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Fast least-squares imaging with source
estimation using multiples

SLIM



Motivation

e high fidelity, true-amplitude
seismic image by linearized
Inversion

e accurate source signature



How important is the source
wavelet for linearized inversion?
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Linearized inversion with a wrong wavelet



Theory



Least-squares migration with
unknown source wavelet

ém : model perturbation
q :source wavelet spectra a=[q1,- - , gn,]
d; : vectorized primary wavefield
VF;: linearized demigration operator
mo: background model
Q(qi): source wavefield Q(¢) = ¢1



Maijor challenges

e preprocessing to remove coherent
noise such as surface multiples

e expensive simulation cost

e nonlinearity with unknown source
wavelet



Our solutions

e imaging with active contributions
from surface multiples

e using dimensionality reduction
techniques to speed up inversion

o estimating the source wavelet on

the fly



Embracing surface multiples

e imaging primaries and multiples
simultaneously

e removing amplitude/phase ambiguity
using extra information from multiples

e exploiting higher-wavenumber
components in multiples



Tu and Herrmann. 2012

e d; : vectorized total up-going wavefield,
primaries and surface multiples

e Q(¢;) = ;I - D, : generalized source
wavefield containing the total down-
going wavefield



Herrmann and Li, 2012
Tu and Herrmann, 2012
Candes et. al., 2006

Dimensionality reduction

with sparsity promotion

BPDN: minimize ||x||1
X,q

subject to » [|d, — VF;[mg, Q(¢;)]S*x|3 < ¢
1€
frequency: select a random frequency subset
source: forming randomized source aggregates
S*: Curvelet synthesis operator
o :tolerance for noise/modelling error, etc



Aravkin et. al. 2012
van den Berg and Friedlander, 2008

Alternate formulation

LASSO: min » |, — VF;[mo, Q(q:)}8 x|
A ier
subject to ||x|1 < 7

T : sparsity level



Herrmann and Li, 2012
Tu and Herrmann, 2012

Further acceleration by
rerandomization

e We draw a new subsampling operator
for each LASSO subproblem:
» new random subset of frequencies
» new randomized source aggregates

o faster convergence



Source estimation

gnélan — VF;[mo, Q(¢;)]S*x|)3

1€
subject to ||x|[1 < 7

e nonlinear by having two unknowns
e the two unknowns are separable
e alternating optimization



Wavefield matching

Given an X, a least squares solution
for q can be determined:
e primaries only:

~ _ <VF;m,I]S"x,d;>
0i(X) = ~[9F, Ime. 08 =

e with multiples:

N.(X) _ <VF;[m,I|S*x,d;+VF;[mp,D,]S"x>
¢ B |VF; [mOa_]S*XHQ




Aravkin and van Leeuwen 2012

Variable projection

We now solve:
mmZHd — VF;[my, Q(4:(x))]S™x3

1€
subject to ||x|[1 < 7



Example



Courtesy of BG Group

Experiments setup

e synthetic BG Compass model (cropped)

e 209 co-located sources/receivers, 12m
spacing, 6m depth

e linearized data, i.e.,d = VFim

e Ricker wavelet w. 20Hz peak freq.

e 30 composite sources, 15 frequencies in
the inversion, 74X subsampling



Experiments setup
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True perturbation
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True perturbation
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Wavenumber contents

[of fraces from images w. source estimation]
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Estimated wavelet
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Estimated wavelet
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Conclusion

e The use of surface-related multiples
improves both the image resolution, and the
accuracy of estimated source wavelet.

o With sparse constraint and rerandomization,
we greatly reduce the dimensionality of the
system without compromising the image
quality.

e The proposed source estimation works well
in the linearized sparse inversion framework.
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