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Abstract

Many modern seismic data interpolation and redatuming algorithms rely on the promotion of
transform-domain sparsity for high-quality results. Amongst the large diversity of methods and dif-
ferent ways of realizing sparse reconstruction lies a central question that often goes unaddressed:
is it better for the transform-domain sparsity to be achieved through explicit construction of sparse
representations (e.g., by thresholding of small transform-domain coefficients), or by demanding that
the algorithm return physical signals which produces sparse coefficients when hit with the forward
transform? Recent results show that the two approaches give rise to different solutions when the
transform is redundant, and that the latter approach imposes a whole new class of constraints related
to where the forward transform produces zero coefficients. From this framework, a new reconstruc-
tion algorithm is proposed which may allow better reconstruction from subsampled signaled than
what the sparsity assumption alone would predict. In this work we apply the new framework and
algorithm to the case of seismic data interpolation under the curvelet domain, and show that it ad-
mits better reconstruction than some existing L1 sparsity-based methods derived from compressive
sensing for a range of subsampling factors.



Introduction
The recognition of the role of sparsity in the representation of seismic data under redundant transform
domains, such as windowed Fourier, contourlets, curvelets, etc., have led to a well-developed field of
inversion-based non-parametric seismic data interpolation methods (Abma and Kabir, 2006; Herrmann
and Hennenfent, 2008; Li et al., 2012), where missing seismic traces in a record can be recovered with-
out a-priori knowledge of the subsurface. While much work has been done on the specifics of the
transform and the algorithms used to promote sparse representations, an interesting question remains
unaddressed: is it better for the transform-domain sparsity to be achieved through explicit con-
struction of sparse representations (e.g., by thresholding of small transform-domain coefficients),
or by demanding that the algorithm return physical signals which produces sparse coefficients
when hit with the forward transform? This is related to the well-known “synthesis or analysis” prob-
lem in signal processing. Most works on this topic indadvertedly prefer one over the other without much
discussion of their relative merits. Some recent studies have implied that the latter “analysis-based”
approach poses a stronger condition on the solution through, and potentially achieves better recovery
from signal subsampling than approaches based on explicit construction of sparse coefficients. The re-
sulting theory of cosparsity provides new recovery guarantees and algorithms for the analysis problem.
We apply this finding to the problem of curvelet-based seismic data interpolation, and demonstrate an
improved interpolation result using an algorithm based on the cosparsity framework.

Theory
The goal of seismic interpolation is to invert the under-determined system, y = Rf+n where f is the
fully-sampled seismic signal, y the observed data, n some zero-meaned noise and R is a restriction
operator that removes unobserved traces. For the sake of simplicity, we assume in this work that the
observations lie exactly on the reconstruction grid. To obtain a unique solution, additional regularization
has to be imposed in a way that favors the recovery of the correct fully-sampled seismic record.

Assuming that the full seismic signal f permits a sparse (or compressible) representation through a
transform domain defined by a synthesis operator S (a linear mapping of coefficients to physical signal),
compressive sensing theory shows that it is possible to reconstruct f from y without any additional in-
formation such as subsurface velocities, depending on the particular properties of R and S (Herrmann,
2010). This led to an approach called Curvelet Recovery by Sparsity-promoting Inversion (CRSI, Hen-
nenfent, 2008), where S := CT is the inverse Curvelet transform, and the solution is obtained by solving

f̃ = S · argmin
x
‖x‖1 subject to ‖y−RSx‖2 ≤ σ , (1)

where ‖x‖1 := ∑i |xi| is the `1-norm of the coefficients, and σ is some predetermined noise level. This
optimization problem is often referred to as “`1 synthesis” signal reconstruction, as it relies the possibil-
ity of constructing a sparse model of the signal through synthesis operator.

Alternatively, an “`1 analysis” problem may be formulated that relies on the analysis operator Ω of a
transform domain (mapping physical signals to coefficients). Its analogue of CRSI defines Ω := C as
the forward Curvelet transform, and solves

f̃ = argmin
f
‖Ωf‖1 subject to ‖y−Rf‖2 ≤ σ . (2)

This formulation appeared recently in Li et al. (2012). Surprisingly, these two forms often appear as
interchangeable approaches in literature, even though it is known that they lead to different solutions
for most choices of Ω and S (Elad et al., 2007). In fact, we can only assume that (1) and (2) give the
same solution when we impose an additional constraint x = ΩSx on (1). This is trivial when Ω and S
are respectively the forward and inverse of an orthonormal transform (where the two approaches will
equate by definition), but is not generally true when using redundant transforms. For curvelets, this
would necessitate x = CCT x, which is not true for most choices of x. It is thus evident that the analysis
problem poses more constraints on the solution compared to the synthesis problem, and the findings of
Li et al. (2012) seem to indicate that there is a small uplift from using the analysis approach.
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The cosparsity model for analysis problems: Rigorous analysis of `1 synthesis, such as recovery
guarantees, had been better-developed than `1 analysis due to its association with the standard form of
compressive sensing problems. A significant development for analysis problems emerged recently form
the insights of Nam et al. (2013), which investigated the signal recovery guarantees of

f̃ = argmin
f
‖Ωf‖0 subject to ‖y−Rf‖2 ≤ σ , (3)

where the `0 term measures the absolute number of non-zero coefficients in Ωf. They found that by only
looking at the zeros of Ωf, they can derive signal recovery guarantees from undersampled signals from
the solution of (3), in a similar fashion to the role of sparsity in synthesis problems and compressive
sensing. The authors coined the name of “cosparsity” of signal f for the number of zeros present in Ωf.
In general, cosparsity is a more powerful condition than sparsity, as the zero-elements of Ωf specify a
subspace from which f must be orthogonal to.

Although it is well-known from compressive sensing that the `1-norm is a good heuristic for sparsity
in signal recovery problems, it is not clear whether the same property holds true for cosparsity. The
authors therefore proposed a greedy algorithm that attempts to solve equation 3, otherwise a com-
binatorial problem, called Greedy Analysis Pursuit (GAP). The goal of GAP is to sequentially re-
move one or more rows of Ω that form large inner-products with f, until the reduced operator ΩΛ,
where Λ is the subset of row indices remaining from the full N number of rows, produces coeffi-
cients close to zero in a regularized least-squares problem minx ‖ΩΛx‖2 s.t. ‖y−Rx‖2 ≤ σ . The
rate of removal of rows from Ω is controlled by a selection factor t. Notably the authors have re-
ported that using GAP a large improvement in signal recovery from undersampling can be seen com-
pared to solving the `1 analysis problem (using standard convex optimization solvers). In the next
section, we apply the GAP approach to solving CRSI-type problems for seismic data interpolation.

Algorithm 1: Greedy Analysis Pursuit (GAP)

Result: Approximate solution f̃ to the `0 analysis problem (Equation 3)
choose noise level σ , selection factor 0 < t ≤ 1, stopping coefficient size ρ

initialize iteration counter k← 0, row index set for analysis operator Λ0← {1,2,3, . . . ,N}
f̃0← argminx ‖Ωx‖2 subject to ‖y−Rx‖2 ≤ σ

repeat
obtain coefficients: x ← Ωf̃k
find the indices of the largest entries of x: Γk+1 ← {i : |xi| ≥ t ·max j|x j|}
cull the selected indices from the set of remaining rows: Λk+1 ← Λk\Γk+1
update solution: f̃k+1← argminx ‖ΩΛk+1x‖2 subject to ‖y−Rx‖2 ≤ σ

k← k+1
until remaining coefficients close enough to zero: max j|x j| ≤ ρ

Numerical examples
We use synthetic experiments to demonstrate uplifts in curvelet-based interpolation accuracy using by
GAP in comparison to `1-norm based methods. A single fully-sampled synthetic shot record with 256
traces spaced 15m apart is used as the ground truth model for f. Our observed traces are determined
from a random jittered-sampling scheme (Hennenfent and Herrmann, 2008) out of these traces, with
the restriction mask R constructed accordingly. Interpolate in the common-shot domain is more chal-
lenging than in the more typical common-offset domain, as the apex of the hyperbolic reflection events
introduces significant curvature that is often regarded as difficult to interpolate without knowledge of
velocity. We chose this to better highlight any differences between the reconstruction methods.

We compared reconstruction results based on three different algorithms: the approximated solution to
equation (3) using GAP, the `1 synthesis solution to equation (1) using SPGL1 (van den Berg and Fried-
lander, 2008), and the `1 analysis solution to equation (2) using the analysis mode of NESTA (Becker
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et al., 2011). For GAP, the stopping coefficient size ρ is set to 10−5 times the largest coefficient mag-
nitude of ΩRT y, while the other algorithms are set to terminate at default conditions. Figure 1 shows
the results obtained from these different methods from 50% of total traces observed. At areas of low
curvature in the far offsets, all methods show successful reconstruction. However, the GAP reconstruc-
tion results clearly show much better reconstruction of of the apex compared to the other two methods.
This uplift is corroborated by numerical calculations of the signal-to-noise ratio in Figure 2 where GAP
clearly shows superior reconstruction over the `1-based methods up to 50% missing traces. It is inter-
esting to note that although the NESTA result is also based on the analysis form of the reconstruction
problem, its solution are more or less comparable to the `1 synthesis result. This demonstrates the value
of choosing an algorithm that is designed for a cosparsity-based model, and suggests that the `1-norm
may not be as good a cosparsity heuristic as it was for sparsity.

The main drawback of GAP is the higher iteration count needed compared to the other methods, perhaps
partly due to its simplicity. Here we find that the selection factor t has a large impact on the efficacy
of the algorithm in terms of speed and solution quality. Lowering t eliminates more coefficients per
iteration and accelerates convergence up to a point where the solution quality begins to suffer. Figure 3
summarizes the effect of t on the convergence of GAP for this example, as well as the comparative
performance between the different algorithms. Although the convergence of GAP is slower than its
counterparts, it is able to achieve a lower error in the end.
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(a) Observed shot record
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(b) `1 Synthesis (SPG`1)
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(c) `1 Analysis (NESTA)
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(d) GAP (t = 0.8)

Figure 1 Result of curvelet-based recovery of seismic data from undersampling using different algorithms. Starting from a
fully-sampled synthetic shot record, 50% of the traces were chosen randomly according to a jittered-sampling scheme to form
the observed data shown in (a). Interpolation results are obtained with (b) SPGL1, (c) NESTA running in analysis mode, and
(d) GAP using t = 0.8. Both SPGL1 and NESTA show difficulties in reconstructing the apex of the first and second reflection
events, while GAP was successful.

Discussions and summary
The cosparsity model for signal reconstruction provides some new theoretical insights the analysis-form
of the signal reconstruction problem under redundant transforms, based on which a new reconstruction
algorithm called Greedy Analysis Pursuit is proposed. We showed that this algorithm can provide a more
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Figure 2 Comparison of recovery results from undersampled seismic shot record in curvelet frame using different algorithms.
Signal-to-noise ration (SNR) is computed relative to the true signal as−20log10(‖̃f−f‖/‖f‖). Reconstruction with GAP shows
significant uplift over both SPGL1 and NESTA when more than 50% of the traces are observed from the baseline grid.
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(a) Comparison of different GAP coefficient selection
factors
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(b) Comparison of different algorithms

Figure 3 Evolution of solution error as a function of number of multiplies with the observation operator, which is a proxy
for computational cost, obtained throughout the calculation of Figure 1. (a) The model-space convergence behavior for GAP
with various values of selection factor t. Lower values of t leads to faster convergence but may result in worse reconstructions.
The best trade-off between efficiency and accuracy for this experiment appears to be approximately t = 0.8. (b) Model-space
convergence of GAP with t = 0.8 compared to SPGL1 and NESTA. GAP remains slower than both SPGL1 and NESTA, but is
able to achieve significantly lower reconstruction error.

accurate solution when compared against existing methods in literature for curvelet-based velocity-free
seismic interpolation based on current compressive sensing theory that exploits `1-norm sparsity. This
is especially apparent in areas with high curvature, such as the apex of hyperbolic reflection events. An
interesting observation is that the `1-norm do not provide as good a proxy for signal cosparsity as it does
for sparsity, which hints at a new class of seismic interpolation methods not yet explored by literature.
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