Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2012 SLIM group @ The University of British Columbia.

Only dither: efficient simultaneous marine acquisition

Haneet Wason, and Felix J. Herrmann

Wednesday, June 20, 2012

SLIM 🛃

Motivation

- Is there a way to circumvent the Nyquist-related acquisition/processing costs?
- Design seismic acquisition within the compressed sensing framework
- Rethink marine acquisition (with ocean-bottom nodes)

SLIM 🐣

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing
 - "without" simultaneous sources
 - with simultaneous sources

Problem statement

Solve an underdetermined system of linear equations:

SLIM 🛃

SIMULTANEOUS ACQUISITION

Wednesday, June 20, 2012

Compressed sensing

Acquisition paradigm for signals that are sparse (or compressible) in some transform domain

Compressed sensing

Acquisition paradigm for signals that are sparse (or compressible) in some transform domain

d

SLIM 🛃

Framework

Receiver position (#)

SLIM 🛃

Sparse recovery

Solve the convex optimization problem (one-norm minimization):

$$\begin{split} \mathbf{\tilde{x}} &= \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \mathbf{Ax} = \mathbf{b} \\ \mathbf{\mathbf{Ax}} &= \mathbf{b} \\ \mathbf{Ax} &= \mathbf{b} \\ \mathbf{Ax}$$

Sparsity-promoting solver: $\mathbf{SPG}\ell_1$ [van den Berg and Friedlander, 2008]

Recover single-source prestack data volume: $\tilde{d} = S^{H} \tilde{x}$

SLIM 🐣

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing
 - "without" simultaneous sources
 - with simultaneous sources

"Ideal" simultaneous acquisition matrix

For a seismic line with $N_{\!s}$ sources, N_r receivers, and N_t time samples, the sampling matrix is

Wednesday, June 20, 2012

Sequential vs. simultaneous sources

Sampling schemes

Sampling matrix (RM)

Measurements (b)

SLIM 🐣

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing
 - "without" simultaneous sources
 - with simultaneous sources

512 time samples128 receivers128 sources

"Ideal" simultaneous acquisition Sparsity-promoting recovery : 10.5 dB

RECOVERED

RESIDUAL

Random time-dithering Conventional recovery : 3.92 dB

RECOVERED

RESIDUAL

Random time-dithering Sparsity-promoting recovery : 8.06 dB

RECOVERED

RESIDUAL

100

Periodic time-dithering Sparsity-promoting recovery : 4.80 dB

RECOVERED

RESIDUAL

True data

Midpoint (km) 2 5 6 3 \square 4 0.0 Time (s) 1.0 2.0

Brute stack

SLIM 🔮

SLIM 🛃

"Ideal" simultaneous acquisition

Brute stack

Random time-dithering

Brute stack

Random time-dithering

Brute stack

Periodic time-dithering

Brute stack

SNR (dB)

SUBSAMPLING RATIO	SIMULTANEOUS ACQUISITION	RANDOM TIME-DITHERING	Periodic Time-dithering
0.75	13.0	11.2	6.93
0.50	10.5	8.06	4.80
0.33	8.31	5.33	*7.32
0.25	6.55	4.35	2.85
0.10	2.82	1.14	1.60

[Mansour et.al., 2011]

SLIM 🐣

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing
 - "without" simultaneous sources
 - with simultaneous sources

Random time-dithering

SLIM 🛃

Wednesday, June 20, 2012

Recovery : 8.06 dB

Recovery : 10.3 dB

RESIDUAL

RECOVERED

Random time-dithering with *I* source vessel

Brute stack

Random time-dithering with 2 source vessels

Brute stack

SLIM 🛃

Conclusions

Randomized simultaneous marine acquisition is an instance of compressive sensing

Critical for reconstruction quality:

- design of sampling schemes
- appropriate sparsifying transform
- sparsity-promoting solver

Only dither: efficient marine acquisition - improves with simultaneous sources

SLIM 🔮

Future work

Design physically realizable acquisition schemes

References

van den Berg, E., and Friedlander, M.P., 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31, 890-912.

Bruckstein, A. M., D. L. Donoho, and M. Elad, 2009, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images: SIAM Review, 51, 34-81.

Candès, E., J. Romberg, and T. Tao, 2006, Stable signal recovery from incomplete and inaccurate measurements: *Comm. Pure Appl. Math., 59, 1207–1223*.

Candès, E. J., and L. Demanet, 2005, The curvelet representation of wave propagators is optimally sparse: *Comm. Pure Appl. Math, 58, 1472–1528.*

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006a, Fast discrete curvelet transforms: *Multiscale Modeling and Simulation, 5, 861–899.*

Donoho, D. L., 2006, Compressed sensing: IEEE Trans. Inform. Theory, 52, 1289–1306.

Donoho, P., R. Ergas, and R. Polzer, 1999, Development of seismic data compression methods for reliable, low-noise performance: SEG International Exposition and 69th Annual Meeting, 1903–1906.

Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008, Sparsity- and continuity- promoting seismic imaging with curvelet frames: Journal of Applied and Computational Harmonic Analysis, 24, 150–173. (doi:10.1016/j.acha. 2007.06.007).

Herrmann, F. J., U. Boeniger, and D. J. Verschuur, 2007, Non-linear primary-multiple separation with directional curvelet frames: *Geophysical Journal International*, 170, 781–799.

Herrmann, F. J., Y. A. Erlangga, and T. Lin, 2009, Compressive simultaneous full-waveform simulation: *Geophysics*, 74, A35.

Mallat, S. G., 2009, A Wavelet Tour of Signal Processing: the Sparse Way: Academic Press.

Mansour, H., Haneet Wason, Tim T. Y. Lin, and Felix J. Herrmann, 2011, Simultaneous-source marine acquisition with compressive sampling matrices, *To appear in Geophysical Prospecting*

Romberg, J., 2009, Compressive sensing by random convolution: SIAM Journal on Imaging Sciences, 2, 1098–1128. Smith, H. F., 1998, A Hardy space for Fourier integral operators: J. Geom. Anal., 8, 629–653.

Acknowledgements

E. J. Candès, L.demanet, D. L. Donoho, and L.Ying for CurveLab (<u>www.curvelet.org</u>)

SLIM 🔮

E. van den Berg and M. Friedlander for SPGII (www.cs.ubc.ca/labs/scl/spgII)

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, BGP, PGS, Total SA, and WesternGeco.