Robust full waveform inversion:
In which domain should we measure the misfit?

F.J Herrmann, T. van Leeuwen, A.Y. Aravkin - UBC
H. Calandra - Total
Overview

- MAP estimation
- Outliers
- Students T
- Results
- Conclusions
MAP estimation

measurement model:

\[d_i = F_i(m) + n_i \]

posterior likelihood:

\[\pi_{post}(m) \sim \prod_{i=1}^{K} \pi_{noise}(F_i(m) - d_i) \pi_{prior}(m) \]
Maximization of the likelihood

$$\max_m \pi_{\text{post}}(m)$$

is equivalent to

$$\min_m - \log(\pi_{\text{post}}(m))$$
MAP estimation

For Gaussian noise we have

\[\pi_{\text{noise}}(r) \sim \exp \left(-\|r\|^2 \right) \]

which leads to the usual least-squares formulation

\[\min_m \sum_i \|F_i(m) - d_i\|^2 \]
MAP estimation

The use of alternative penalties can be interpreted as using a different noise model

$$\min_m \sum_i \rho (F_i(m) - d_i)$$
MAP estimation

densities & penalties

Gaussian, Laplace and Students T
MAP estimation

data with 50% “bad traces”
MAP estimation

least-squares penalty

recovered model

histogram of residual
MAP estimation

Huber penalty

recovered model

histogram of residual
MAP estimation

Students T penalty

recovered model

histogram of residual
MAP estimation

- Noise does *not* come from Students T distribution
- Use of Students T penalty may still be beneficial
- Noise has to be *spiky*
Outliers

What is an outlier?

t,x ✓ f,x ✓ f,k ✗
Outliers

What *is* an outlier?

- t,x ✔
- f,x ✗
- f,k ✔
Outliers

Measure the misfit in a domain that *sparsifies* the noise

$$\min_{\mathbf{m}} \sum_i \rho \left(B \left(F_i(\mathbf{m}) - \mathbf{d}_i \right) \right)$$

e.g., Fourier, Radon, Curvelets,...
Students T

The penalty is given by

$$\rho(\mathbf{r}) = \sum_{j} \log(1 + |r_j|^2 / \sigma^2)$$

where \(\sigma \) is a scale parameter. The corresponding adjoint source is given by

$$\nabla \rho)_j = \frac{2r_j}{|r_j|^2 + \sigma^2}$$
Students T

Scale parameter is used to separate outliers from good data
• *scale* parameter controls which residuals are ignored
• similar to a *weighted* least-squares approach
• how should we choose σ ?
• what about *source* estimation?
Source estimation

Use variable projection approach on

$$\min_{\mathbf{m}, \mathbf{w}} \sum_i \rho \left(B \left(w_i F_i(\mathbf{m}) - \mathbf{d}_i \right) \right)$$

solve source-weights as

$$\min_{w_i} \rho \left(B \left(w_i F_i(\mathbf{m}) - \mathbf{d}_i \right) \right)$$
Auto-tuning

Extended Students T penalty:

\[
\rho_\sigma(r) = -N \log \left(\frac{\Gamma \left(\frac{\sigma^2 + 1}{2} \right)}{\Gamma \left(\frac{\sigma^2}{2} \right) \sqrt{\pi \sigma^2}} \right) + \frac{\sigma^2 + 1}{2} \sum_{j=1}^{N} \log \left(1 + \frac{r_j^2}{\sigma^2}\right)
\]

find *optimal* \(\sigma \) for a given *residual* by solving

\[
\min_{\sigma} \rho_\sigma(r)
\]
Workflow

1. Forward modeling \(\mathbf{d}^{\text{pred}}_i = F_i(\mathbf{m}_k) \)
2. Estimate source weight (scalar optimization)
3. Compute residual \(\mathbf{r}_i = \mathbf{w}_i \mathbf{d}^{\text{pred}}_i - \mathbf{d}_i \)

4. Estimate scale (scalar optimization)
5. Compute adjoint source \(\tilde{\mathbf{r}}_i = B^* \mathbf{w}_i^* \nabla \rho(B \mathbf{r}_i) \)

7. Compute gradient \(\mathbf{g} = \sum_i \nabla F_i(\mathbf{m}_k)^* \tilde{\mathbf{r}}_i \)
9. update \(\mathbf{m}_{k+1} = \mathbf{m}_k - \lambda \mathbf{g} \)
Results 1

- Marmousi model with *periodic* noise.
- inversion of *single* frequency (4 Hz) with 20 iterations
- Misfit measured in \((f,x)\) or \((f,k)\).
Results 1

no noise:

periodic noise:

\[f-k \]

\[f-x \]
Results 2

Acoustic inversion

v_p [m/s]

v_s [m/s]

v_0 [m/s]

density [kg/m3]
Results 2

Variable density data, no noise

least-squares

Students T (f,x)
Results 2

Data with bad traces

least-squares

Students T (f,x)
Results 2

Elastic data

least-squares

Students $T (f, k)$
Conclusions

- *Robust* inversion works best when noise is *localized*
- Measure misfit in domain in which noise is *sparse*
- *Source* and *scale* estimation can be done *automatically*
- ...