Compressive sensing in marine acquisition and beyond

Felix J. Herrmann & Haneet Wason

thanks to Xiang Li
Goals

Reduce marine acquisition costs by randomized dithering

- shorter inter shot times & continuous recording with simultaneous sources

Confront data explosion by randomized dimensionality reduction

- remove IO & PDEs-solve bottlenecks by working on small subsets of data (e.g. supershots)

Leverage recent developments in compressive sensing and message passing...
Overarching strategy

Exploit structure

- curvelet-domain *sparsity* of *seismic* data & images by *randomized* subsamplings that *create*
 - *incoherent* and hence *nonsparse* crosstalk/leakage, which can be removed by *transform*-domain *sparsity* promotion.
Today’s topics

Recovery of complete sequential marine data from randomized simultaneous acquisition

- compressive sensing in the field

Only dither: efficient simultaneous marine acquisition by Haneet Wason, Thursday at 13:55hrs in Room A

Acceleration of sparsity-promoting migration by message passing

- compressive sensing in the computer

Pass on the message: recent insights in large-scale sparse recovery by FJH, Wednesday at 10:55hrs in Room B
Randomized simultaneous marine acquisition
Solve an *underdetermined* system of *linear* equations:

\[
\begin{pmatrix}
\text{data} \\
\text{(measurements/observations)}
\end{pmatrix}
\xrightarrow{\text{Compressive sensing matrix:}}
\begin{pmatrix}
b \\
A
\end{pmatrix}
\xrightarrow{A = \text{RMS}^H}
\begin{pmatrix}
x_0
\end{pmatrix}
\]

- **b** ∈ \(\mathbb{C}^n\)
- **A** ∈ \(\mathbb{C}^{n \times P}\)
- **x_0** ∈ \(\mathbb{C}^P\)

where \(n \ll P\).
Sparse recovery

Sparsity-promoting program:

\[\tilde{x} = \arg\min_x \|x\|_1 \quad \text{subject to} \quad Ax = b \]

- **support detection**
- **data-consistent amplitude recovery**

Sparsity-promoting solver: *SPG* \(\ell_1 \) \[\text{[van den Berg and Friedlander, 2008]}\]

Recover single-source prestack data volume: \(\tilde{d} = S^H \tilde{x} \)

Randomization favors sparse recovery by rendering leakage into incoherent Gaussian noise...That’s the hope in practice...
Random time dithering

Acquisition Scheme

- Supershot time (s)
- Source location

Measurements

- Supershot time (s)
- Receiver (#)
Recovery
[from 2X accelerated acquisition]

Conventional processing

Apply the adjoint of the sampling operator

+ Median filtering in the midpoint-offset domain

Curvelet-domain sparsity-promotion

Solve an optimization problem (e.g., one-norm minimization)
Sparsity-promoting recovery: 8.06 dB

Conventional recovery: 3.92 dB
Random time dithering
[2 source vessels]
Sparsity-promoting recovery

1 source vessel : 8.06 dB

2 source vessels : 10.3 dB
Observations

Acquisition costs reduced by randomization

- via multiple randomly dithered sources

Cost reduction at the cost of solving large-scale sparsity-promoting program

- dominated by sparsifying transform, which is $O(n \log n)$

We win because processing costs \ll acquisition costs

- processing turn-around times may be an issue
Big data

“We are drowning in data but starving for understanding” USGS director Marcia McNutt

“Got data now what” Carlsson & Ghrist SIAM
Current imaging paradigm

Linear forward model:

$$A \quad x = b$$

tall matrix
(\textit{all data})
Current imaging paradigm

Imaging: \(A^H b = x_{\text{migrated}} \)

Matched filtering touches all data...
Migration results

[migration with all data]
Migration results
[true perturbation]
Costs

Computational costs dominated by \(\min(\# \text{ sources}, \# \text{ receivers})\)

- PDE solves are expensive, i.e., \(n_s n_f n_{\text{iter}} O(n^3)\)

IO dominated by \(\# \text{ sources} \times \# \text{ receivers}\)

Renders iterative methods computationally infeasible

Solution: Reduce \# shots & \# frequencies

- random superposition of shots (supershots)
- random selection of shots (marine)
- remove crosstalk/leakage by sparsity promotion
New paradigm

Invert underdetermined system: \(A \mathbf{x} = \mathbf{b} \)

wide matrix
(randomized supershots)

\[n'_s n'_f \ll n_s n_f \]

with sparsity promotion.
Challenge

Reduction at the cost of solving a sparsity-promoting program

- cost dominated by (de)migrations, which are still

\[n'_s n'_f n_{iter} O(n^3) \]

We lose because optimization requires too many iterations to obtain high-quality results

- turn-around times really become an issue
Supercooling

Culprit: Build up of *correlations* between the model *iterate* and *random* source *encoding* slows down *convergence*

Solution: *Rerandomize* by drawing *independent* supershots after each *subproblem* is solved

- *breaks correlation* buildup as in message passing
- *minimal extra cost*
- *turn each subproblem* into a *simple* “denoising” problem
Imaging results [without message passing]

3 supershots from 350 shots
10 random frequencies from 20Hz-50Hz
Imaging results
(with message passing via renewals)

3 supershots from 350 shots
10 random frequencies from 20Hz-50Hz
Migration results
[true perturbation]
Migration results

[migration with all data]
Observations

Randomized simultaneous marine acquisition & *sparsity-promoting* migration with *randomized* source encoding are both *instances* of *compressive sensing*

- efficient acquisition and *fast* computations
- new *paradigm* in *acquisition & inversion* where reliance on *full* sampling & touching *all* data has been *removed*
- involves *solution* of *large-scale* optimization problems, which require *fast* solution *strategies* such as message passing...
Challenges

“Data poor” acquisition:
- engineering principles for acquisition design & recovery
- calibration & sensitivity to model space errors

“Data rich” computations:
- practical workflows & recovery guarantees
- reliance on full sampling

Holy grail: integration of the two approaches...
Acknowledgments

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development Grant DNOISE II (375142-08).

We also would like to thank the authors of CurveLab.

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.
Further reading

Simultaneous & continuous acquisition:
– A new look at simultaneous sources by Beasley et. al., ’98.
– Changing the mindset in seismic data acquisition by Berkhout ’08.

Simultaneous simulations, imaging, and full-wave inversion:
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.
– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.
– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10
– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09
– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, and Felix J. Herrmann. ’10
– Efficient least-squares imaging with sparsity promotion and compressive sensing by FJH & Li, ’12
– Fast randomized full-waveform inversion with compressive sensing by Xiang Li et. al., ’12
Further reading

Compressive sensing & sparse solvers
- Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
- Compressed Sensing by D. Donoho, ’06
- Probing the Pareto frontier for basis pursuit solutions by E. van den Berg and M. Friedlander, ’08

Message passing
- Message passing algorithms for compressed sensing by David Donoho et. al., 2009
Thank you

www.slim.eos.ubc.ca