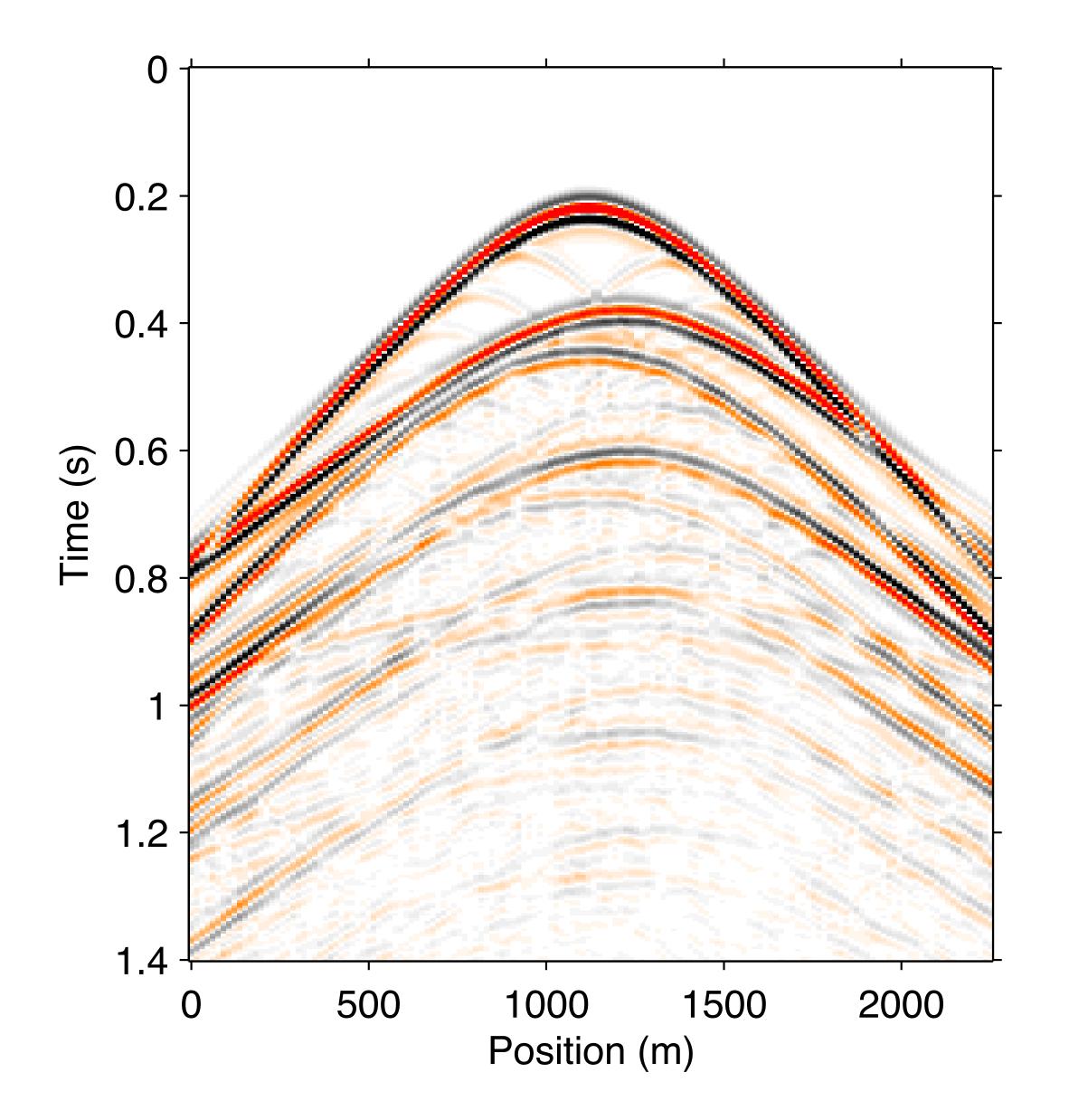
L1 projection and sparsity

variable g at end of LASSO

$$\mathbf{g}_{k+1} = rg \min_{\mathbf{g}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \le \tau_k$$

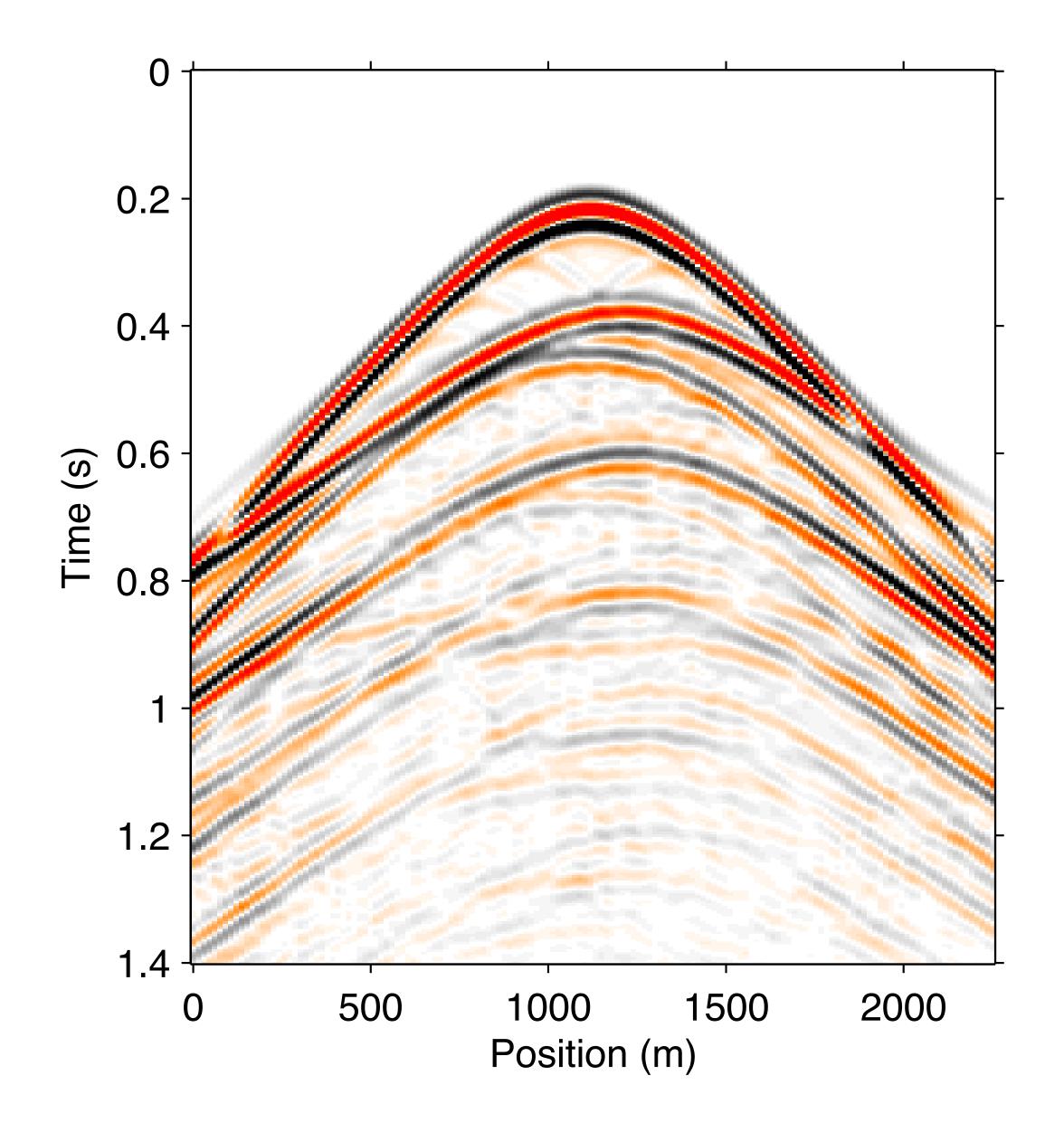
Emits "deconvolved" solution





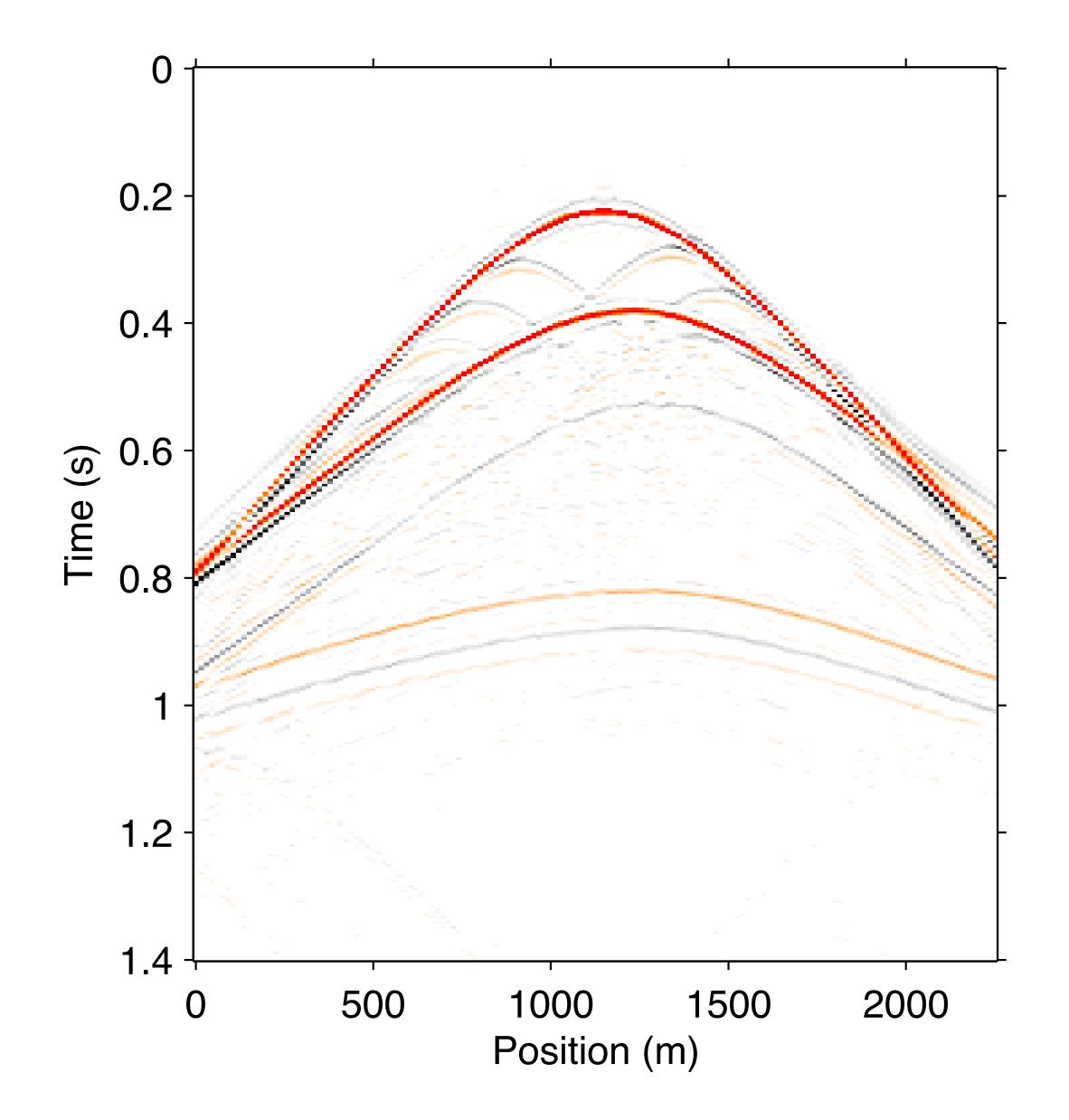
Data

modeled with Ricker 30Hz

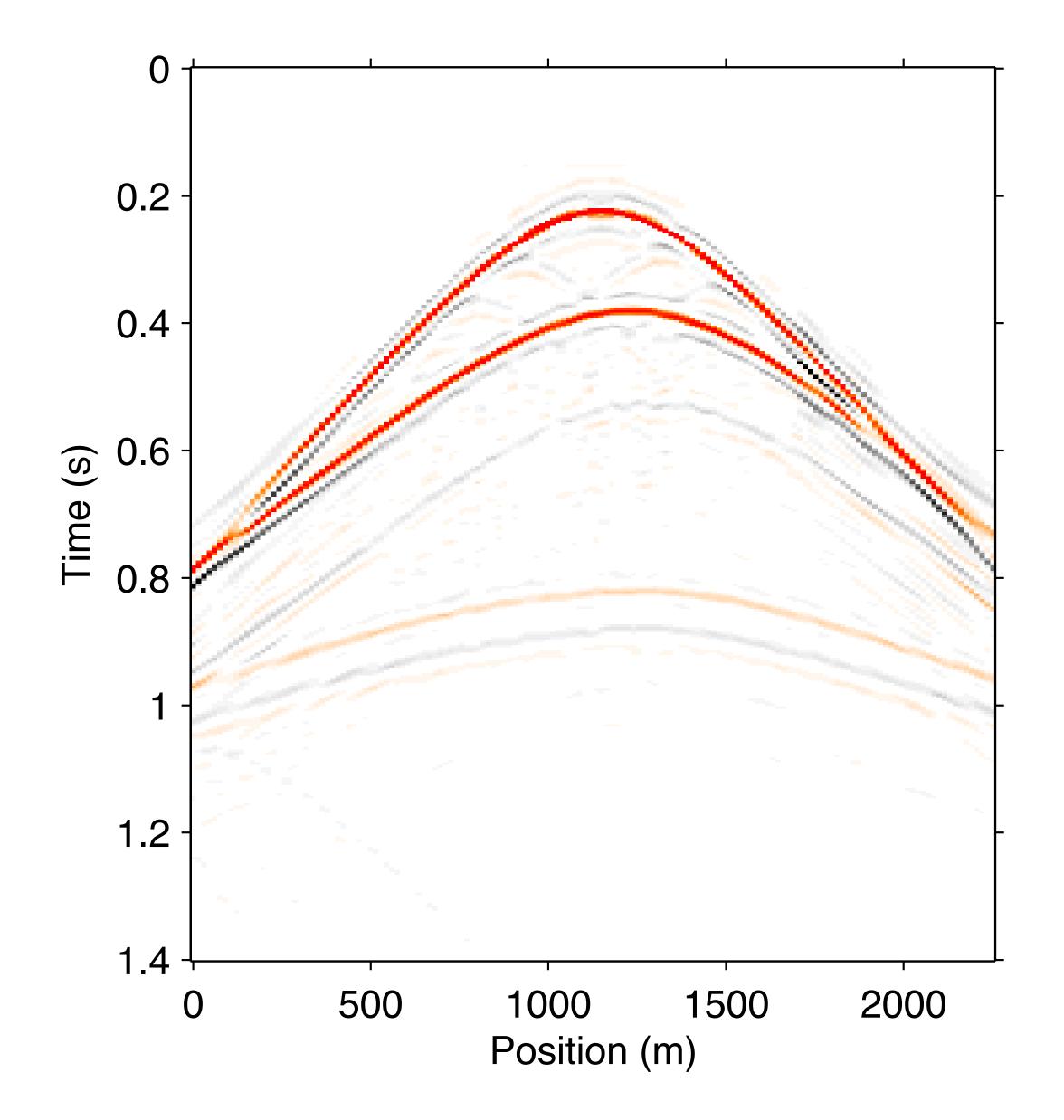


Lowpassed Data

modeled with Ricker 30Hz lowpass at 40Hz (25-order, zero-phase, Hann window)

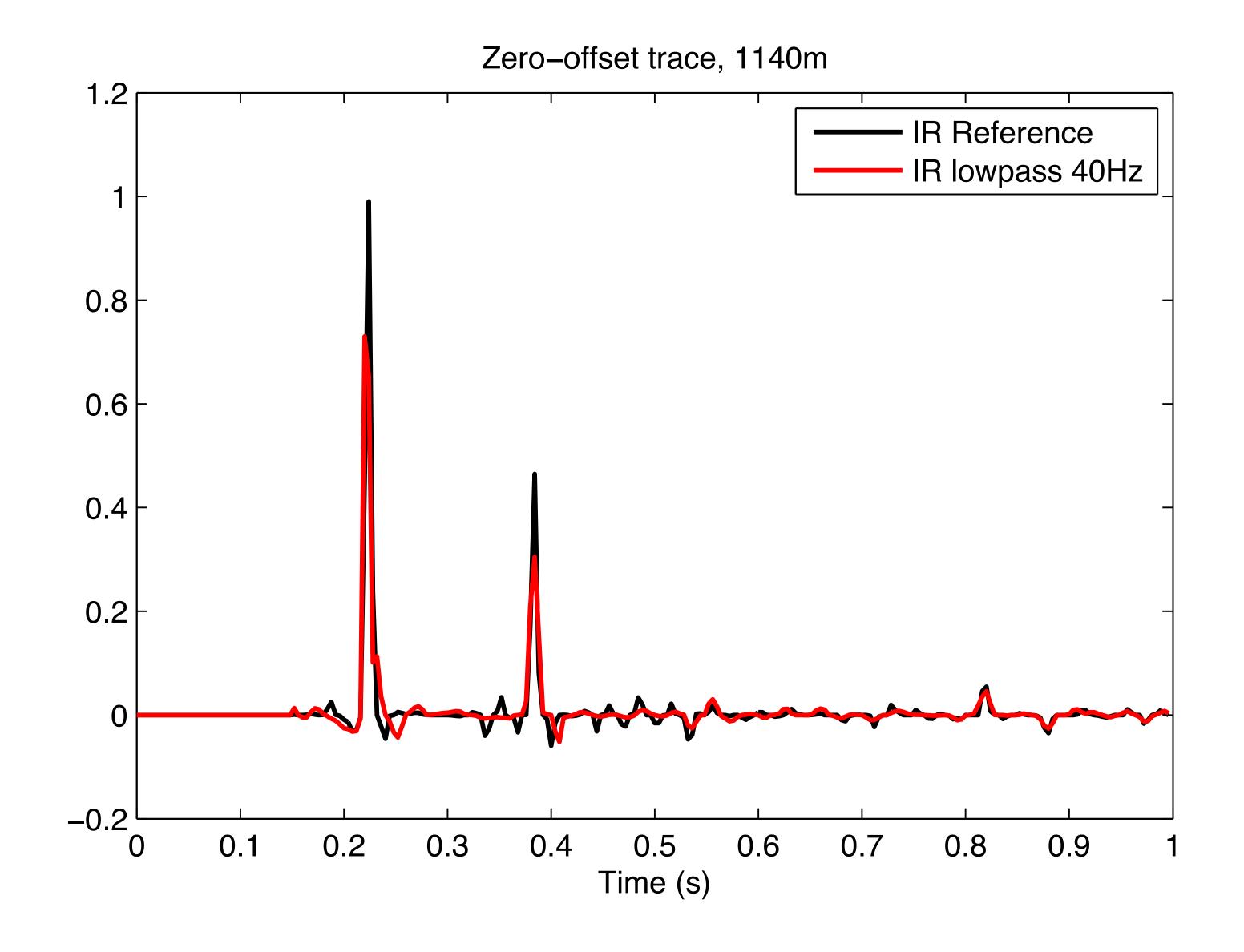


Reference REPSI primary IR from original data

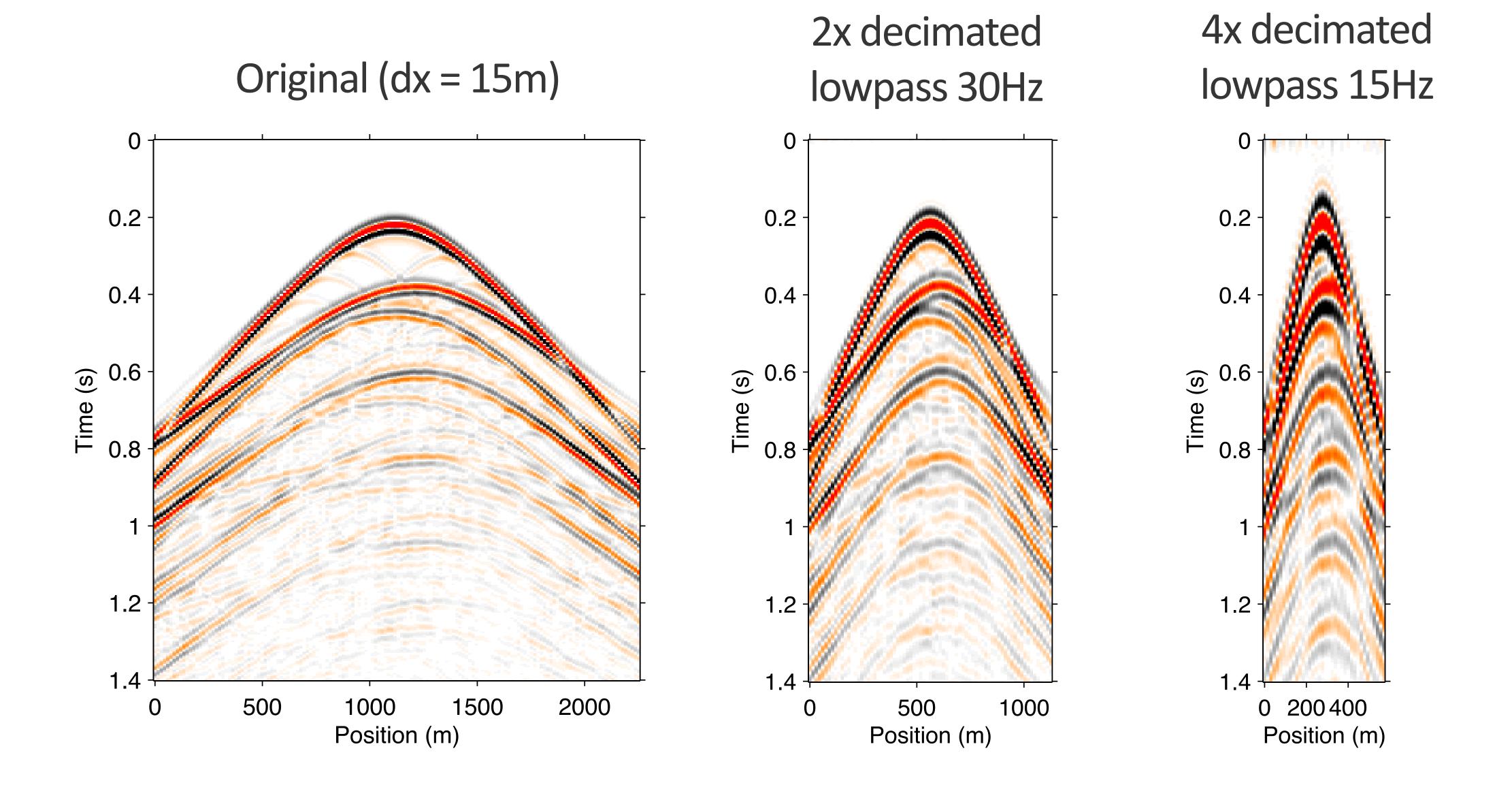


REPSI primary IR

from low-passed data @ 40Hz

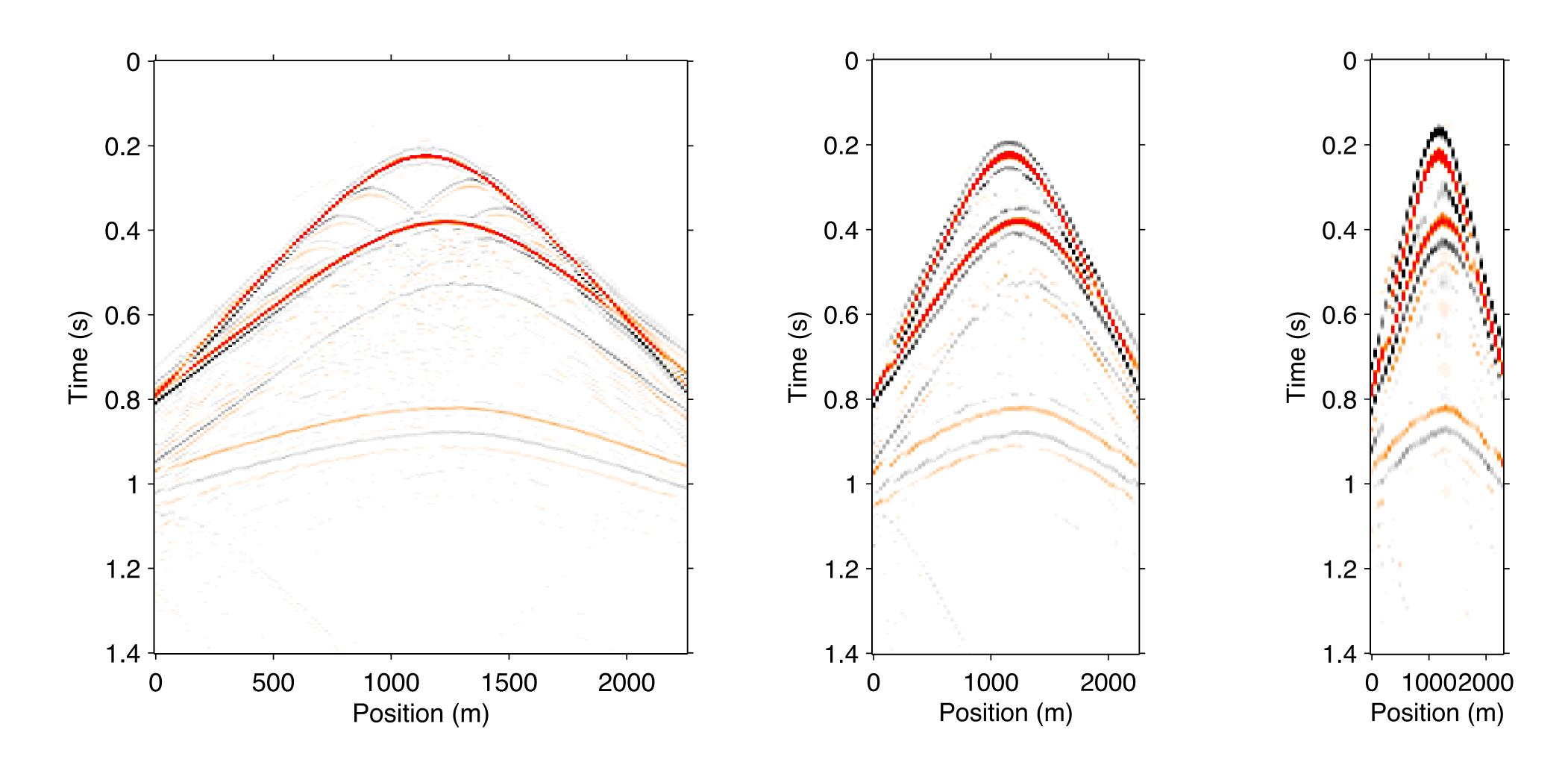


Lowpass data permits coarser sampling w/o aliasing

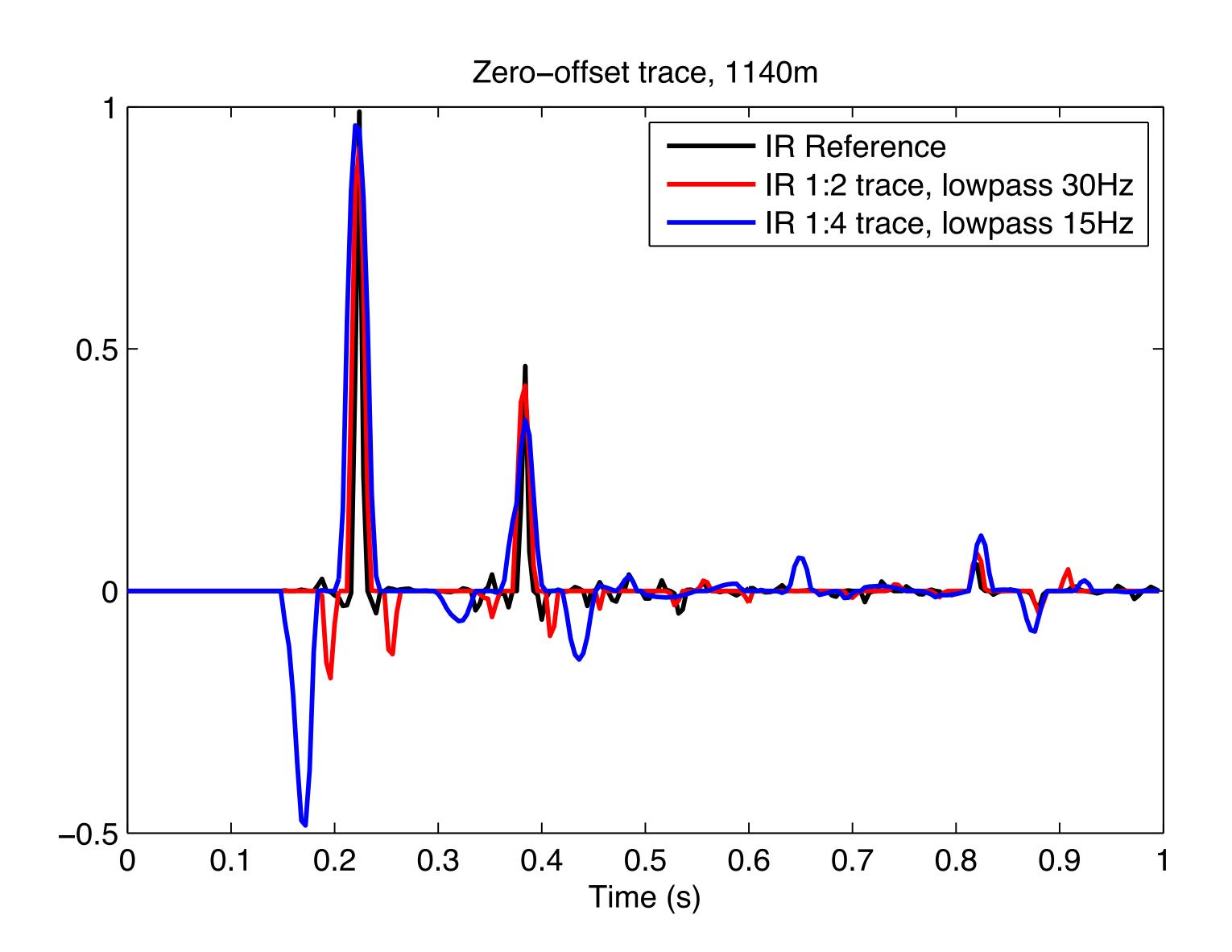


Lowpass data permits coarser sampling w/o aliasing

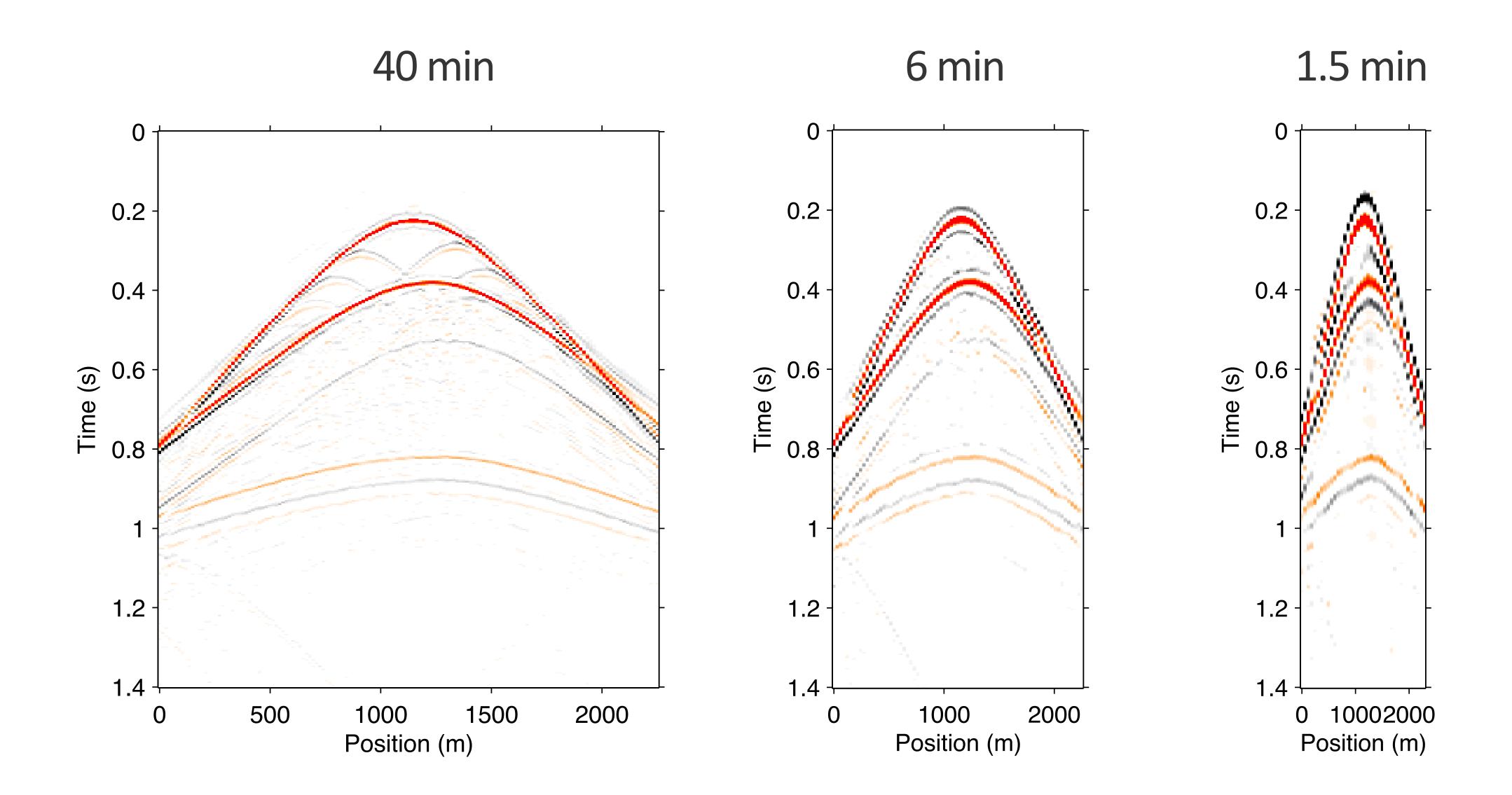
Impulse response solutions



Lowpass data permits coarser sampling w/o aliasing



Lowpass data permits coarser sampling w/o aliasing (much faster!)



Multilevel strategy for EPSI

warm-start fine-scale problem with coarse-scale solutions

Idea: Warm-start with coarse-scale solutions

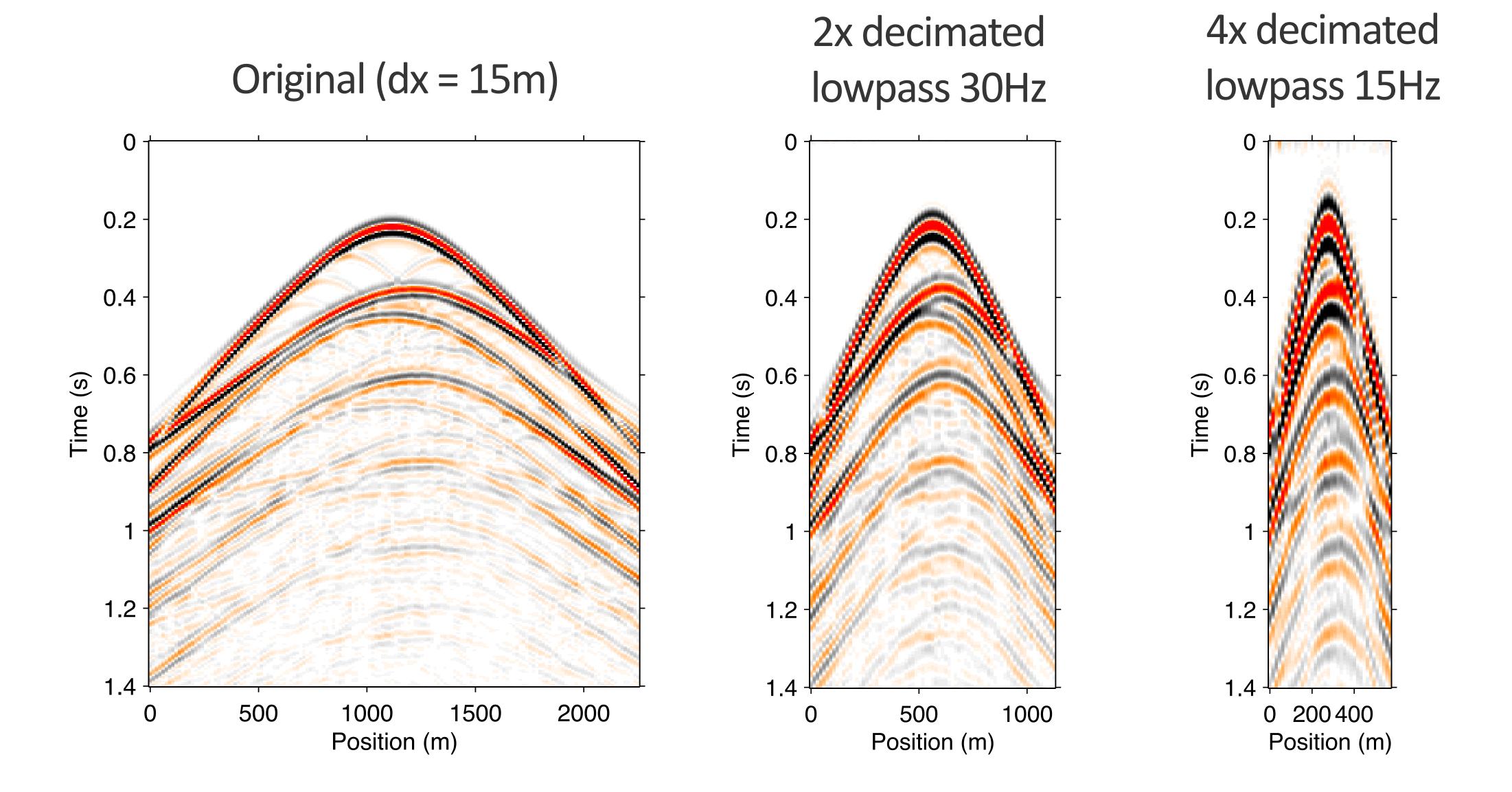
EPSI takes **70-100 iterations** to converge (each iteration is doing 2 SRME multiple prediction), can we make it **FASTER**?

Since decimated datasets solve much faster, we interpolate its (slightly inaccurate) G for the initial estimate to full problem

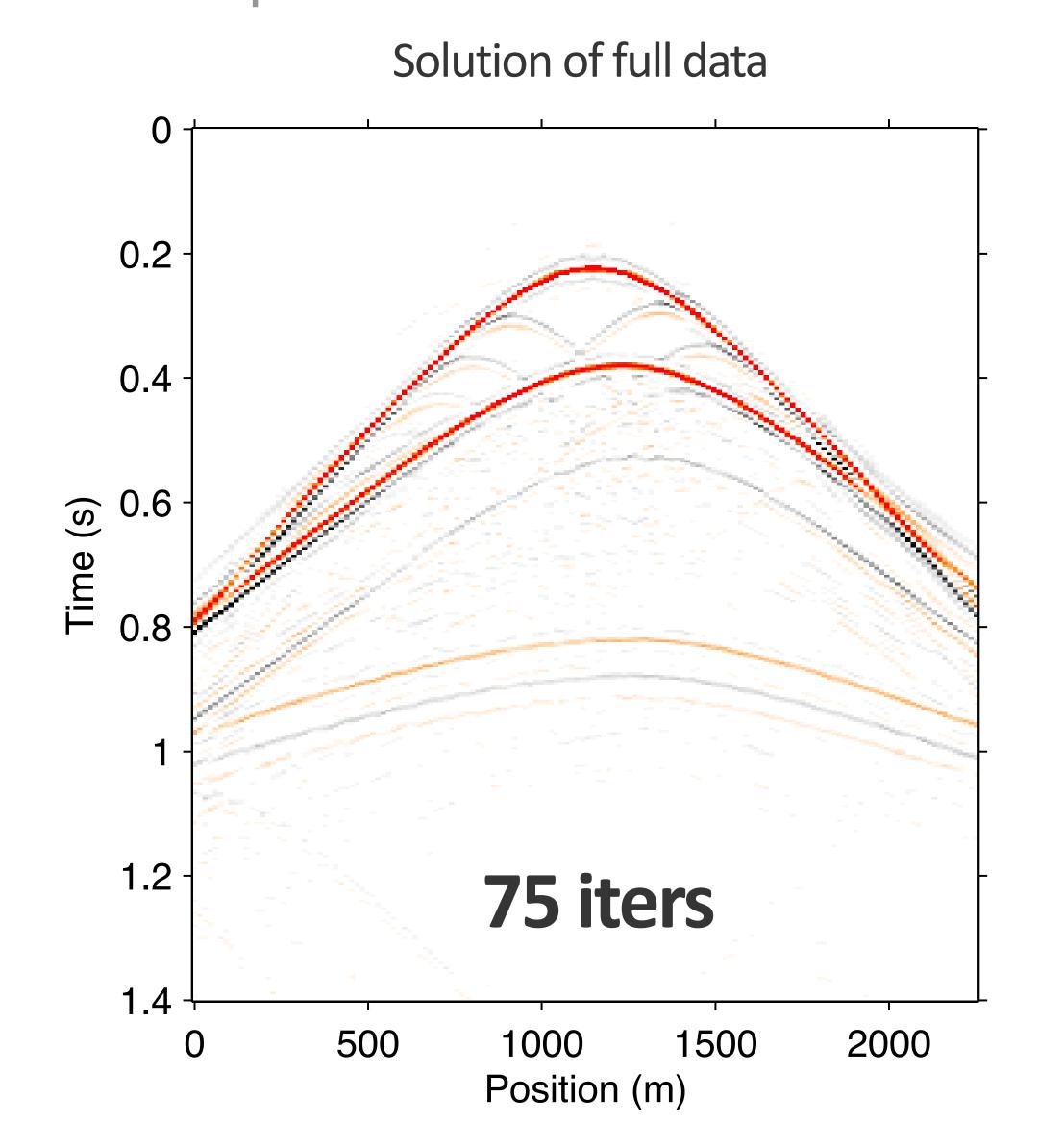
Previous Q is discarded

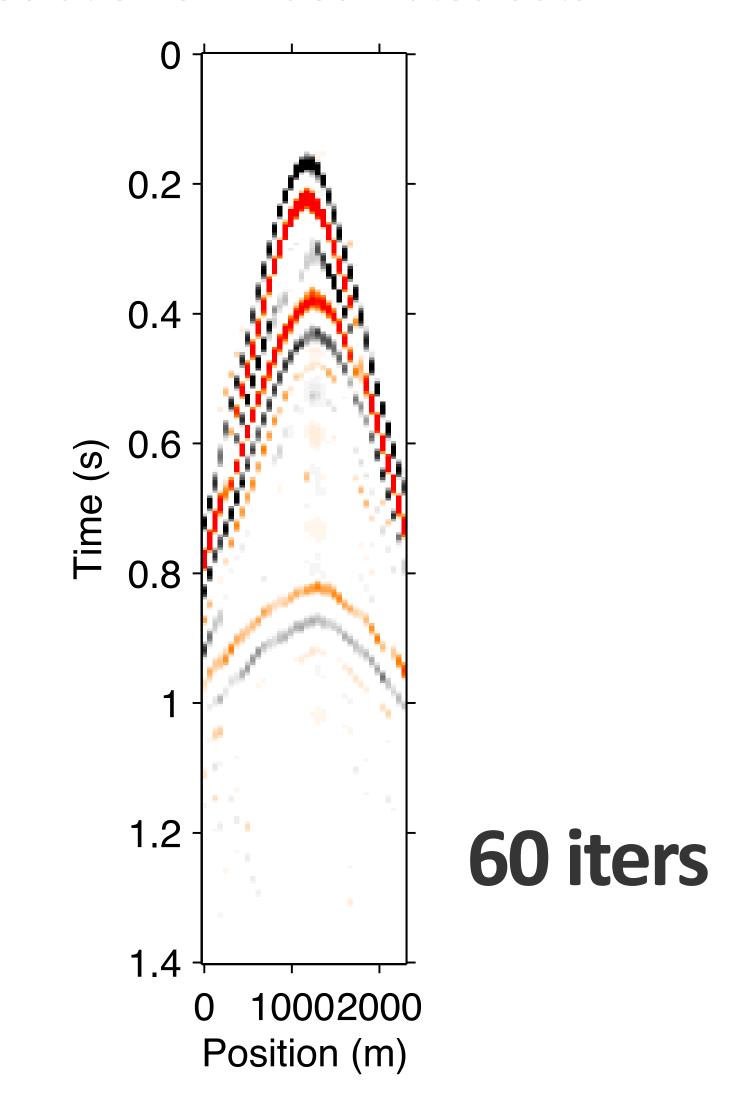
Interpolation method of G not important, just can't alias. Simple constant NMO (i.e., at water velocity) + linear interpolation works fine

Warm-starting/continuation from coarse solution Example

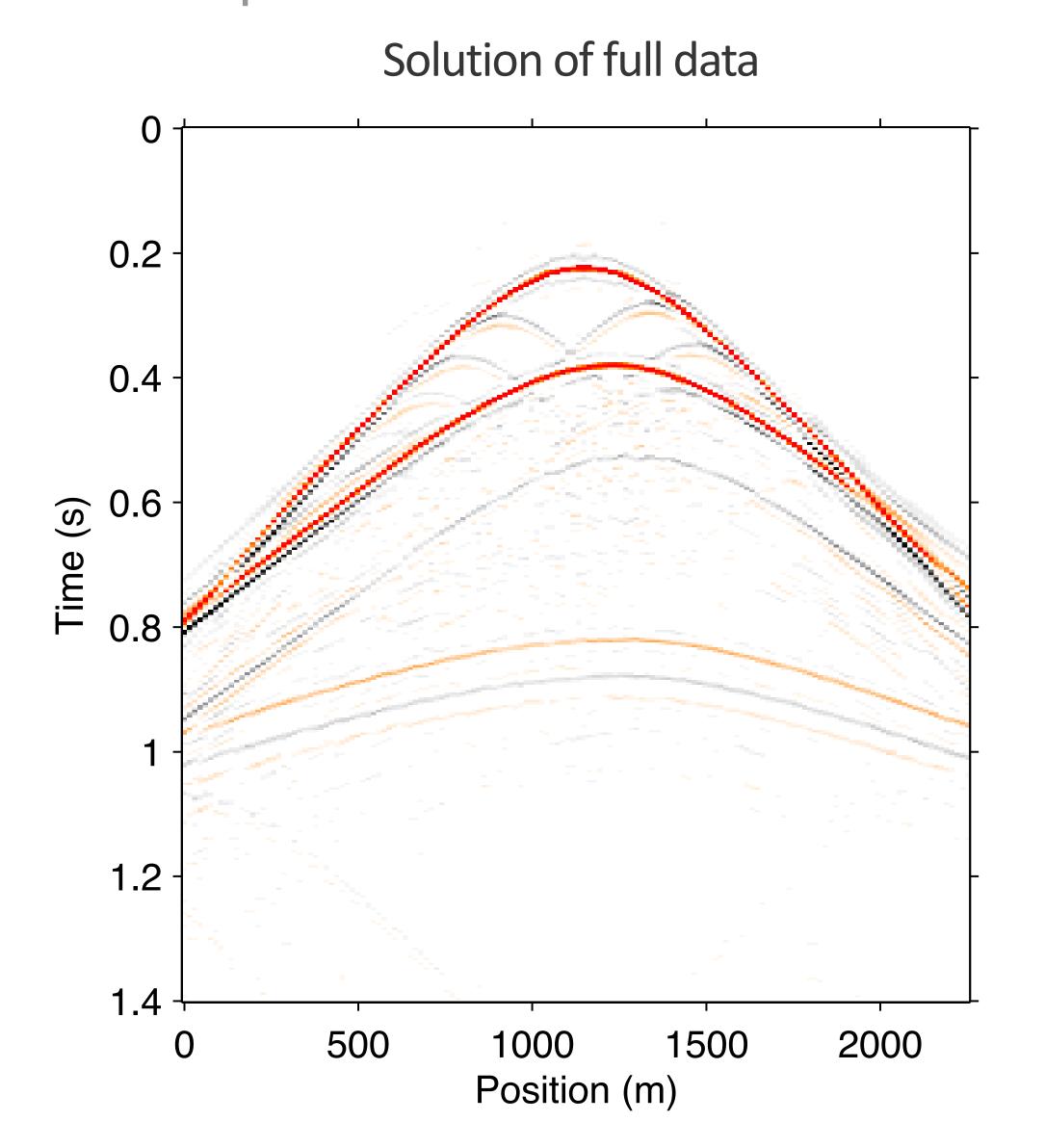


Warm-starting/continuation from coarse solution Example

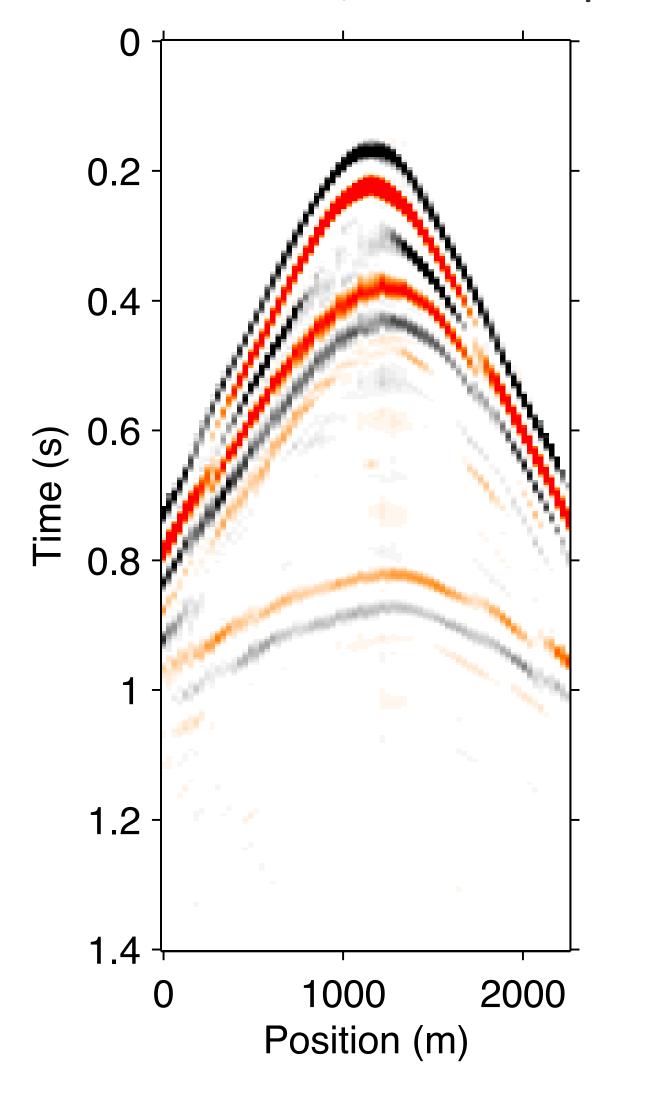




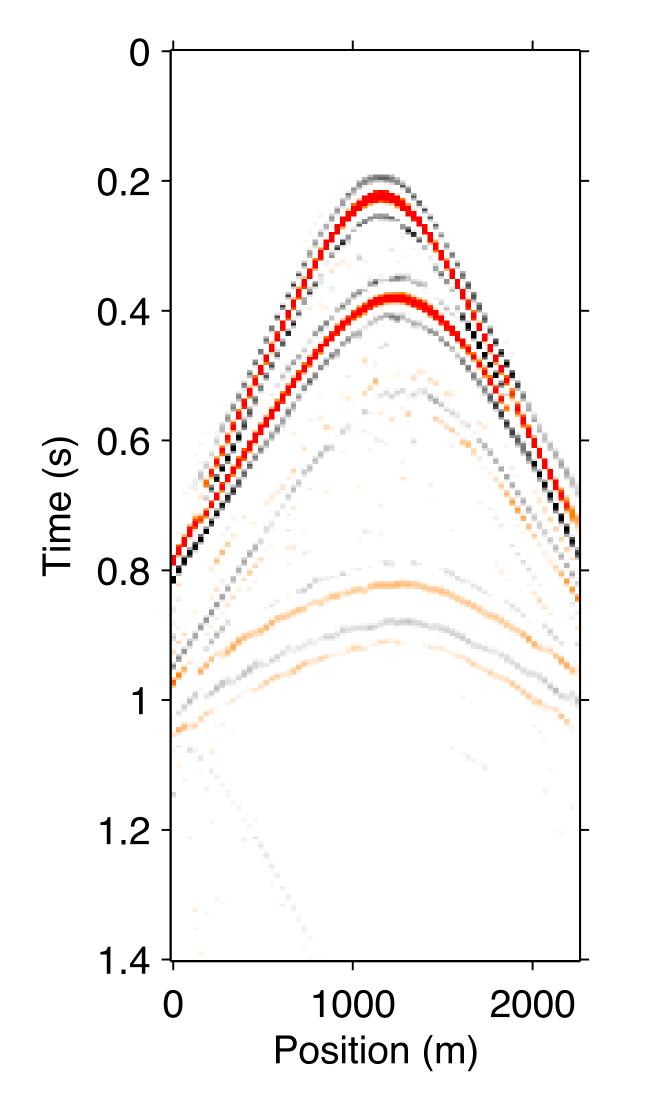
Example



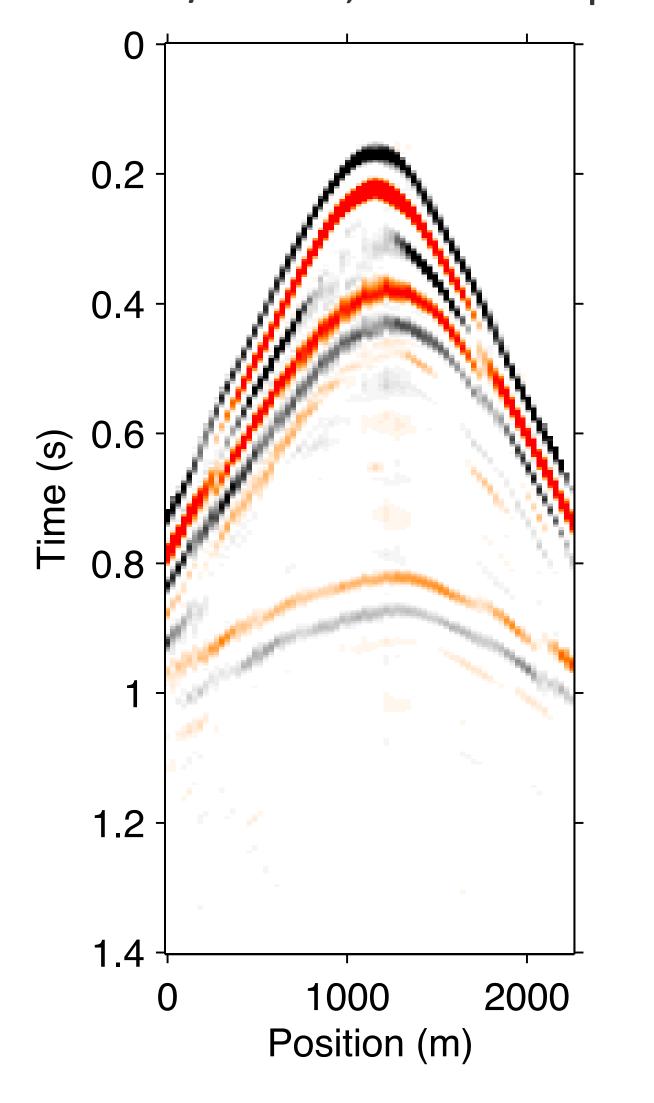
Solution of 4x decimated data 1600m/s NMO, linear interp 2x



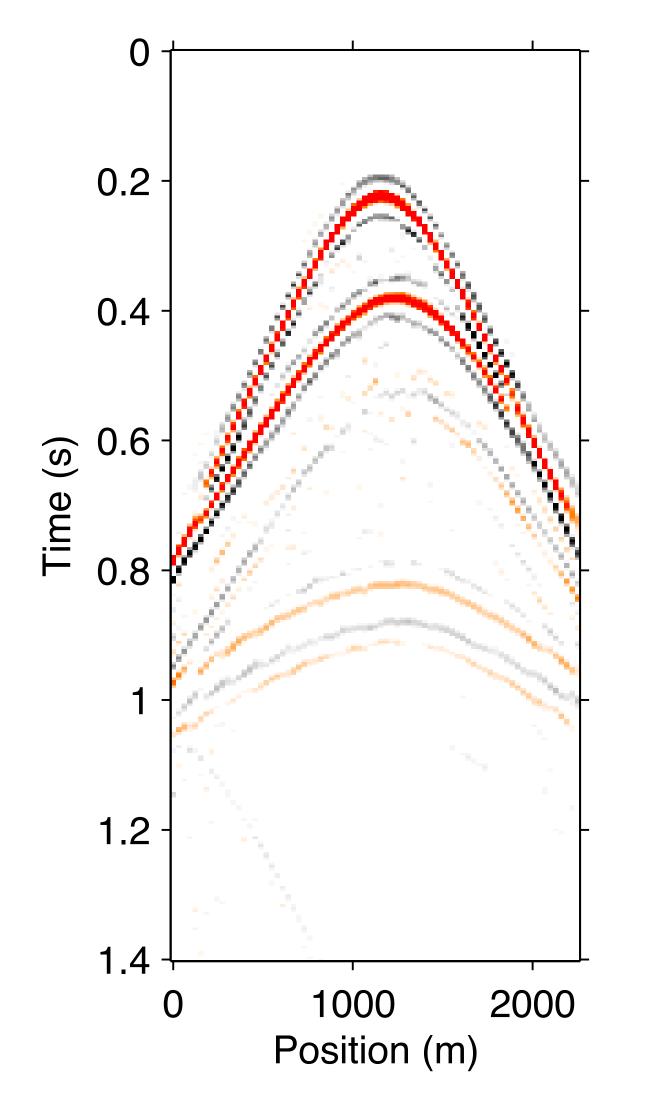
Solution of 2x decimated data



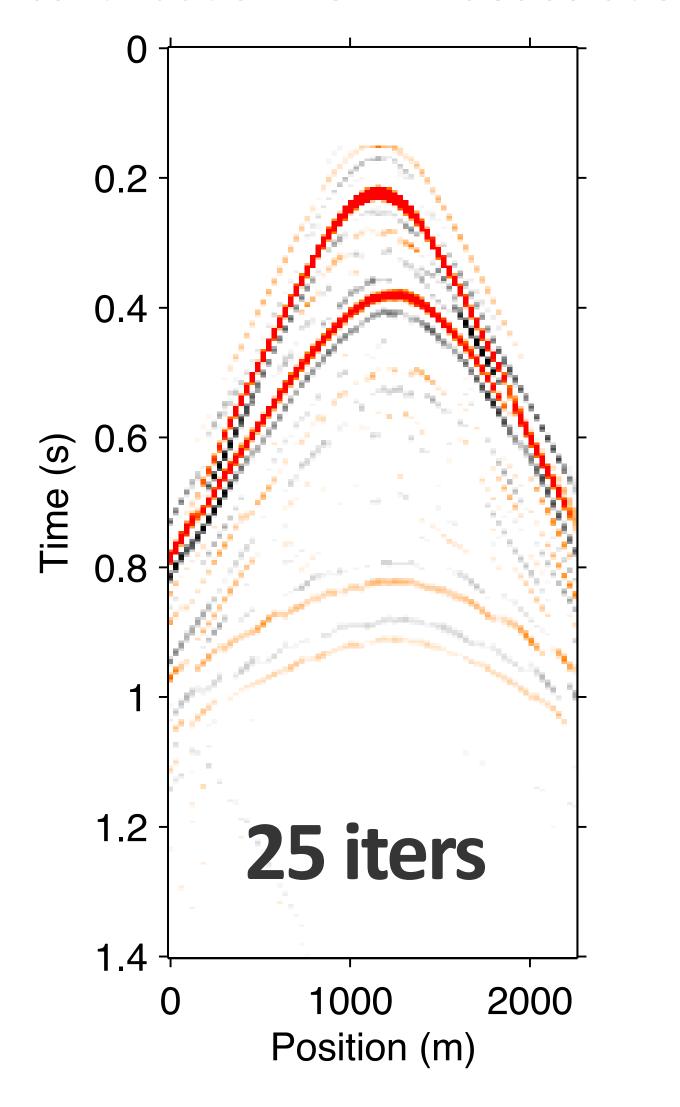
Solution of 4x decimated data 1600m/s NMO, linear interp 2x



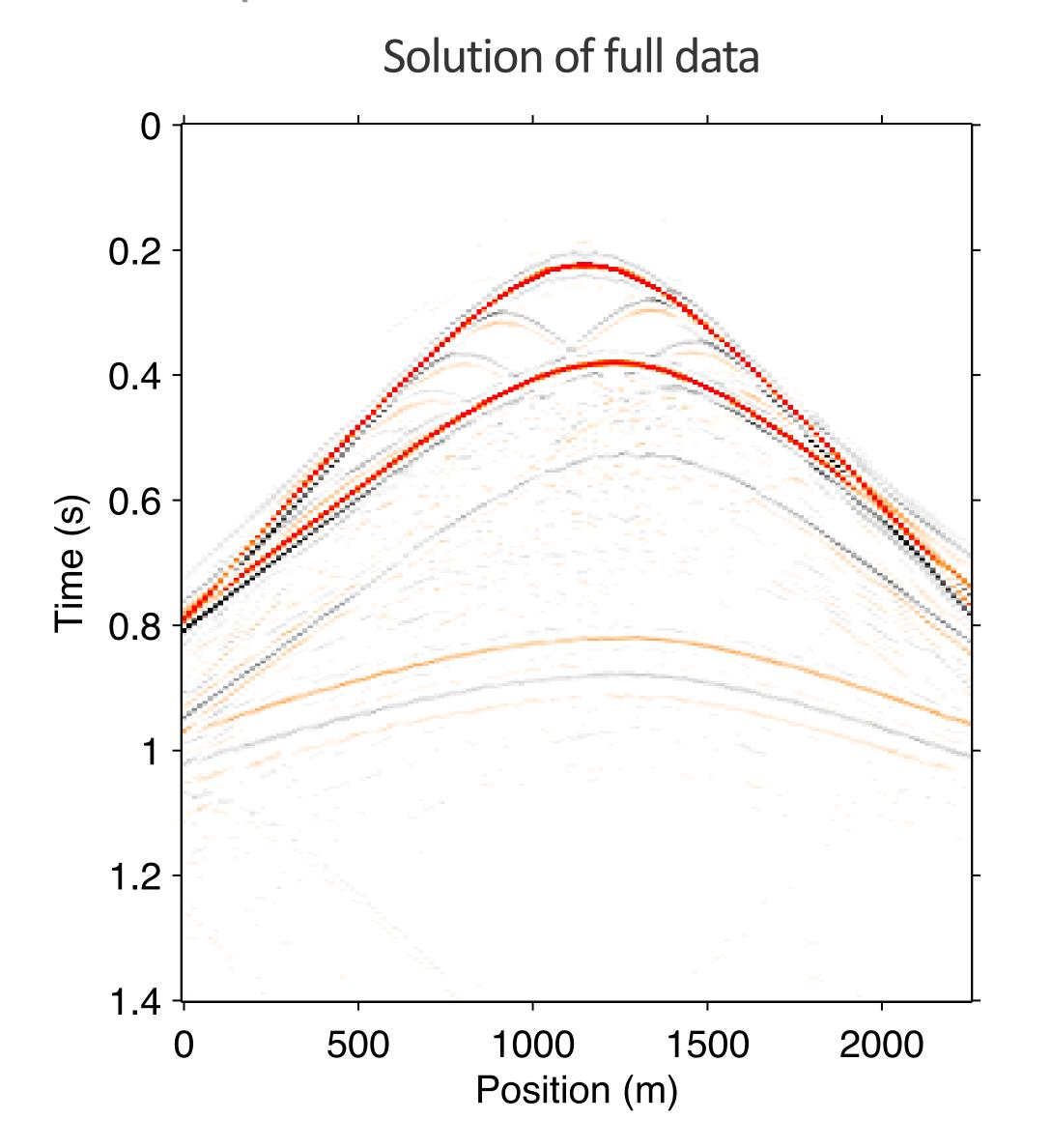
Solution of 2x decimated data



Solution on 2x dec data continuation from 4x dec solution



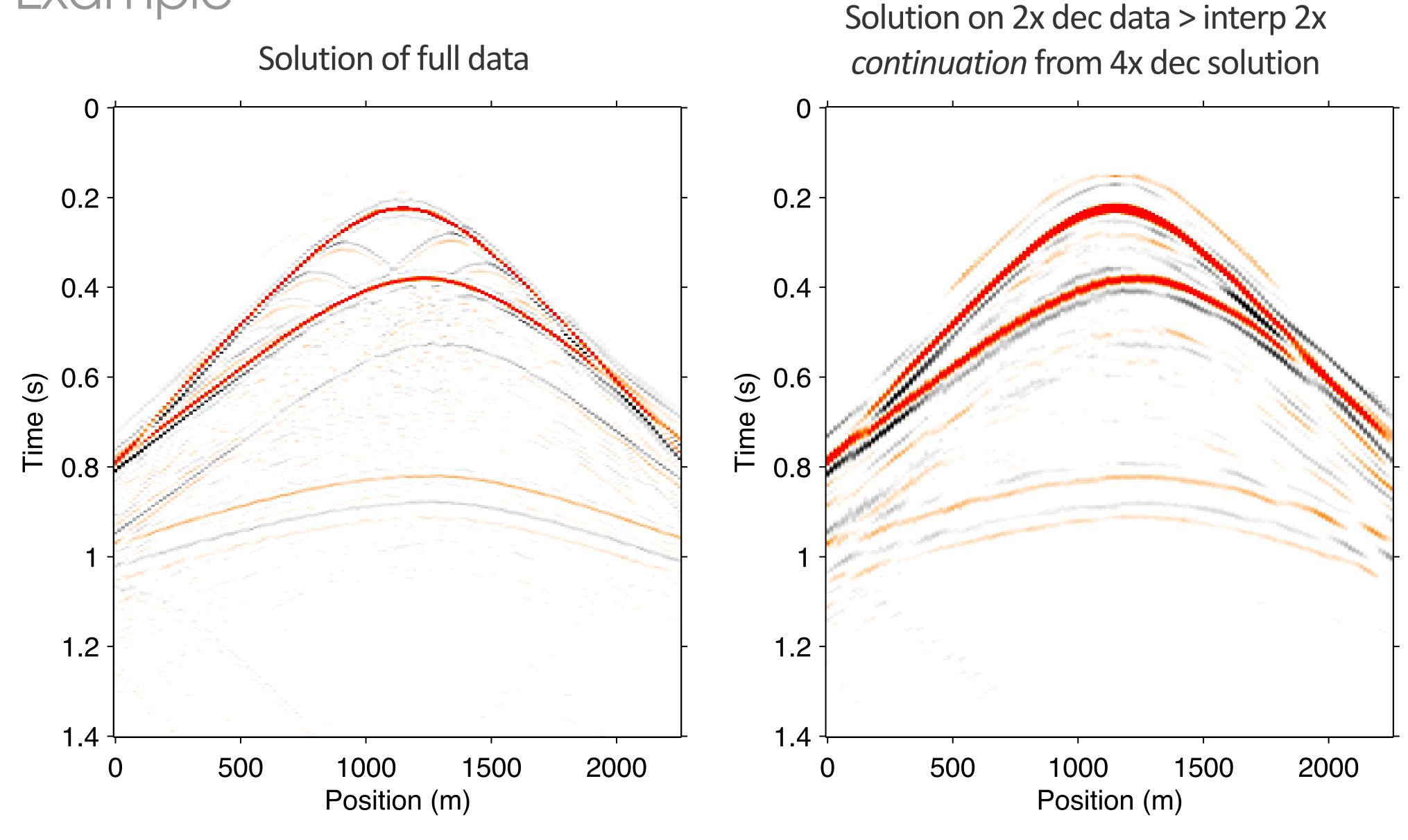
Example



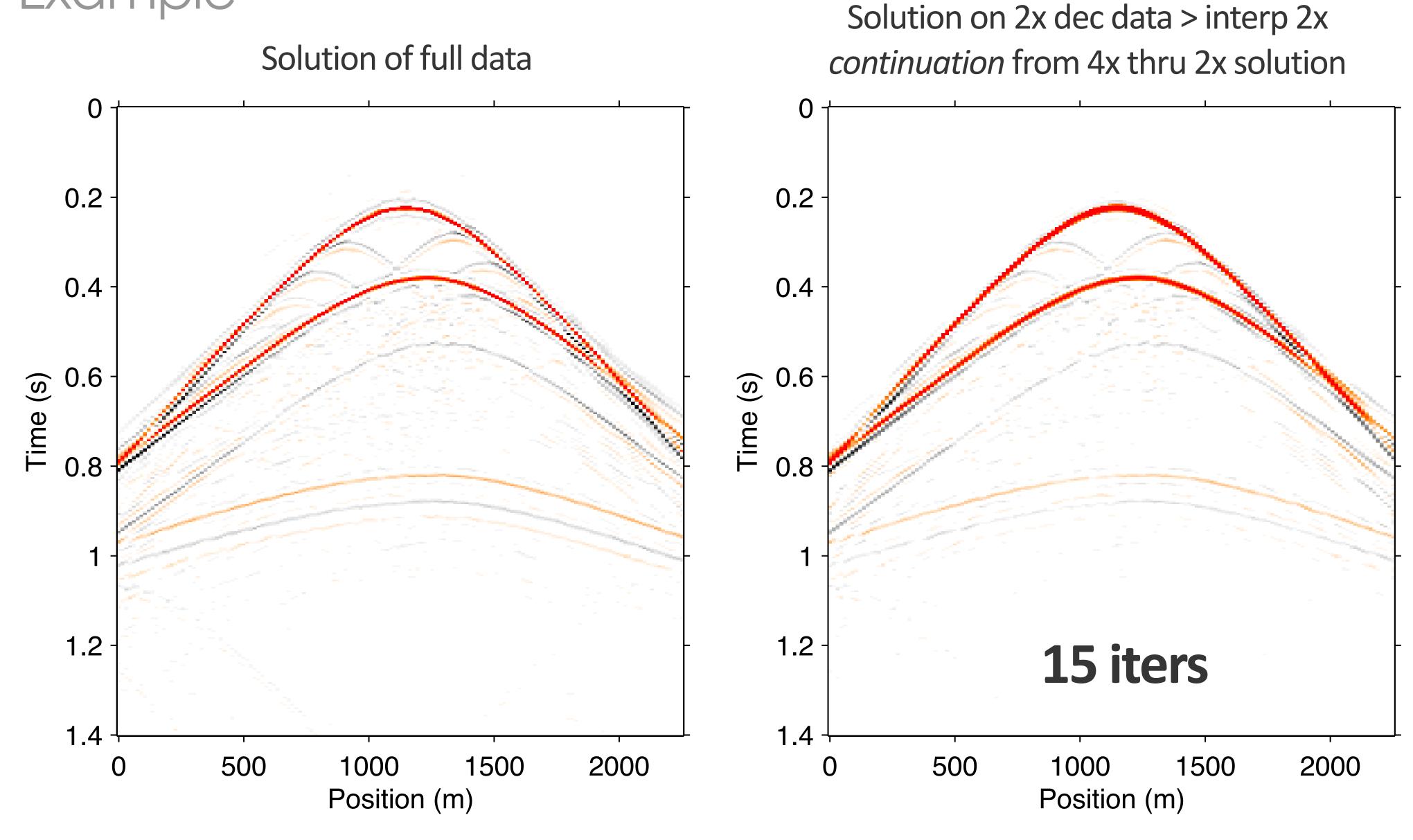
Solution on 2x dec data continuation from 4x dec solution

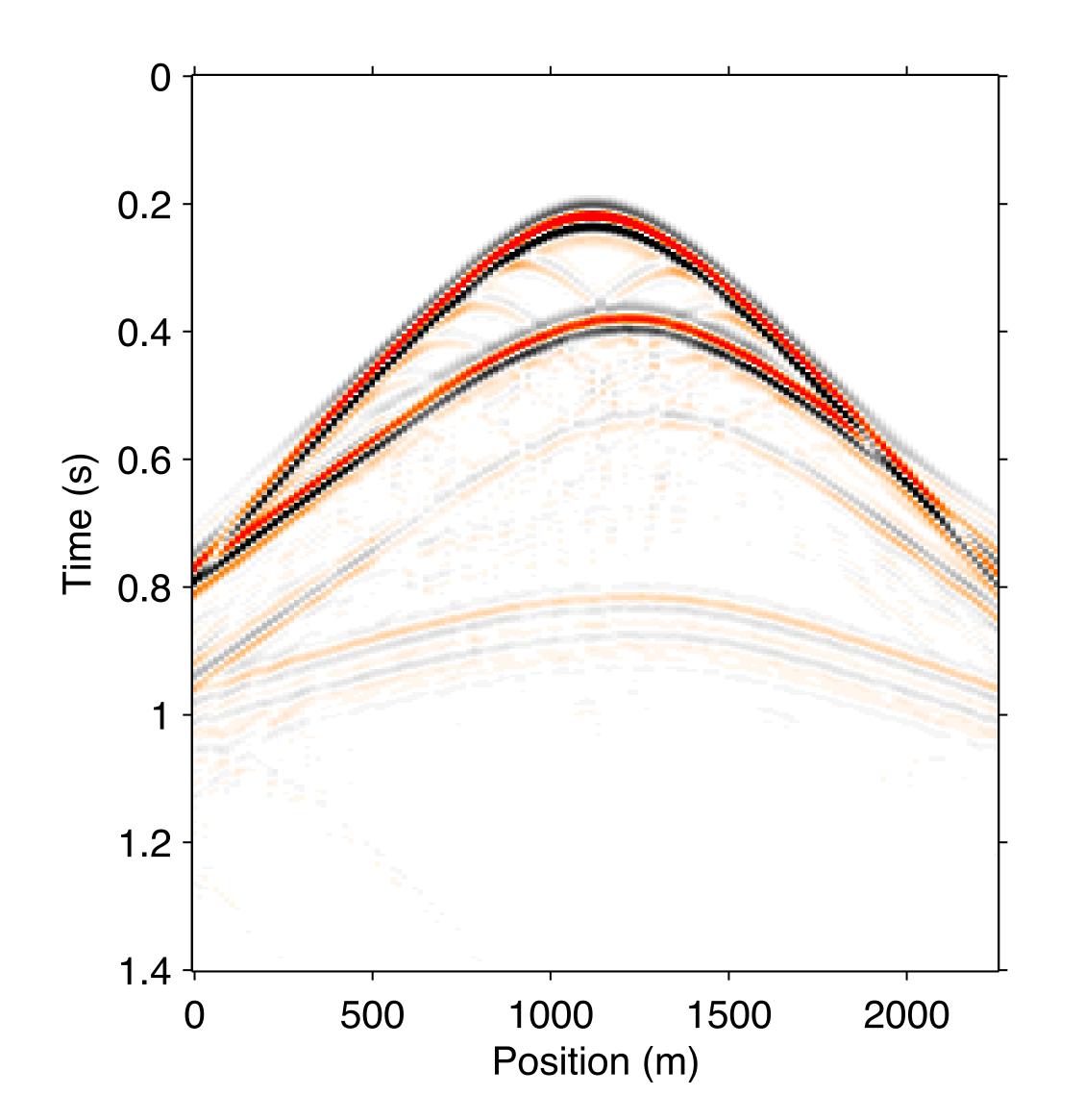


Example



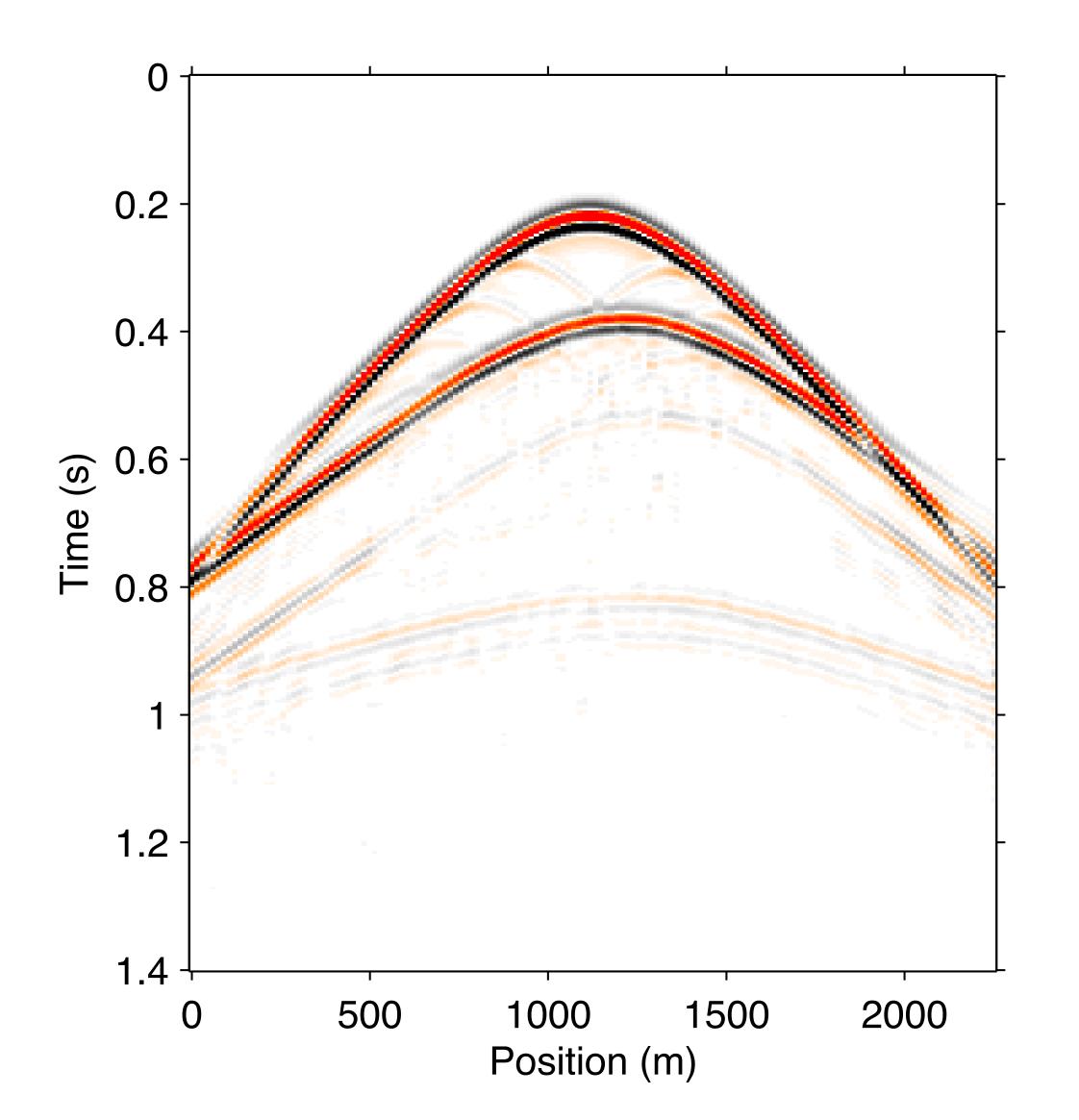
Example





Direct Primary

Solved with plain algorithm from finest scale data



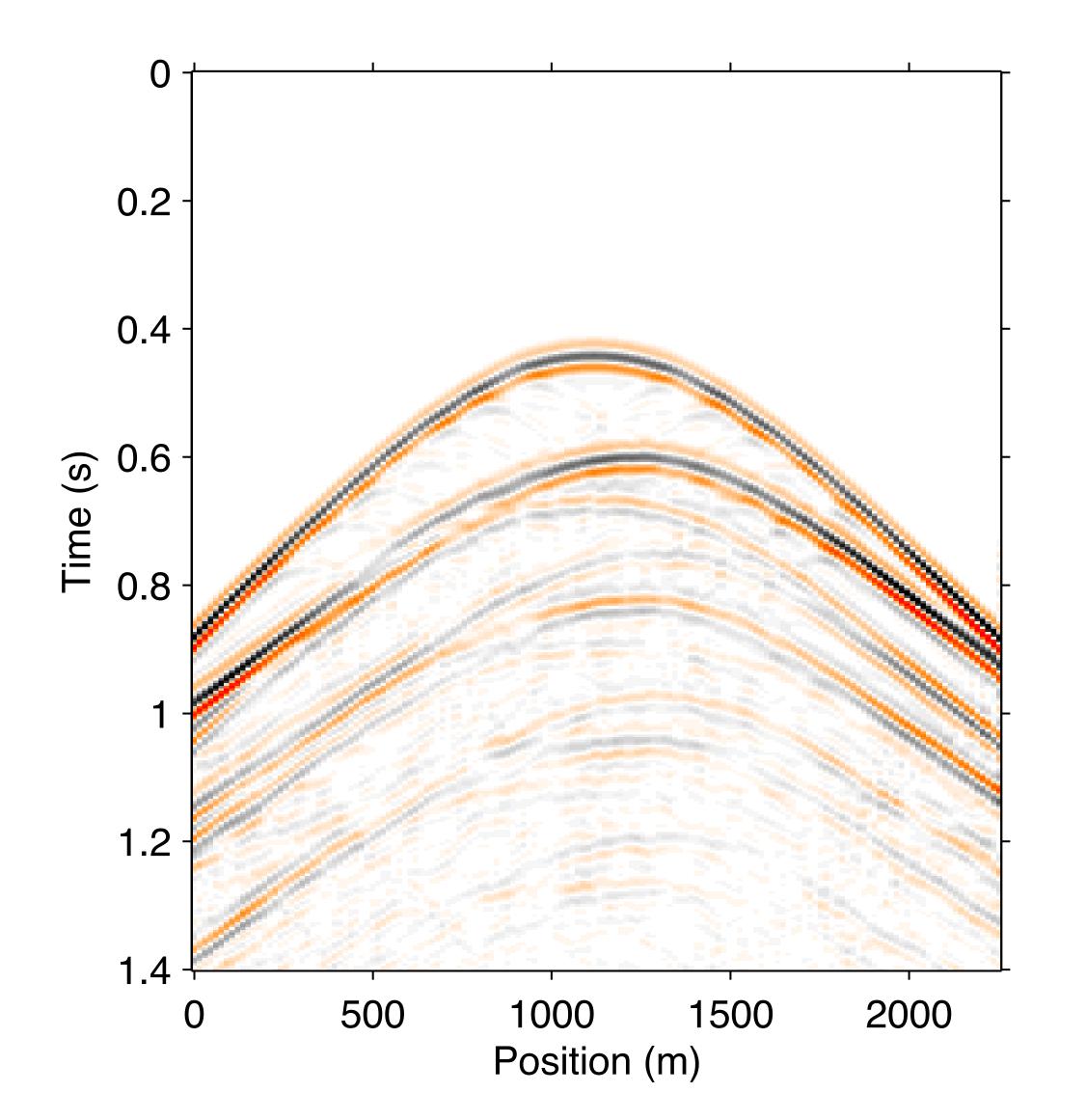
Direct Primary

Solved with spatial sampling continuation dx = 60m > 30m > 15m



Predicted Surface Multiple

Solved with plain algorithm from finest scale data



Predicted Surface Multiple

Solved with spatial sampling continuation

$$dx = 60m > 30m > 15m$$

Significant speedup from bootstrapping (in 2D)

Per-iteration FLOPs cost (one forward/adjoint): $n=n_{
m rcv}=n_{
m src}$

$$\label{eq:cost} \begin{aligned} \mathsf{Cost}(n) &= \mathcal{O}(2n_t n^2 \log n_t) + \mathcal{O}(n_f n^3) \\ &\quad \mathsf{2\,times\,FFT} \end{aligned} \quad \text{computing\,MCG\,\&\,sum\,in\,FX}$$

$$\operatorname{Cost}\left(\frac{1}{2}n\right) = \frac{1}{4}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{8}\mathcal{O}(n_f n^3)$$

$$\operatorname{Cost}\left(\frac{1}{4}n\right) = \frac{1}{16}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{64}\mathcal{O}(n_f n^3)$$

Significant speedup from bootstrapping (in 2D)

Per-iteration FLOPs cost (one forward/adjoint): $n=n_{
m rcv}=n_{
m src}$

$$\label{eq:cost} \begin{aligned} \mathsf{Cost}(n) &= \mathcal{O}(2n_t n^2 \log n_t) + \mathcal{O}(n_f n^3) \\ &\quad \mathsf{2\,times\,FFT} \end{aligned} \quad \text{computing\,MCG\,\&\,sum\,in\,FX}$$

$$\operatorname{Cost}\left(\frac{1}{2}n, \frac{1}{2}n_f\right) = \frac{1}{4}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{16}\mathcal{O}(n_f n^3)$$

Cost
$$\left(\frac{1}{4}n, \frac{1}{4}n_f\right) = \frac{1}{16}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{128}\mathcal{O}(n_f n^3)$$

Significant speedup from bootstrapping (in 3D)

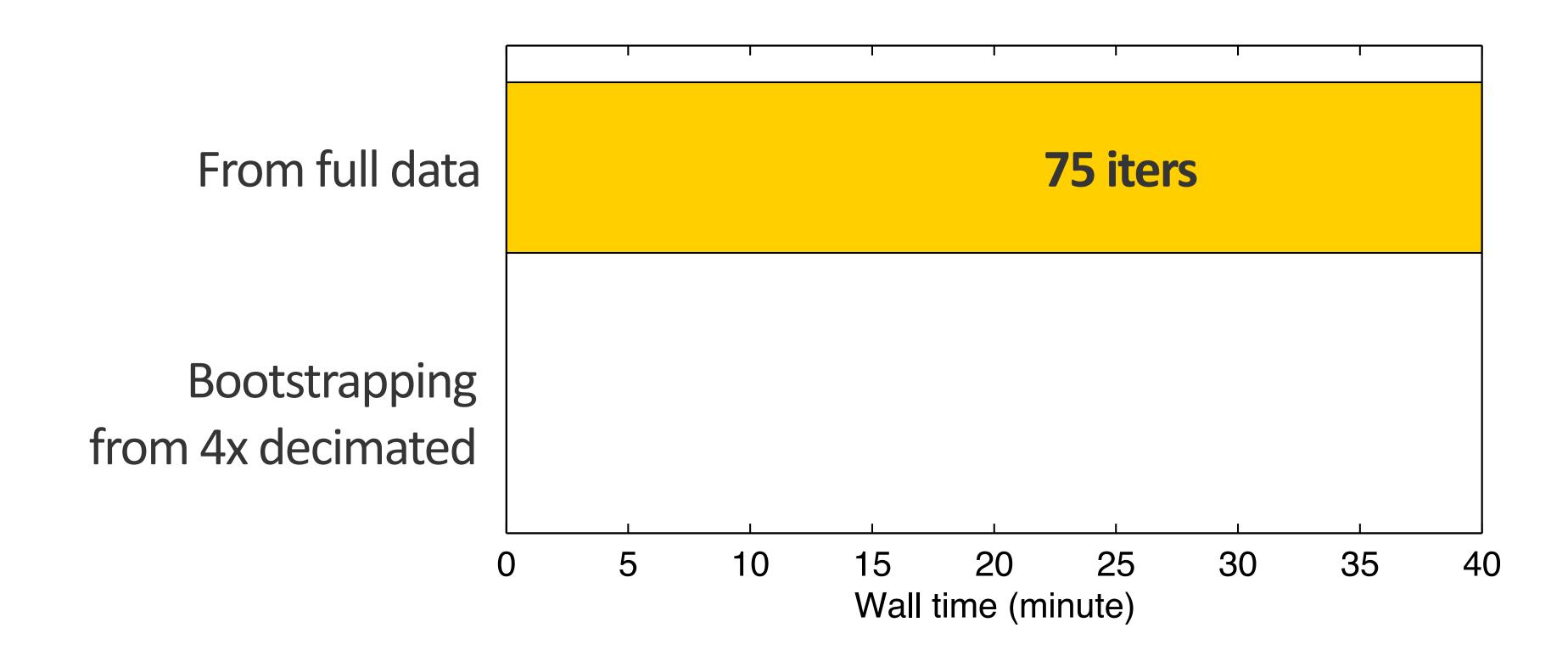
Per-iteration FLOPs cost (one forward/adjoint): $n=nx_{\rm rcv}=ny_{\rm rcv}=nx_{\rm src}=ny_{\rm src}$

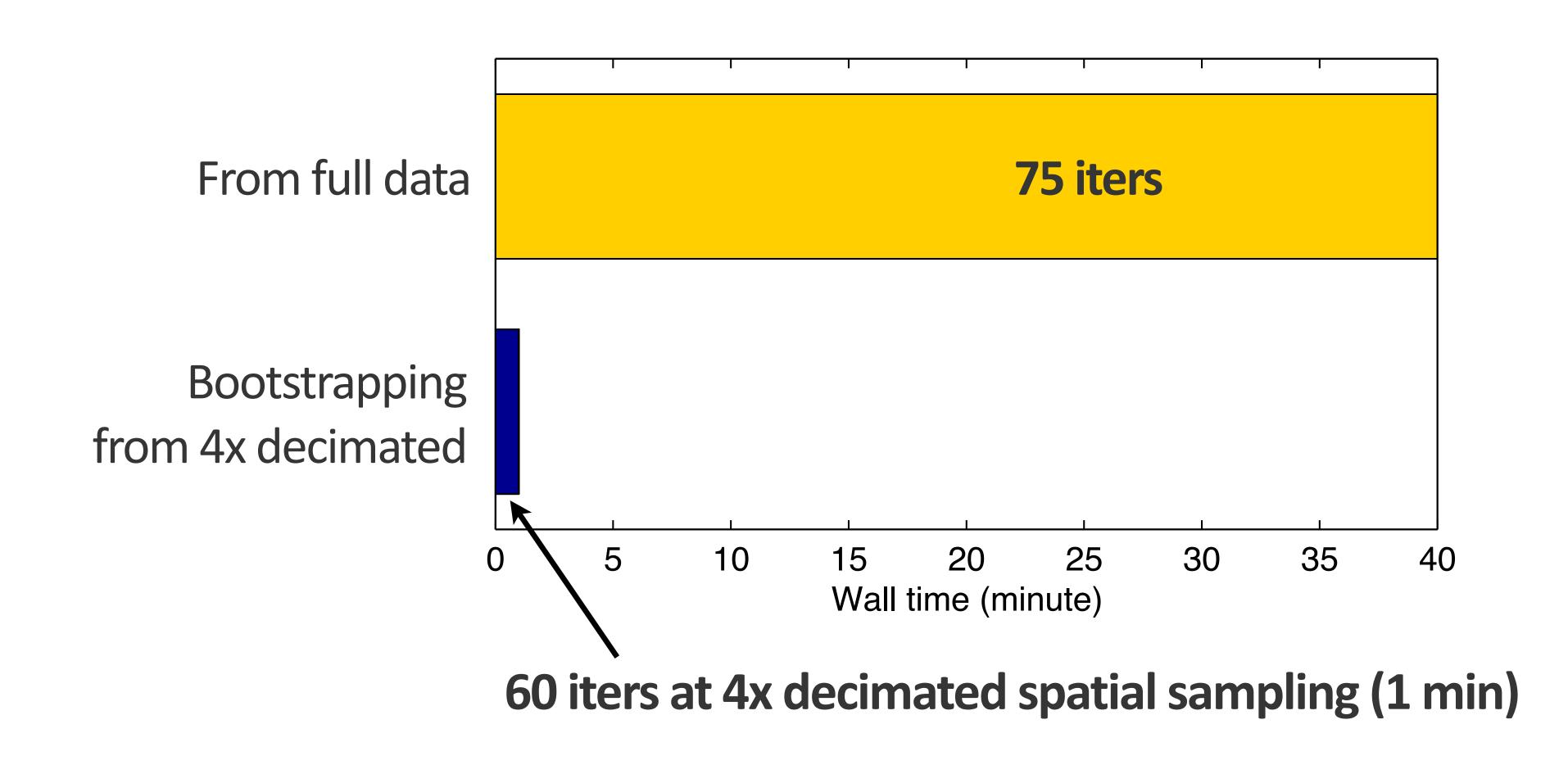
$$\label{eq:cost} \mathsf{Cost}(n) = \mathcal{O}(2n_t n^4 \log n_t) + \mathcal{O}(n_f n^6)$$

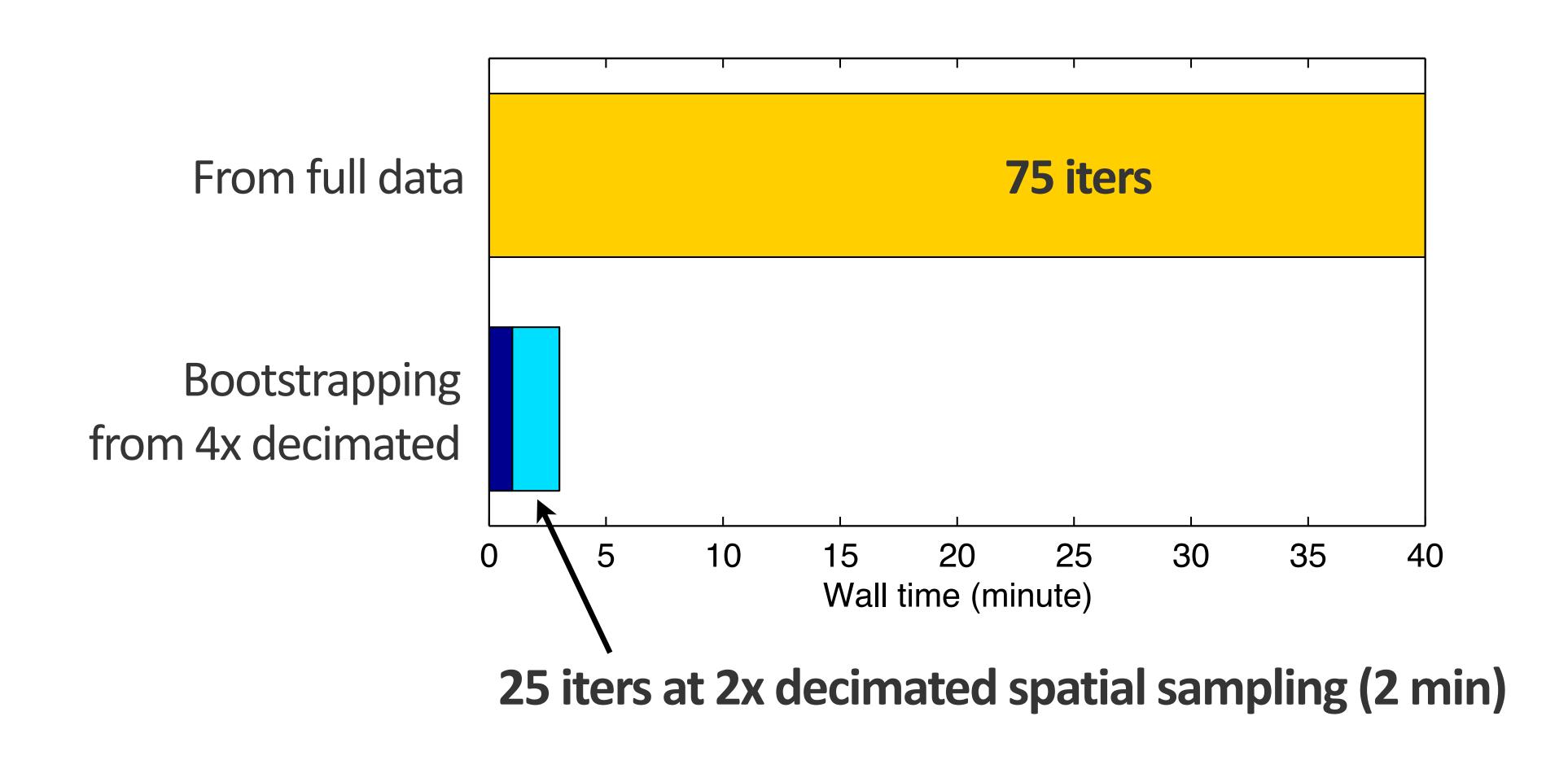
$$\text{2 times FFT} \qquad \text{computing MCG \& sum in FX}$$

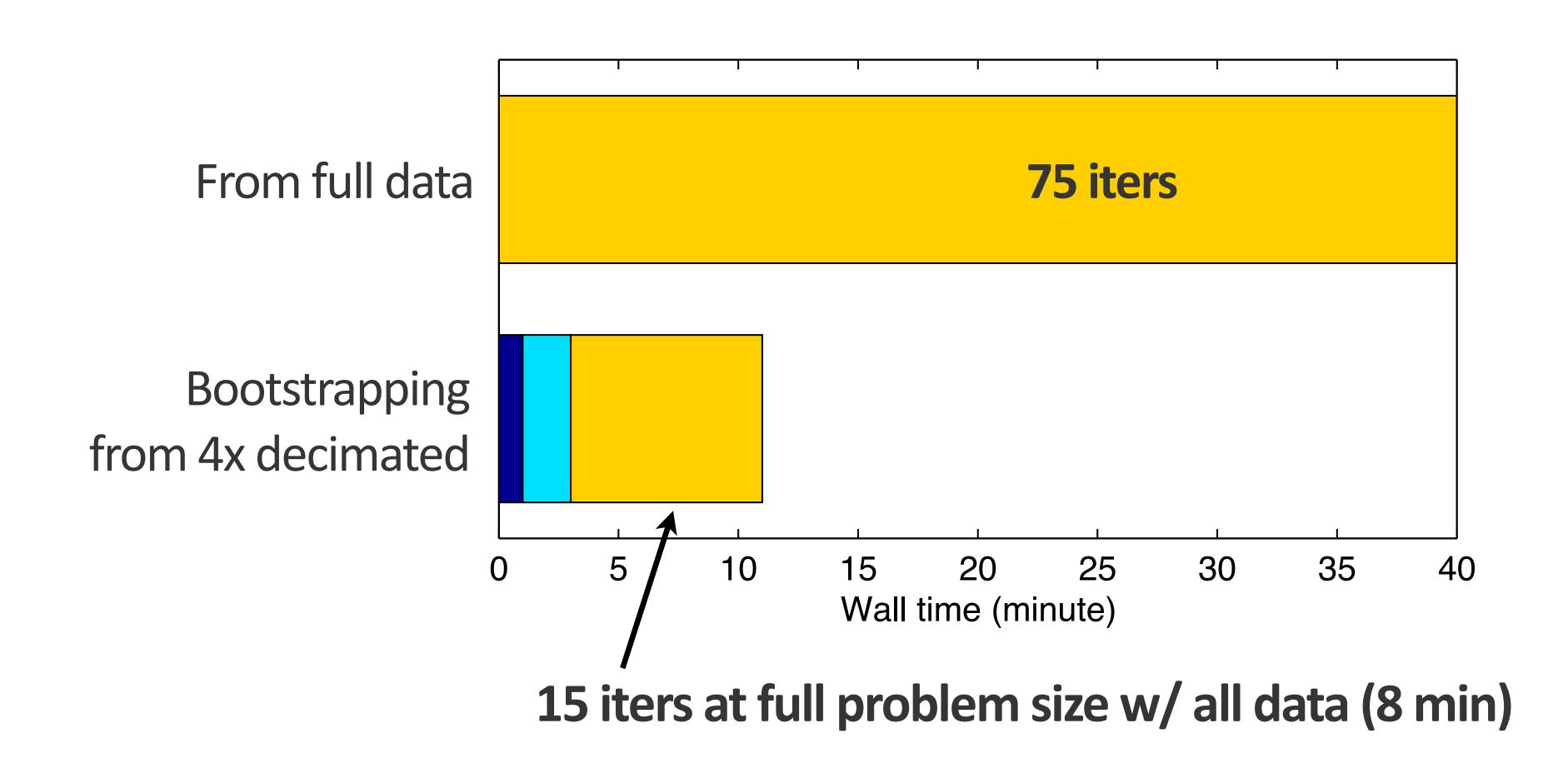
Cost
$$\left(\frac{1}{2}n, \frac{1}{2}n_f\right) = \frac{1}{16}\mathcal{O}(2n_t n^4 \log n_t) + \frac{1}{128}\mathcal{O}(n_f n^6)$$

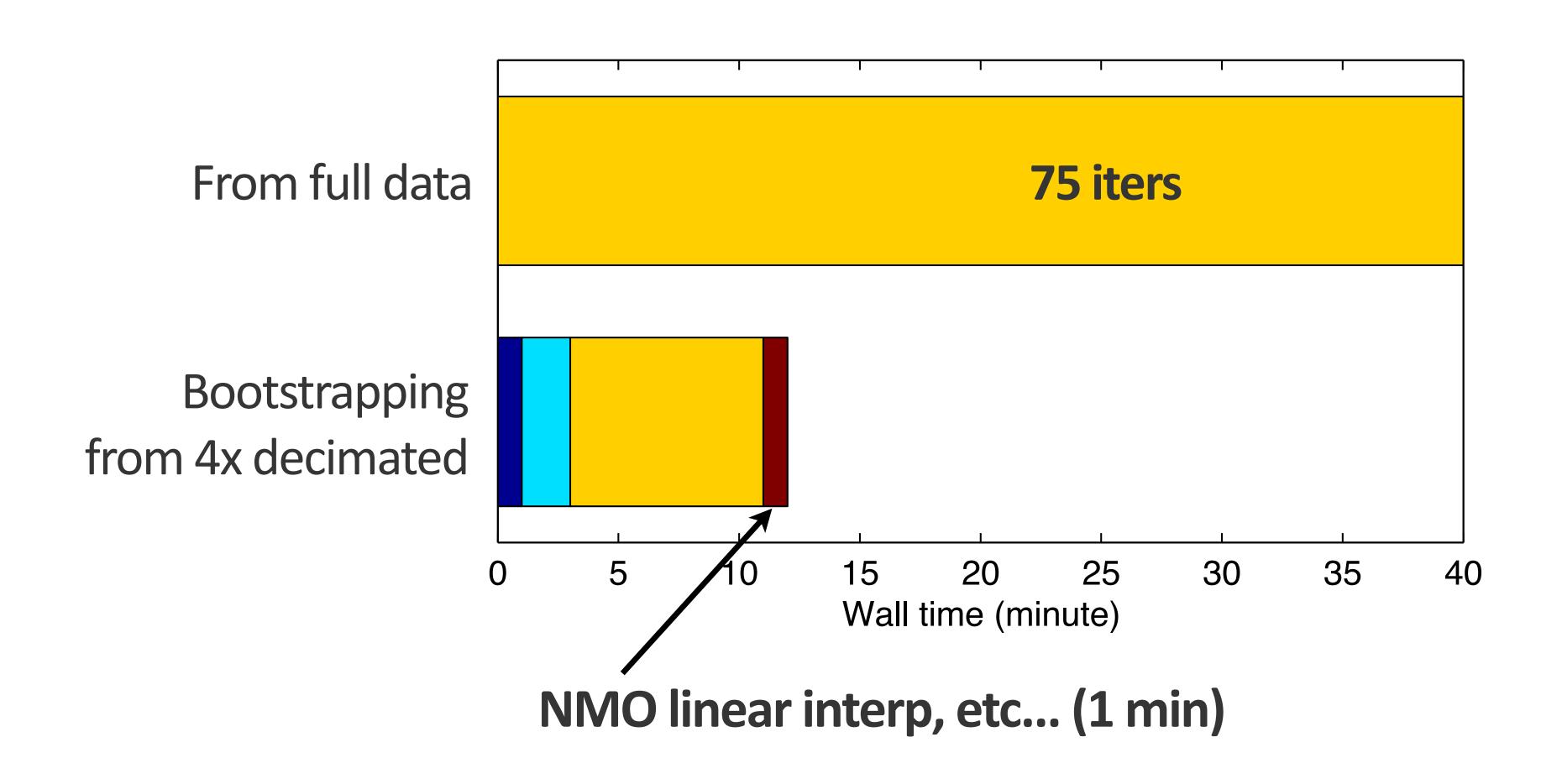
$$\operatorname{Cost}\left(\frac{1}{4}n, \frac{1}{4}n_f\right) = \frac{1}{256}\mathcal{O}(2n_t n^4 \log n_t) + \frac{1}{8192}\mathcal{O}(n_f n^6)$$

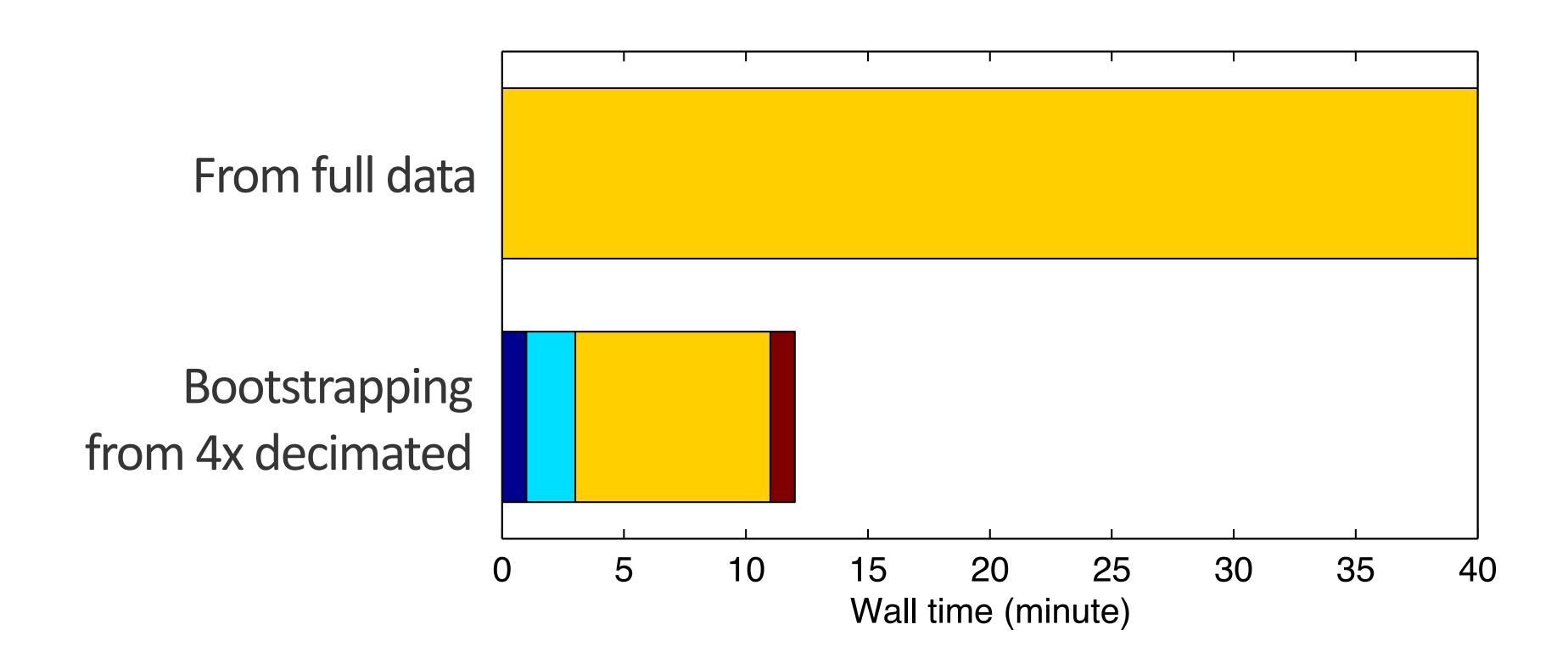






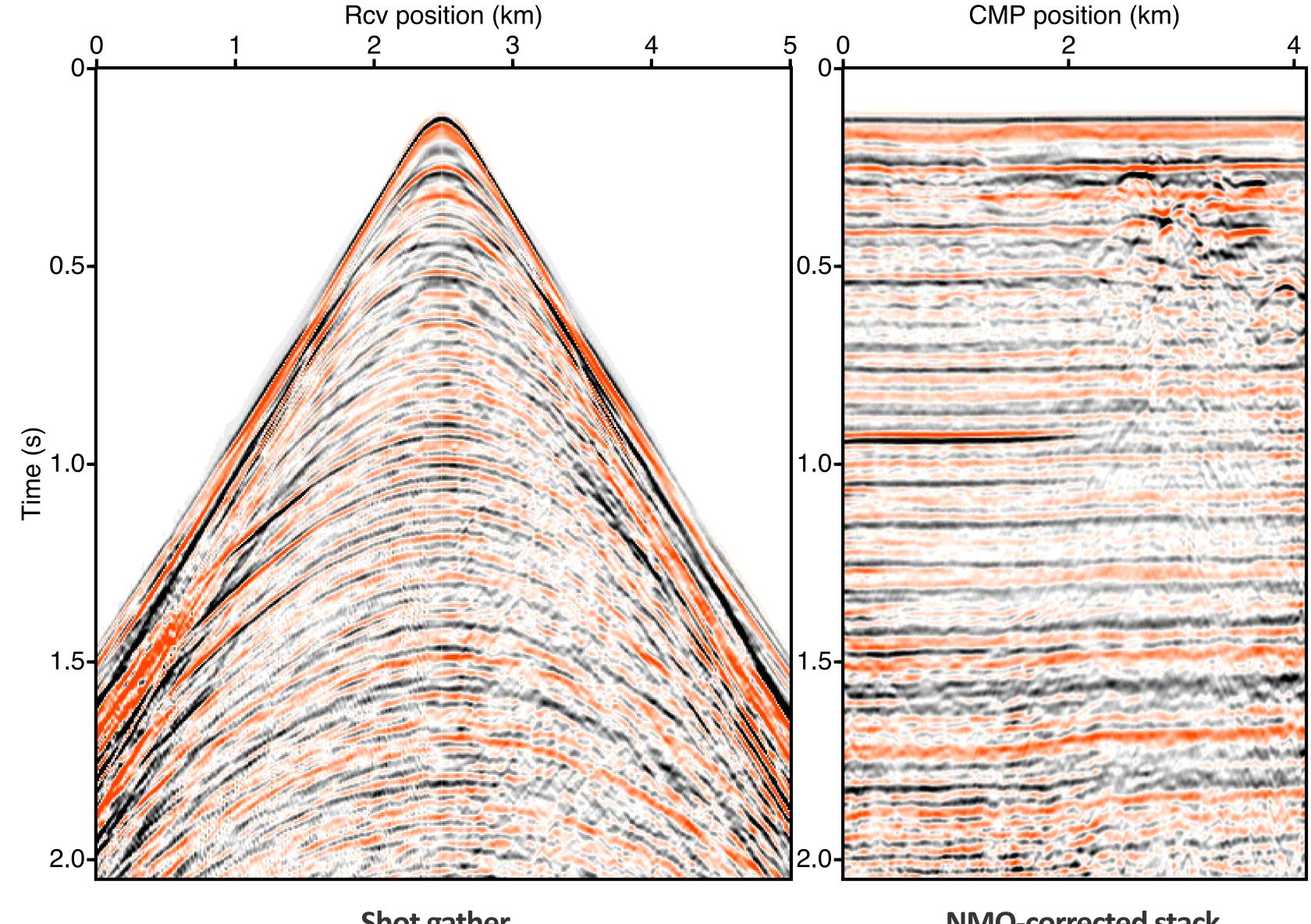






Field data example

North Sea dataset



North sea data

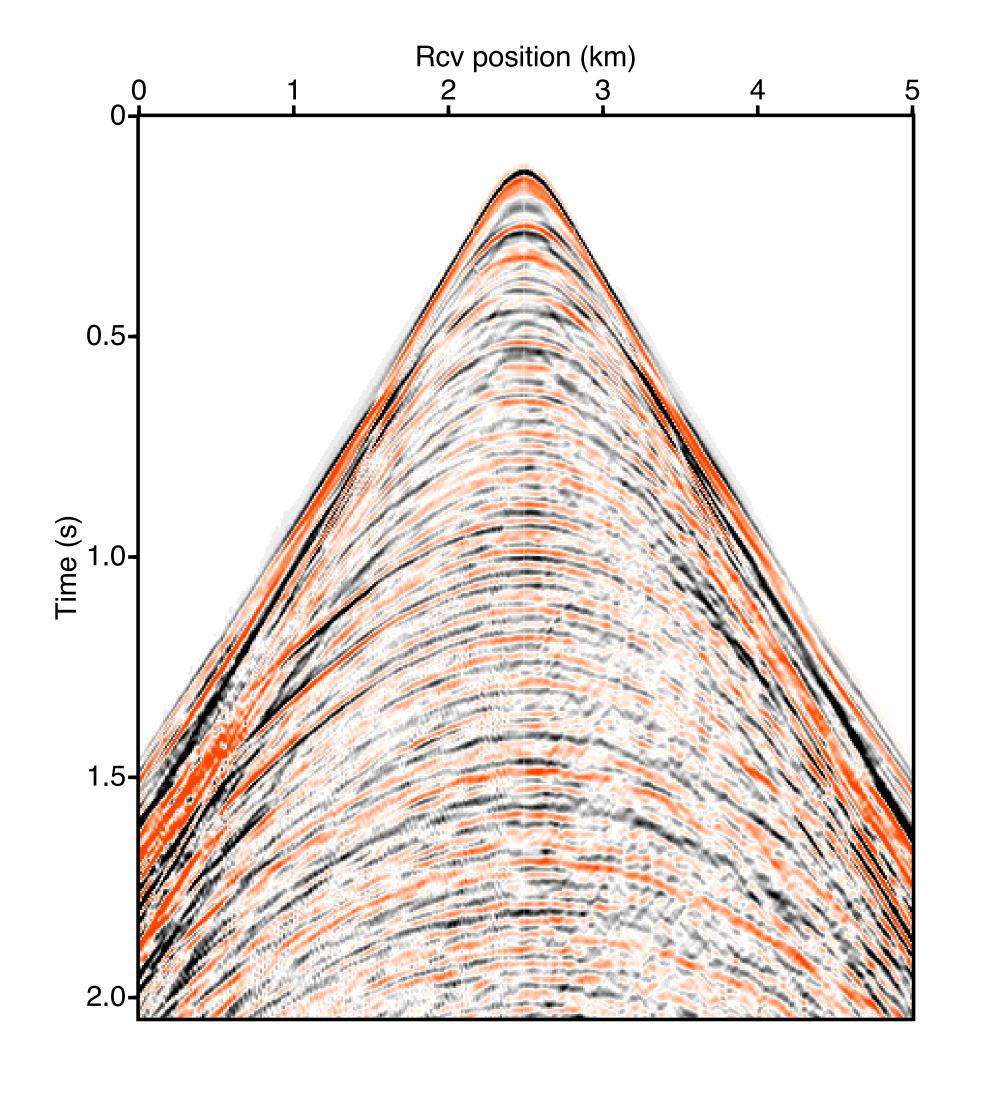
Shot gather and stack

Streamer data (regularized to fixed-spread data) 401 source and reciever 12.5 m spatial grid 4 ms time sampling

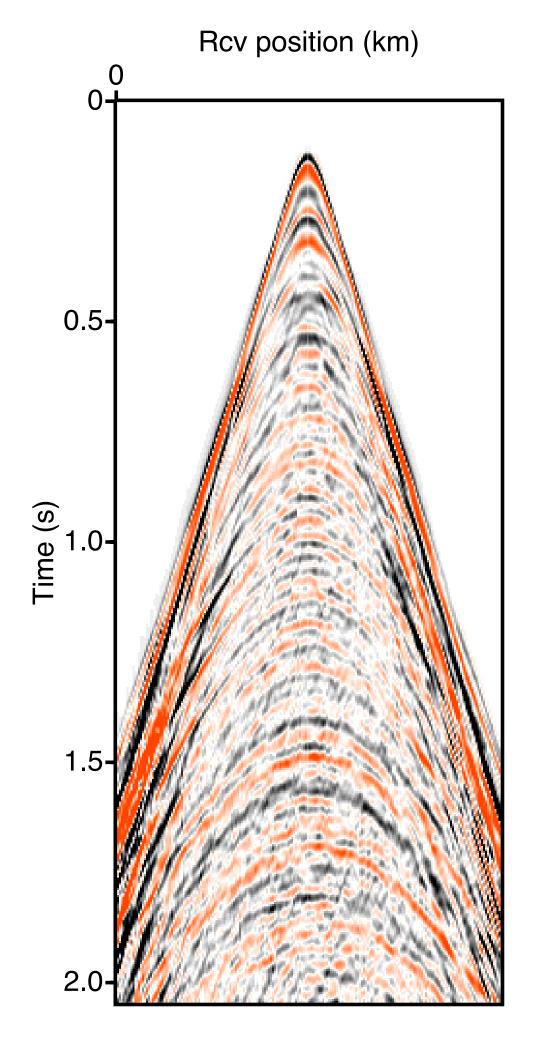
Shot gather

NMO-corrected stack

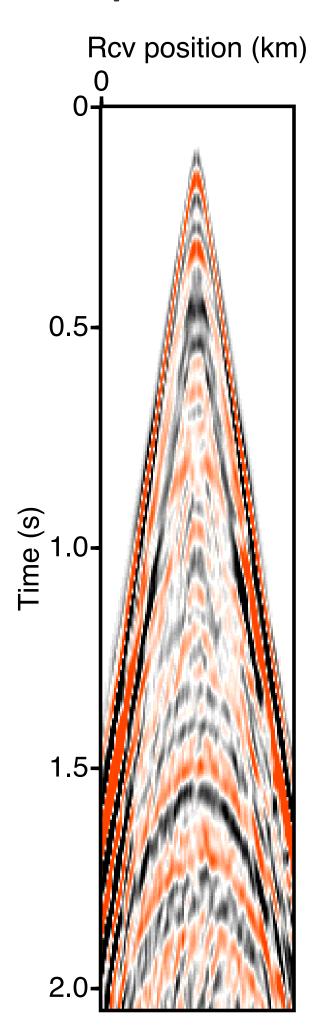
Decimated wavefields



2x decimated lowpass 40Hz



4x decimated lowpass 20Hz



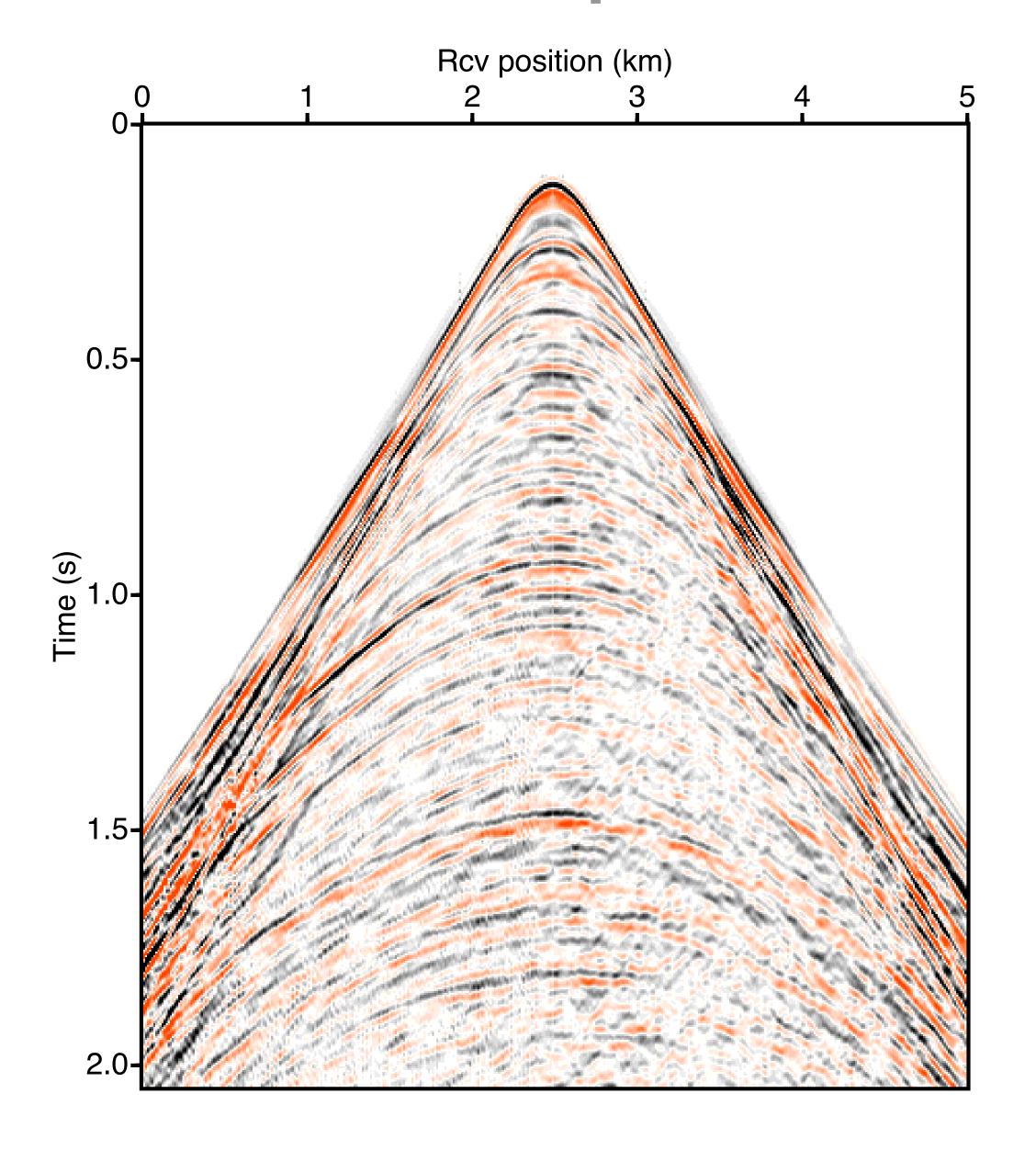
Solution wavefield comparison



Direct Primary

Solved with plain algorithm from finest scale data

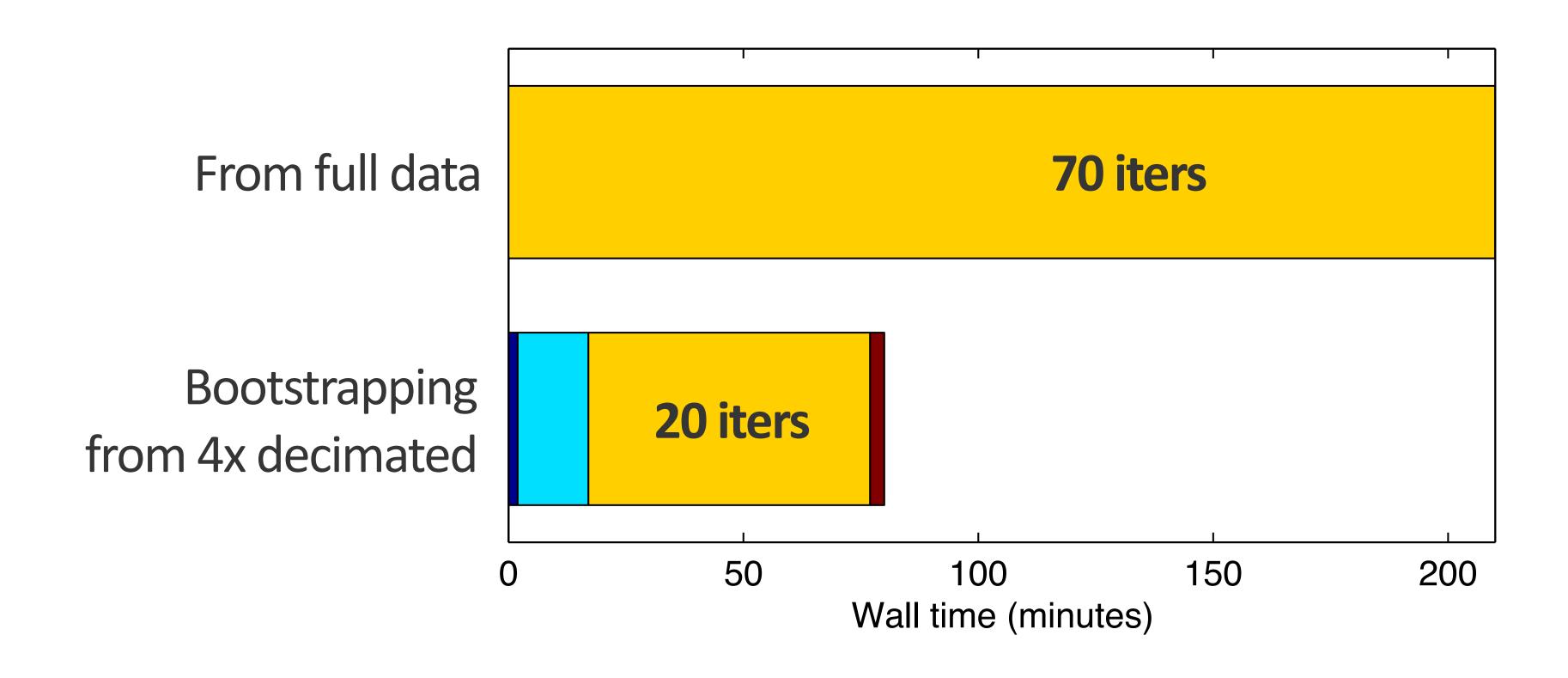
Solution wavefield comparison



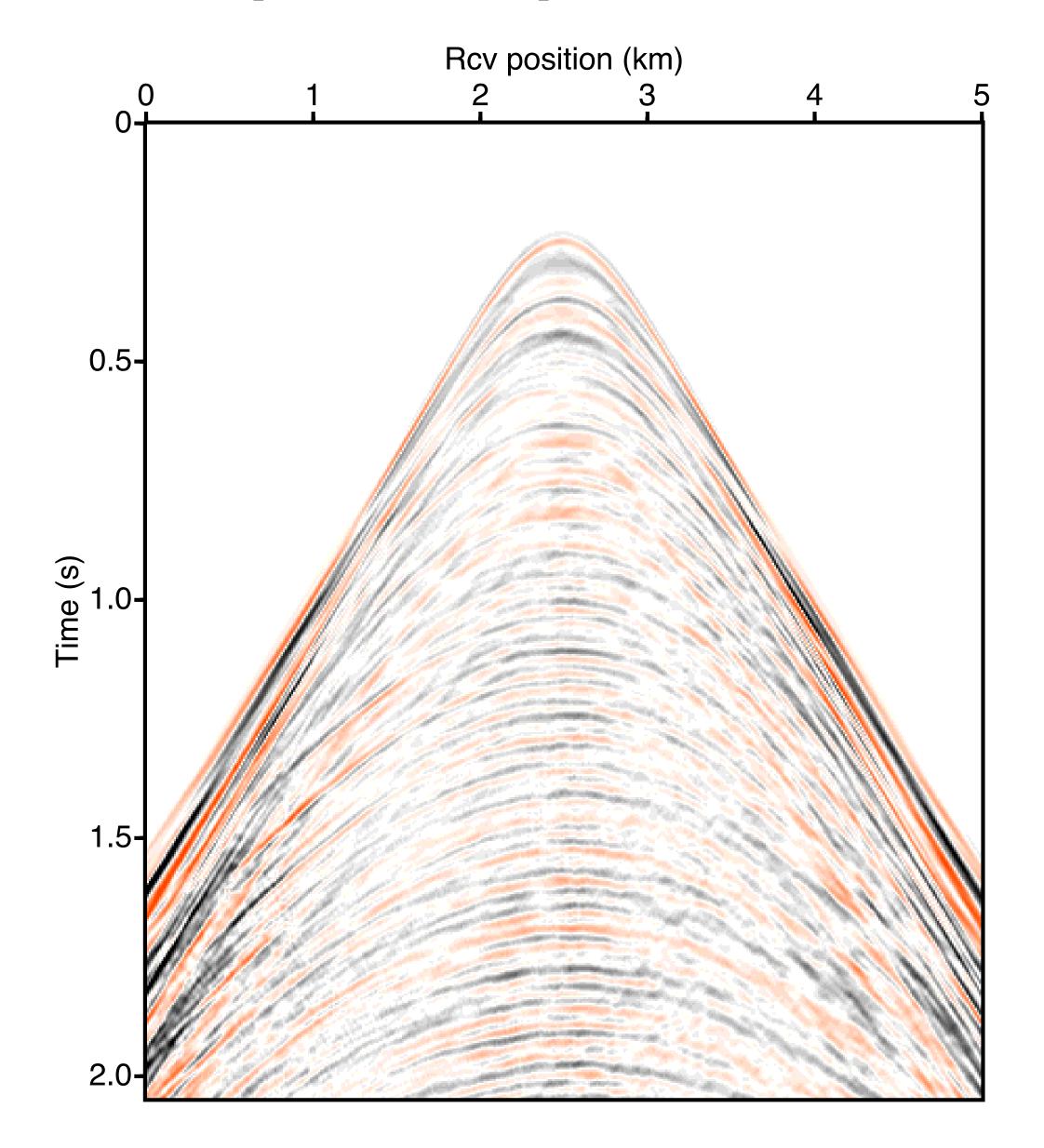
Direct Primary

Solved with spatial sampling continuation dx = 50m > 25m > 12.5m

Runtime breakdown (wall time)



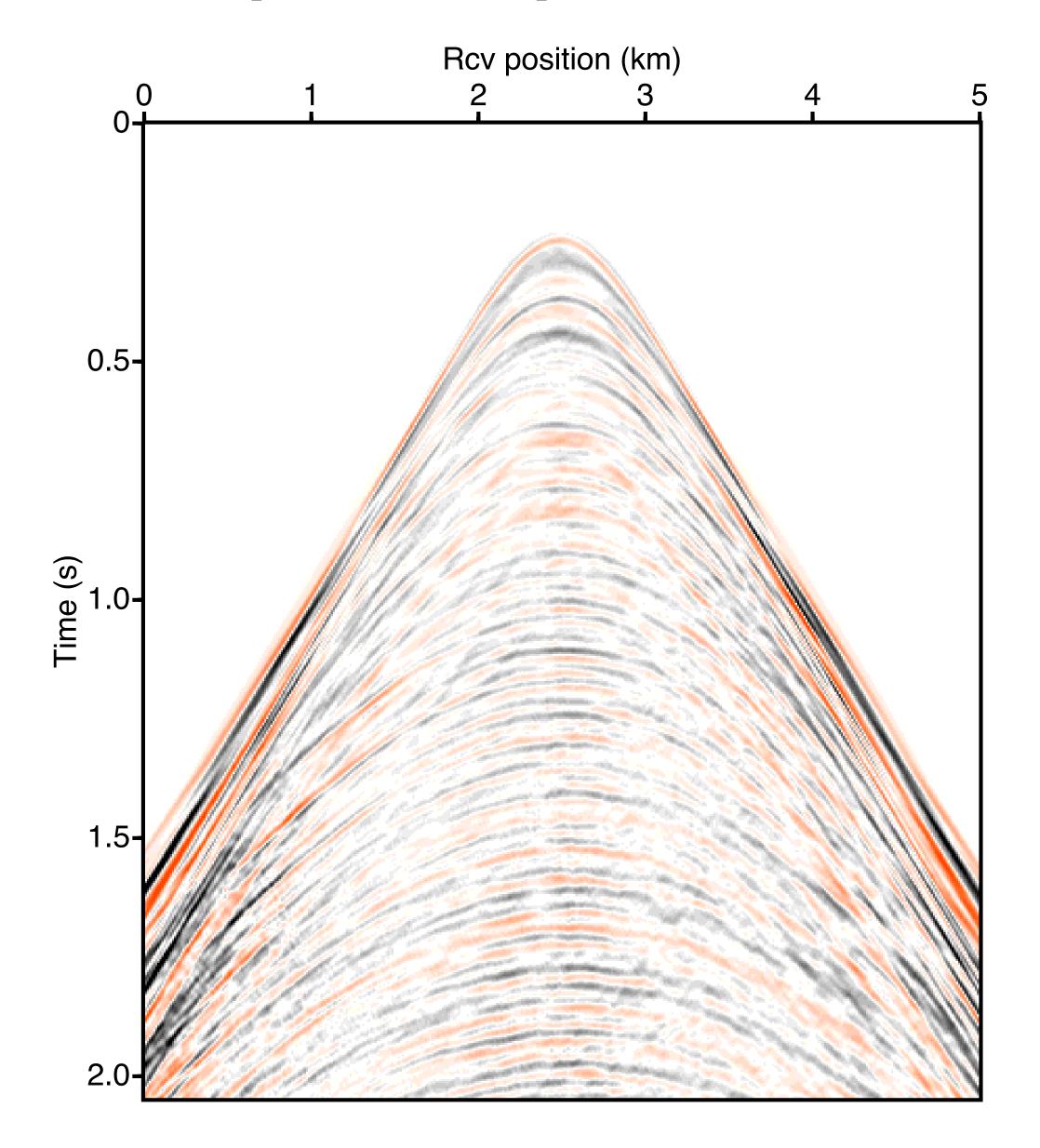
Solution multiple comparison



Predicted Surface Multiple

Solved with plain algorithm from finest scale data

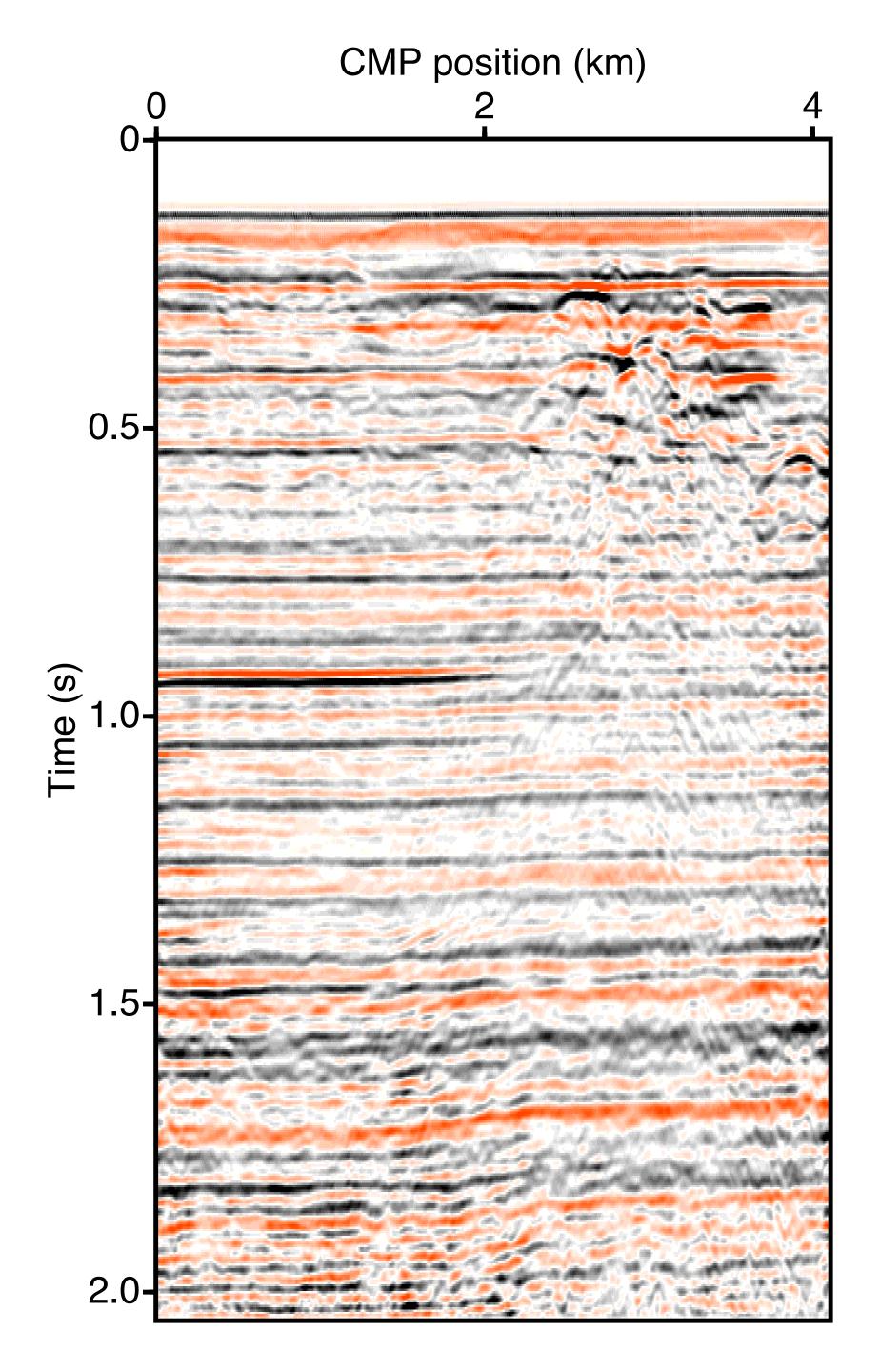
Solution multiple comparison



Predicted Surface Multiple

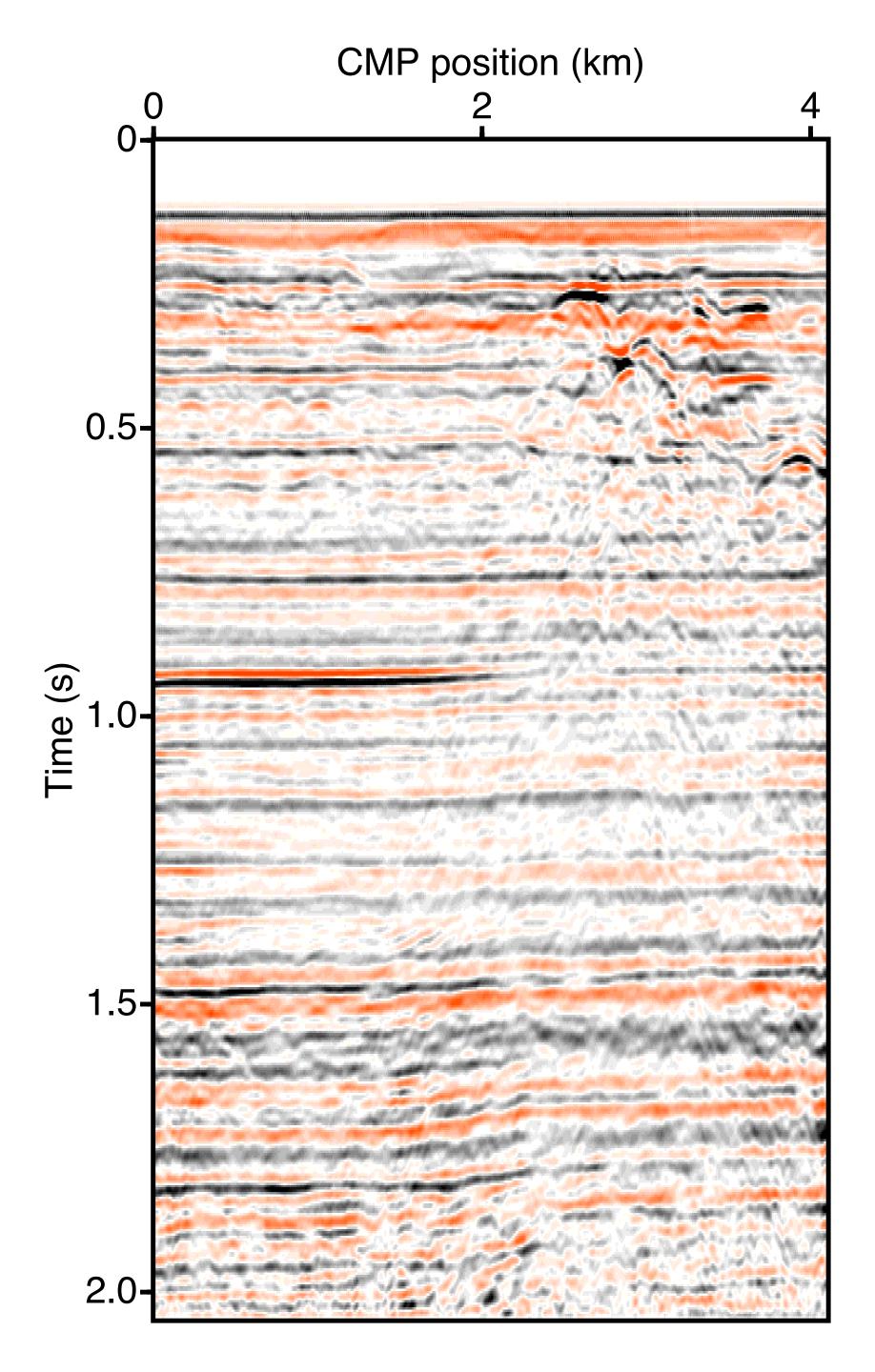
Solved with spatial sampling continuation dx = 50m > 25m > 12.5m

NMO Stack original data



REPSI Primaries NMO Stack

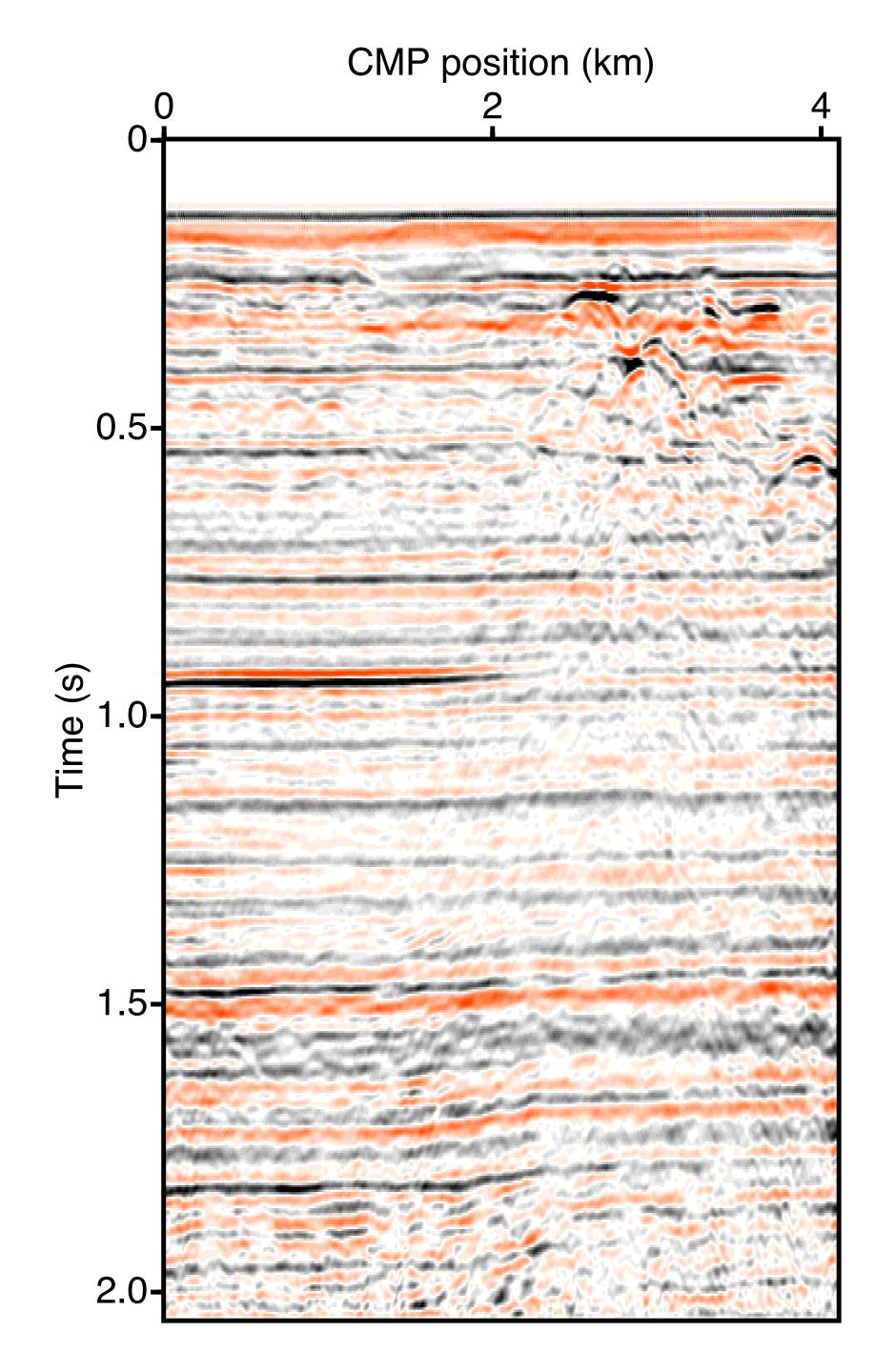
Solved with plain algorithm from finest scale data



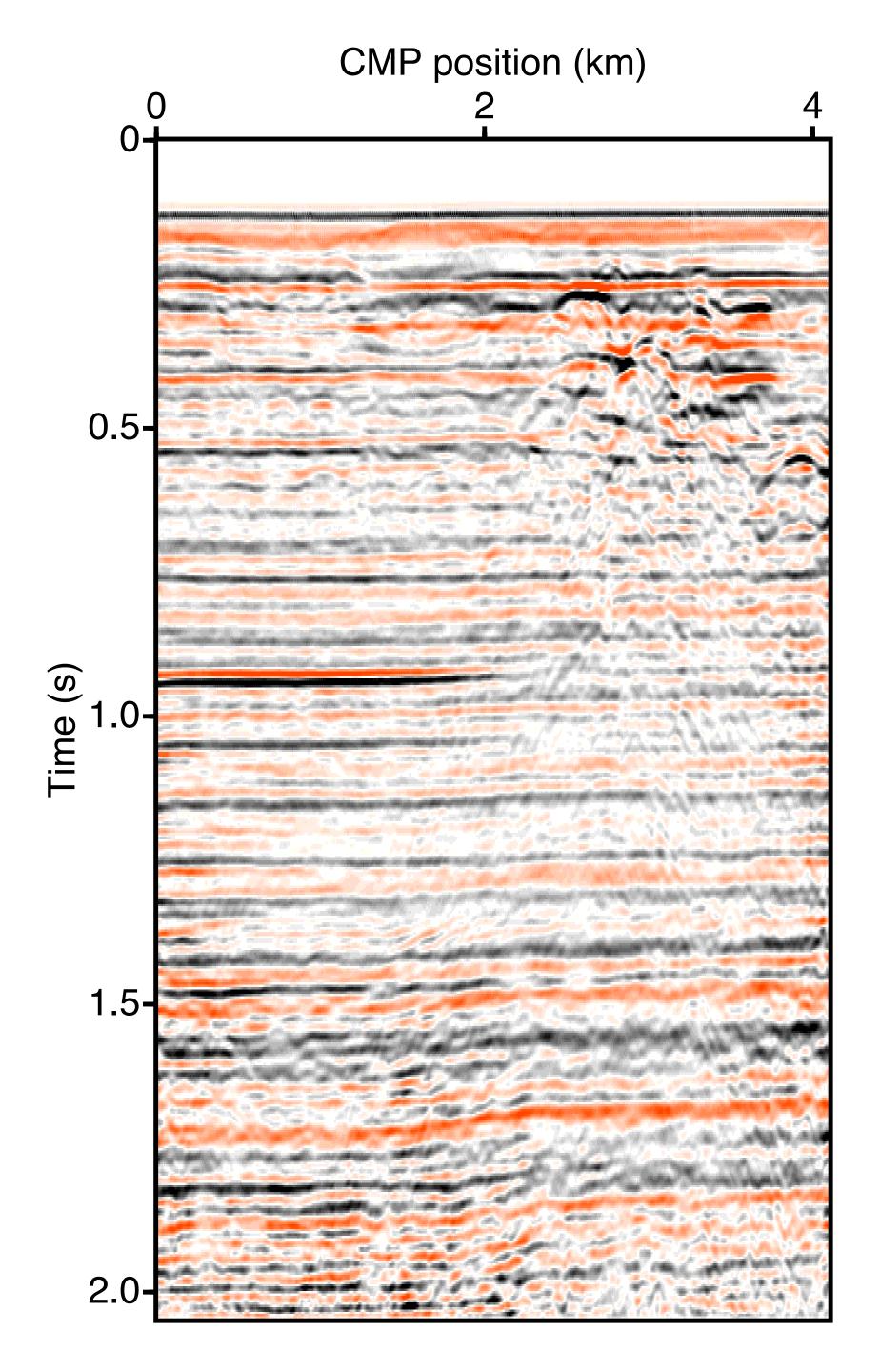
REPSI Primaries NMO Stack

Solved with spatial sampling continuation

dx = 50m > 25m > 12.5m

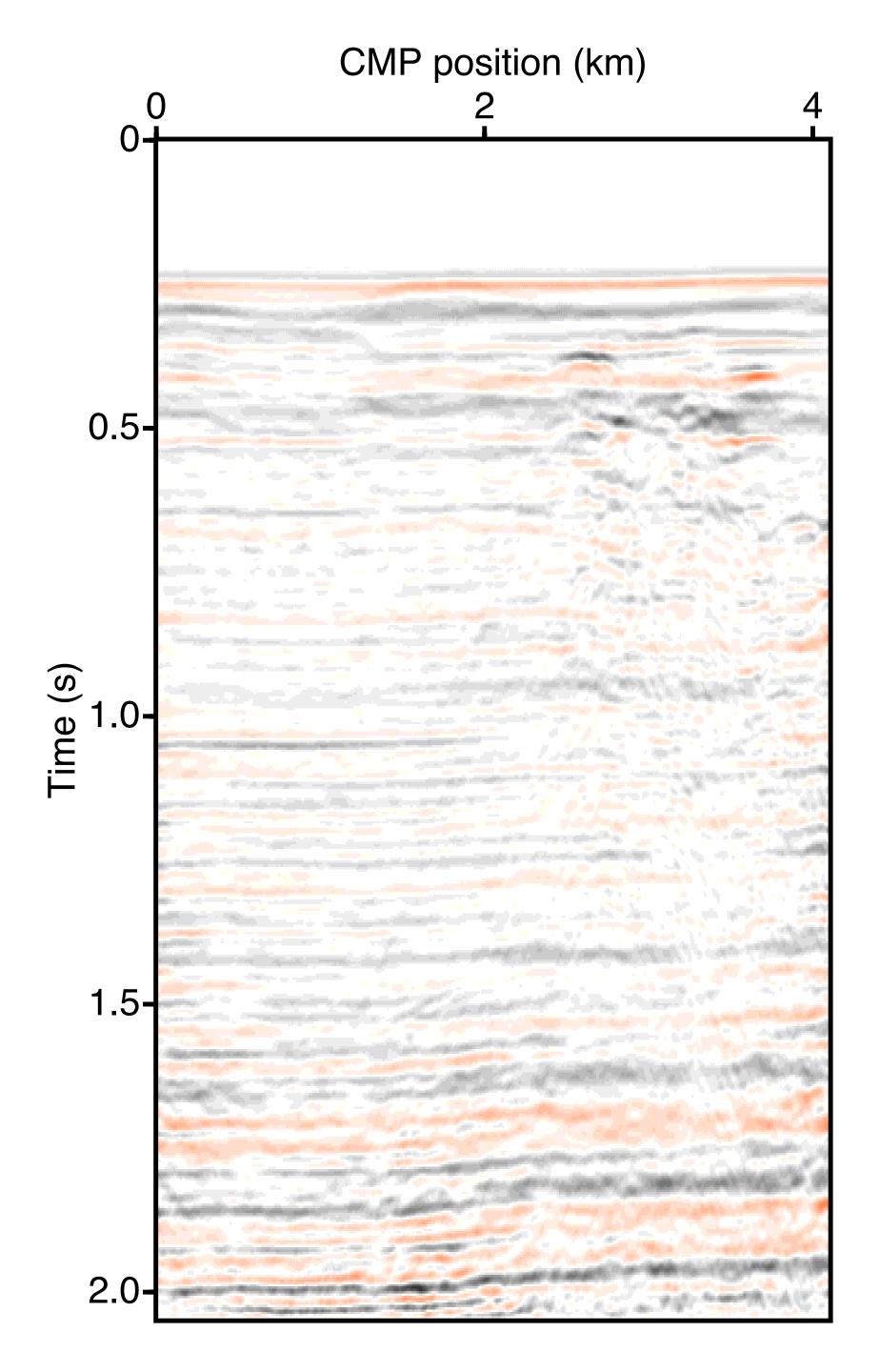


NMO Stack original data



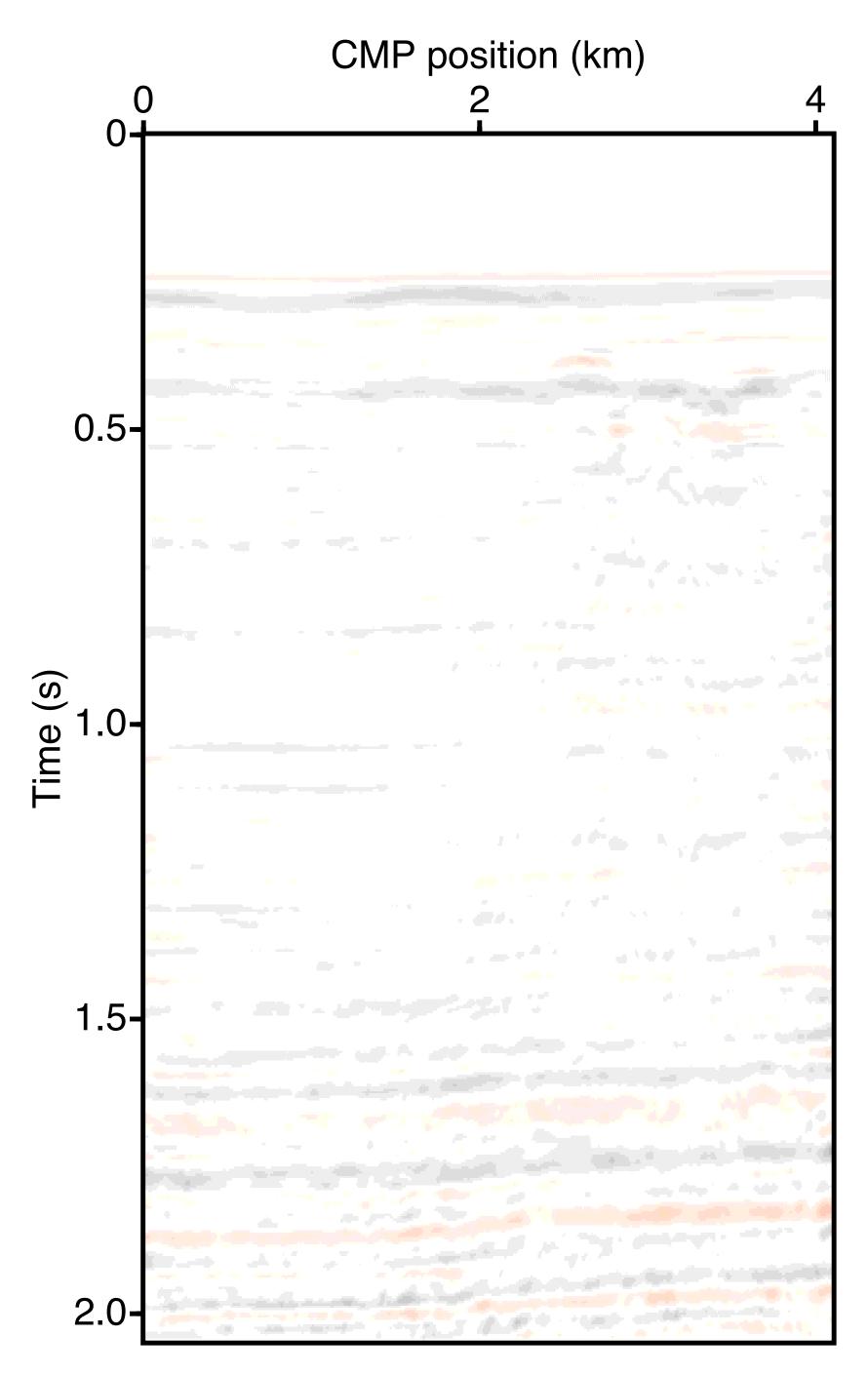
REPSI Multiples NMO Stack

Solved with plain algorithm from finest scale data

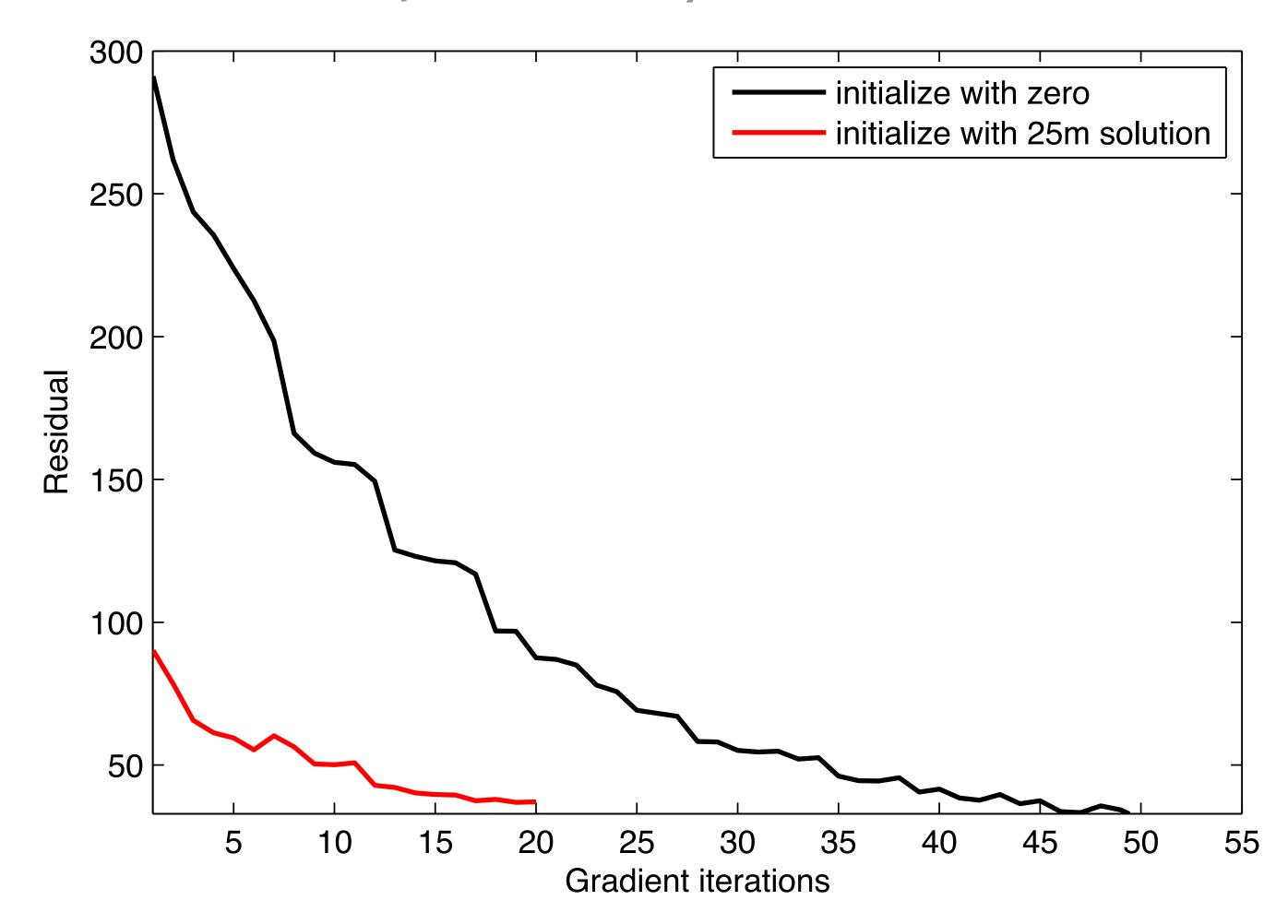


REPSI Multiples NMO Stack

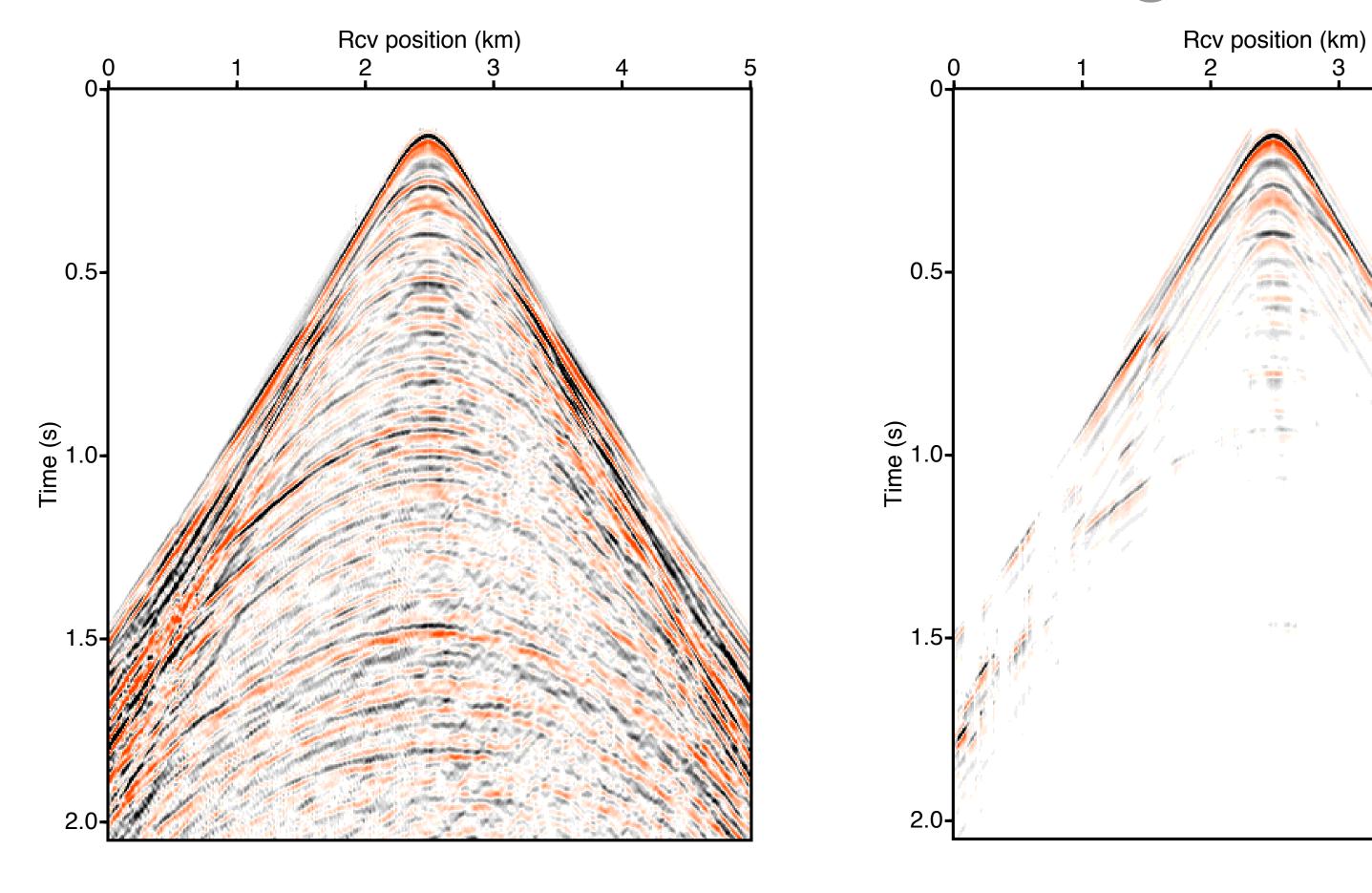
Difference:
plain algorithm
accelerated algorithm



Warm-start vs from zero residual graph (for full scale problem)



Warm-start vs from zero 'G' shot gathers



Acceleration strategy summary

Start REPSI with decimated data, lowpass to avoid spatial aliasing

Once "enough" progress is made, continue with fine-scale data

Significant savings in computation cost, 100x to 200x SRMP becomes more like 20x to 30x

How low can we go? Depends on the ability of sparsity-regularized inversion to resolve wavefronts under reduced bandwidth.

Acknowledgements

- Eric Verschuur and the DELPHI team
- PGS for permission to use the field dataset

CRSNG

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Total SA, WesternGeco, and Woodside.