Pass on the message: recent insights in large-scale sparse recovery

Felix J. Herrmann

thanks to Xiang Li
“We are drowning in data but starving for understanding” USGS director Marcia McNutt

“Got data now what” Carlsson & Ghrist SIAM
"Data explosion is bigger than Moore's law"
Goals

Replace a ‘sluggish’ processing paradigm that

- relies on touching all data all the time

by an agile optimization paradigm that works on

- small randomized subsets of data iteratively

Confront “data explosion” by

- reducing acquisition costs
- removing IO & PDEs-solve bottlenecks
Compressive sensing

randomized sampling

detection +
data-consistent amplitude recovery

\[
\min_x \|x\|_1 \quad \text{subject to} \quad \begin{aligned}
 b &= Ax \\
 A &:= RF^H \\
 A &\in \mathbb{C}^{n \times N} \text{ with } n \ll N
\end{aligned}
\]
Convex optimization

Sparse recovery involves iterations of the type

\[
x^{t+1} = \eta_t \left(A^* r^t + x^t \right)
\]

\[
r^t = b - Ax^t
\]

Corresponds to *vanilla* “denoising” if \(A \) is a *Gaussian* matrix. But does the same hold for later (\(t>1 \)) iterations...?
Iteration $t=1$

$$A^t r^t + x^t$$

$$\eta_t(A^t r^t + x^t)$$
Iteration $t=2$

\[A^* r^t + x^t \]

\[\eta_t(A^* r^t + x^t) \]
Iteration $t=3$

$$A^* r^t + x^t$$

$$\eta_t(A^* r^t + x^t)$$
Iteration t=4

\[A^t r^t + x^t \]

\[\eta_t (A^t r^t + x^t) \]
Approximate message passing

Add a term to iterative soft thresholding, i.e.,

\[
\begin{align*}
x^{t+1} &= \eta_t \left(A^* r^t + x^t \right) \\
r^t &= b - Ax^t + \frac{\|x^{t+1}\|_0}{n} r^{t-1}
\end{align*}
\]

Holds for

- normalized Gaussian matrices \(A_{ij} \in n^{-1/2} N(0, 1) \)
- large-scale limit and for specific thresholding strategy

[Donoho et. al, ’09–’12; Montanari, ’10–’12, Rangan, ’11]
Approximate message passing

Statistically equivalent to

\[x_{t+1} = \eta_t \left(A_t^* r^t + x^t \right) \]
\[r^t = b_t - A_t x^t \]

by drawing new independent pairs \(\{b_t, A_t\} \) for each iteration

Changes the story completely

- breaks correlation buildup between model iterate \(x^t \) & the matrix \(A \)
- faster convergence

[Montanari, '12]
Iteration $t=1$

\[r^t = b - Ax^t + \frac{\|x^{t+1}\|}{0} r^{t-1} \]

\[\eta_t(A^*r^t + x^t) \]

Message passing

\[\gamma_1 \]

W/O Message passing

\[\gamma_2 \]

With renewals

\[\gamma_3 \]

\[r^t = b_t - A_t x^{t10^4} \]

\[\eta_t(A_t^*r^t + x^t)^{10^4} \]
Iteration $t=2$

$$r^t = b - Ax^t + \frac{||x^{t+1}||}{0}r^{t-1}$$

Message passing

$$\eta_t(A^* r^t + x^t)$$

Message passing

x_1

x_1

γ_1

γ_1

y_1

y_1

x_2

x_2

γ_2

γ_2

y_2

y_2

x_3

x_3

γ_3

γ_3

y_3

y_3

$$r^t = b_t - A_t x^{t10^4}$$

$$\eta_t(A_t^* r^t + x_t^{t10^4})$$
Iteration $t=3$

\[\mathbf{r}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t + \frac{\| \mathbf{x}^{t+1} \|_0}{\eta_t} \mathbf{r}^{t-1} \]

Message passing

\[\eta_t (\mathbf{A}^* \mathbf{r}^t + \mathbf{x}^t) \]

Message passing

\[\mathbf{r}^t = \mathbf{b}_t - \mathbf{A}_t \mathbf{x}^{t10^4} \]

\[\eta_t (\mathbf{A}_t^* \mathbf{r}^t + \mathbf{x}^{t10^4}) \]
Iteration $t=4$

\[\mathbf{r}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t + \eta \frac{||\mathbf{x}^{t+1}||_0}{\mathbf{r}^{t-1}} \]

\[\eta_t (\mathbf{A}^* \mathbf{r}^t + \mathbf{x}^t) \]

Message passing

\[\mathbf{r}^t = \mathbf{b}_t - \mathbf{A}_t \mathbf{x}^{t10^4} \]

\[\eta_t (\mathbf{A}_t^* \mathbf{r}^t + \mathbf{x}^t)^{10^4} \]

Message passing

W/O Message passing

With renewals

W/O Message passing

With renewals
Missing-trace interpolation [SPGI1]

Recovery with 3D curvelets (N=1.12 X 10^9) 7.75 dB

50 % missing data

recovery
50 iterations

difference
Missing trace interpolation [AMP]

Recovery with 3D curvelets \((N=1.12 \times 10^9)\) 9.75 dB

- 50% missing data
- recovery
- 50 iterations
- difference
Observations

Message-pass term has the same *effect* as drawing *independent* experiments \(\{b_t, A_t\}\)

- “*Gaussian*” matrices
- *delicate* normalization and *thresholding* strategy
- *renders* proposed method *impractical*
- can lead to *dramatically* improved convergence

How can we still reap *benefits* from *message passing* in *realistic* less-than-ideal *geophysical* settings?
Supercooled spectral-projected gradients

\[
\min_x \| A_1 x - b_1 \|_2 \quad s.t. \quad \| x \|_1 \leq \tau^1
\]

[van den Berg & Friedlander, ’08]

[Hennefent et al., ’08]

[Lin & FJH, ’09-]
Supercooled spectral-projected gradients

Lasso problem

\[
\min_x \|A_2x - b_2\|_2 \quad \text{s.t.} \quad \|x\|_1 \leq \tau^2
\]
Supercooled spectral-projected gradients

\begin{align*}
\text{Lasso problem} & \quad \min_x \| A_3 x - b_3 \|_2 \quad \text{s.t.} \quad \| x \|_1 \leq \tau^3 \\
\end{align*}
Supercooled spectral-projected gradients

Lasso problem

$$\min_x \| A_4 x - b_4 \|_2 \quad s.t. \quad \| x \|_1 \leq \tau^4$$
Supercooling

Break correlations between the model iterate and matrix A by rerandomization

- draw new independent $\{b_t, A_t\}$ after each LASSO subproblem is solved
- brings in “extra” information without growing the system
- minimal extra computational & memory cost
Ideal ‘Seismic’ example

\[n/N = 0.13; N = 248759; T = 500 \]
Ideal ‘Seismic’ example

[n/N=0.13;N=248759;T=500]

recovery error solution path

Cooled
Ideal ‘Seismic’ example

\[n/N=0.13; N=248759; T=500 \]

10 X

Supercooled
Observations

Independent redraws of \(\{b_t, A_t\} \) get rid of small difficult to remove interferences

- working only with subsets of the data

But, aren’t we fooling ourselves since proposed method

- defeats the premise of compressive sampling

Or, are there data-rich applications for this method?

- e.g. efficient imaging with random source encoding
Compressive imaging
[with message passing]

Select independent random source encodings after each LASSO subproblem is solved

- calculate corresponding supershots
- redefine demigration operator (and its adjoint)
 (select independent simultaneous sources & supershots)

Promote sparsity in the curvelet domain
Imaging results

Time-harmonic Helmholtz:

- 409 x 1401 with mesh size of 5m
- 9 point stencil [C. Jo et. al., ’96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver
Imaging results

[background model]
Migration results
[true perturbation]
Migration results
[migration with “all” data]
Imaging results

Reduced setup:

- 10 random frequencies (versus 300 frequencies) (20Hz-50Hz)
- 3 random simultaneous shots (versus 350 sequential shots)

Significant dimensionality reduction of

\[
\frac{K'}{K} = 0.0003
\]

[Herrmann & Li, 2011]
Imaging results

Least-squares migration with randomized supershots:

$$\delta \tilde{m} = S^* \arg \min_{\delta x} \| \delta x \|_{\ell_2} \quad \text{subject to} \quad \| \delta d - \left(\nabla \mathcal{F}[m_0; Q] S^* \delta x \right) \|_2 \leq \sigma$$

$$\delta x = \text{Sparse curvelet-coefficient vector}$$
$$S^* = \text{Curvelet synthesis}$$
$$Q = \text{Simultaneous sources}$$
$$\delta d = \text{Super shots}$$
Imaging results

Sparsity-promoting migration with *randomized supershots*:

\[
\delta \tilde{m} = S^* \arg \min_{\delta x} \| \delta x \|_{\ell_1} \quad \text{subject to} \quad \| \delta d - \nabla F[m_0; Q] S^* \delta x \|_2 \leq \sigma
\]

\[
\delta x = \text{Sparse curvelet-coefficient vector} \\
S^* = \text{Curvelet synthesis} \\
Q = \text{Simultaneous sources} \\
\delta d = \text{Super shots}
\]
Migration results

ℓ_2 without renewals
Imaging results
\[\ell_1 \text{ without renewals} \]
Migration results

[ℓ_2 with renewals]
Migration results
[ℓ_1 with renewals]
Migration results

[true perturbation]
Migration results

[migration with “all” data]
Migration results

[model errors]

The graph shows the relative two norm of model error over the number of passes through all the data, with different line styles indicating with and without renewals for l_2 and l_1 norms.
Conclusions

Message passing improves image quality

- computationally feasible one-norm regularization

Message passing via rerandomization

- small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ model space parallelism to speed up wavefield simulations...
Acknowledgments

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development Grant DNOISE II (375142-08).

We also would like to thank the authors of CurveLab.

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.
Further reading

Simultaneous & continuous acquisition:

- A new look at simultaneous sources by Beasley et. al., ’98.
- Changing the mindset in seismic data acquisition by Berkhout ’08.

Simultaneous simulations, imaging, and full-wave inversion:

- Phase encoding of shot records in prestack migration by Romero et. al., ’00.
- Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.
- Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
- Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10
- Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09
- An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, and Felix J. Herrmann. ’10
- Efficient least-squares imaging with sparsity promotion and compressive sensing by FJH & Li, ’12
- Fast randomized full-waveform inversion with compressive sensing by Xiang Li et. al., ’12
Further reading

Compressive sensing & sparse solvers
- Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candès, 06.
- Compressed Sensing by D. Donoho, ’06
- Probing the Pareto frontier for basis pursuit solutions by E. van den Berg and M. Friedlander, ’08

Machine learning & message passing
- Message passing algorithms for compressed sensing by David Donoho et. al., 2009
Thank you

www.slim.eos.ubc.ca