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Abstract

In this work, we develop optimization algorithms on the manifold of Hierarchical Tucker (HT)
tensors, an extremely efficient format for representing high-dimensional tensors exhibiting particular
low-rank structure. With some minor alterations to existing theoretical developments, we develop an
optimization framework based on the geometric understanding of HT tensors as a smooth manifold,
a generalization of smooth curves/surfaces. Building on the existing research of solving optimiza-
tion problems on smooth manifolds, we develop Steepest Descent and Conjugate Gradient methods
for HT tensors. The resulting algorithms converge quickly, are immediately parallelizable, and do
not require the computation of SVDs. We also extend ideas about favourable sampling conditions
for missing-data recovery from the field of Matrix Completion to Tensor Completion and demon-
strate how the organization of data can affect the success of recovery. As a result, if one has data
with randomly missing source pairs, using these ideas, coupled with an efficient solver, one can
interpolate large-scale seismic data volumes with missing sources and/or receivers by exploiting the
multidimensional dependencies in the data. We are able to recover data volumes amidst extremely
high subsampling ratios (in some cases greater than 75%) using this approach.



Introduction

Three dimensional seismic data acquisition is a time- and cost-intensive process, resulting in an enor-
mous sampled data volume with five dimensions (source x, source y, receiver x, receiver y, and time).
Many of the challenges associated with acquiring seismic data are inherently practical in nature: physi-
cal limitations and/or budgetary constraints limit the size and scope of data that can be acquired. In spite
of these practical challenges, having fully sampled data is of paramount importance in processes such
as Full Waveform Inversion and multidimensional convolution for multiple prediction and thus one is
interested in interpolating the subsampled data back to the full data volume.

Luckily, even in the case of severe subsampling, multi-dimensional seismic data has a large amount of
structure that can be exploited in order to recover the original, fully-sampled data. In this abstract, we
use extended notions of rank from linear algebra in conjunction with high dimensional tensors, which
will enable us to extend ideas from matrix completion (that is, recovering a low-rank matrix from only
a fraction of its entries) to tensor completion. In tensor completion, we only observe a fraction of the
entries of the underlying tensor (e.g. due to budgetary constraints that limit the number of seismic
sources we can use) yet, by utilizing knowledge of the underlying structure of the fully sampled tensor,
we are able to recover the full data volume in a computationally tractable manner. We apply this tech-
nique to low temporal-frequency seismic data, which tends to exhibit more low-rank structure than for
high-frequencies. This technique is particular suitable for FWI using a frequency continuation method,
where there are not too many oscillations at low-frequencies. This will lead us into the Hierarchical
Tucker format, a relatively novel structured tensor, and our own contributions, which involve solving
optimization problems in this format.

Previous work in tensor completion of seismic data includes work in Kreimer and Sacchi (2012), which
uses the Tucker format and a projection onto convex sets (POCS) approach, which has to compute SVDs
of the underlying tensor at each iteration, and work in Gao et al. (2011), which uses a Toeplitz matrix
as a skeleton for their interpolant and exploits the relationship between FFTs and Toeplitz matrices
to perform matrix-vector products efficiently, again using a POCS approach. This technique suffers
greatly in terms of reconstruction error when the subsampling rate is high. Both of these drawbacks
are not present in our current work and our method is much more general than interpolating Toeplitz
structure. Another approach, detailed in Kumar et al. (2012), uses a rank-penalization approach to
matrix completion coupled with an SPGL1-type solver to quickly interpolate frequency slices.

Methodology

Definition 1. If we have a d-dimensional tensor X with dimensions n1×n2×·· ·×nd , if t =(i1, i2, . . . , ip)
is a set of indices with i j ∈ {1,2, . . . ,d}, the matricization of the tensor X with respect to t, denoted X (t),
is given by reshaping the tensor X into the matrix X (t) with the dimensions given by t reshaped along
the columns, and the other dimensions reshaped into the rows of the matrix.

The Hierarchical Tucker (HT) format is a novel, structured tensor format for representing tensors which
exhibit certain low-rank behaviour in different matricizations, first introduced in Hackbusch and Kühn
(2009). To avoid a deluge of mathematical notation, we use the example shown in Figure 1 as the
representative for the general HT format. As we can see in this figure, the main insight of the HT
decomposition - as opposed to a regular, low-rank matrix formulation - is that the ’singular vectors’ U12
of the matricization X (1,2) contain the dimensions 1 and 2. As such, we can reshape U12 into a 3D cube
with dimensions n1× n2× k12 and further split apart this cube along the dimensions 1 and 2, as in the
bottom portion of Figure 1. We apply the same splitting for the matrix U34.

The upshot of this construction is that the intermediate matrices in the recursive formulation (e.g.
U12,U34) do not need to be stored: only the (small) leaf matrices (Ui for i = 1, . . . ,4) and (small) in-
termediate tensors Bt (also known as transfer tensors) need to be stored in order to specify the (full)
tensor exactly. As a result, the number of parameters that one has to store to represent HT tensors is
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≤ dNK +(d− 2)K3 +K2 , where d is the number of dimensions, N = maxi=1,...,d ni is the maximum
dimension size, and K = maxt∈T kt is the maximum of various internal rank parameters.

Note that when d > 3 and K� N, the number of parameters required to represent the tensor is� Nd ,
the usual requirement for storing a d dimensional array of dimension sizes N, and thus the HT format
effectively breaks the curse of dimensionality for this class of tensors.

By the analysis done in Uschmajew and Vandereycken (2012), we know that by parametrizing the set of
all HT tensors by the matrices/tensors (Ut ,Bt), the set of all such tensors forms a differentiable manifold
in Rn1n2...nd . Differentiable manifolds are higher-dimensional analogues to curves and surfaces in R2 and
R3 and there is a large body of existing research on formulating optimization algorithms on differentiable
manifolds. For computational purposes, one needs to restrict the parameter matrices (not at the root) to
satisfy orthogonality conditions. In our case, if we write φ(x) to be the fully-expanded tensor from
parameters x = (Ut ,Bt), then, given subsampled data D and a subsampling operator A, we are looking to
solve

min
x=(Ut ,Bt)

‖Aφ(x)−D‖2
2 (1)

s.t. UH
t Ut = Ikt ,(B

(kl ,kr)
t )T B(kl ,kr)

t = Ikt

The Jacobian and Jacobian transpose of φ(x) can be computed extremely efficiently by exploiting the
recursive structure of φ(x) as well as formulae for matrix derivatives. By modifying the theory developed
in Uschmajew and Vandereycken (2012), we can formulate algorithms such as Steepest Descent and
Conjugate Gradient on this (Riemannian) manifold, and, as a result, we are able to obtain reasonable
interpolants for even high levels of source subsampling. The end result is an algorithm that is SVD-free,
is immediately parallelizable in a distributed environment, and is able to recover tensors exhibiting this
particular low-rank structure despite very high levels of subsampling.

Higher Dimensional Sampling

We can draw insights about our approach from a large body of literature in the Matrix Completion field,
wherein we are trying to recover a low-rank matrix from a partial set of observations of its entries. The
low-rank approach to matrix completion tells us that randomly removing entries tends to increase the sin-
gular values of the underlying matrix and thus makes recovery more favourable for a rank-minimization
optimization scheme. On the other hand, removing entire columns/rows from the matrix zeros-out the
smallest singular values of the matrix, and thus rank-minimization will fail to recover the subspace
spanned by those columns/rows (e.g. see Candès and Recht (2009) ).

In our case of a 4D frequency slice, we have essentially two choices of underlying matricization, both
of which are shown in Figure 2. Namely, we can choose between placing the (src x, src y) dimensions
in the rows and (rec x, rec y) dimensions in the columns, or placing the (src x, rec x) dimensions in the
rows and (src y, rec y) dimensions in the columns. In the case when we are, say, missing receivers, the
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Figure 1: Hierarchical Tucker decomposition for a tensor X of size n1×n2×n3×n4
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former organization of data has the effect that subsampling will tend to remove columns of this matrix,
and hence the singular values will not increase and in fact are set to zero at the low end (the worst-case
scenario for the purposes of rank-minimizing recovery). On the other hand, the latter organization of
data results in a subsampling that randomly removes blocks from the underlying matrix, which is a much
more favourable situation from a low-rank recovery perspective, as we can see from the singular values
of the resulting matrix. The same situation holds for matricizations in the singleton dimensions, adding
further degrees of regularity to the computed solution compared to standard matrix completion.
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Figure 2: Top: (Src x, Src y) Matricization Bottom: (Src x, Rec x) Matricization
Left: Singular values Middle: Fully sampled data Right: Subsampled data

Examples
We apply the aforementioned techniques in order to recover a single frequency slice of data generated
from a single-reflector model. The data cube D is of size 50×50×50×50 (src x × src y × rec x × rec
y) and we run a non-linear CG algorithm for solving Problem 1 with 75% source subsampling for 200
iterations. Below are merely a tiny sample of the possible common receiver gathers one can extract from
the interpolated data, but they are representative of the recovered data volume as a whole. Even amidst
many missing sources, as we can see in Figures 3 and 4, the multidimensional redundancies in the data
coupled with an efficient CG solver allow one to recover the data to a high accuracy.
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(a) Original data slice
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(b) Subsampled data
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(c) Recovered data
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(d) Difference

Figure 3: 75% Source Subsampling - (Rec x, Rec y) = (5, 45) - SNR 15.4 dB

We also include results from interpolating a synthetic data set provided to us by BG. The data set consists
of only 200 randomly placed shots (out of a possible 4624 shots), each having 401 x 401 receivers and
is generated from an unknown model. We extract a single frequency slice from this data and attempt
to recover the full slice using the aforementioned method. Owing to the low-frequency content of the
slice, the data is subsampled to 101 x 101 receivers and the data volume is recovered to a 68 x 68 x 101
x 101 tensor. Each figure is then produced by Fourier interpolating each common shot gather to 401 x
401 receivers. We can see in Figure 5 that the interpolated data matches the known data to a sufficiently
accurate degree. More importantly, the interpolated results in Figure 5 look very reasonable, given the
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structure of the other shot gathers in this frequency slice. Unfortunately, we do not have a reference
solution for these shot gathers in order to perform quantitative comparisons.
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(a) Original data slice
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(b) Subsampled data
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(c) Recovered data
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Figure 4: 75% Source Subsampling - (Rec x, Rec y) = (30,12) - SNR 17.4 dB
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Figure 5: Top Left: Original Data Top Right: Interpolated Data - SNR 12.5dB Bottom: Interpolated Data

Conclusion
Owing to the novelty of this format, as well as the mathematical and optimization details that have to
be addressed in order to perform optimization, and hence interpolation, we have only detailed some of
the specifics here. We have managed to extend many of the largely theoretical ideas in Uschmajew and
Vandereycken (2012) into a computationally practical approach to interpolate 4D seismic data volumes
based on extensions to previous work in optimization on differentiable manifolds.
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