Sparsity-promoting migration with surface-related multiples

Ning Tu, Tim Lin and Felix Herrmann
Motivation

Migration from data with surface multiples
Motivation

Migration from data without surface multiples
Motivation

So...

\[\begin{array}{c}
\text{Time (s)} \\
\text{Lateral Distance (m)}
\end{array} \quad \begin{array}{c}
0 \\
2000 \\
4000
\end{array} \quad \begin{array}{c}
0 \\
2000 \\
4000
\end{array} \quad \begin{array}{c}
0 \\
2000 \\
4000
\end{array} \]
Motivation

So...
Rethink multiples

amplitude spectrum: primaries @15Hz
Rethink multiples

amplitude spectrum: multiples @15Hz
Rethink multiples

Surface-free Green’s function

Receiver range

primaries: one shot–gather
Rethink multiples

Surface-free Green’s function
Exploit extra illumination

Lin, Tu, and Herrmann, 2010
Verschuur and Berkhout, 2011
Exploit extra illumination

From the formulation of SRME

\[\hat{G} \hat{Q} + \hat{G}(-\hat{P}) = \hat{P} \]
Exploit extra illumination

- Invert the Green’s function directly from the total up-going wavefield.
- EPSI (Estimation of Primary via Sparse inversion) exploits the sparsity of the Green’s function in data space.
Motivation

• How to exploit this extra illumination in seismic imaging?
• How to exploit the sparsity in the image space to facilitate the inversion of the Green’s function?
Relate data space and model space

SEISMIC IMAGE

How?

TOTAL UP-GOING WAVEFIELD

Thursday, June 16, 2011
EPSI operator relates...

EPSI (modeling) operator

Surface-free Green’s function

Invert the EPSI operator

Total up-going wavefield

Groenestijn and Verschuur, 2009
Lin and Herrmann, 2010
EPSI Formulation

EPSI follows the formulation of SRME:

\[\hat{P} = \hat{G}(\hat{Q} - \hat{P}) \]

Reformulating the EPSI operator:

\[(\mathcal{F}_t^* \text{BlockDiag}_{1...nf} [(\hat{Q} - \hat{P})^* \otimes I] \mathcal{F}_t g = p) \]
Robust EPSI

Robust EPSI:

\[\tilde{g} = \min_{g} \| g \|_1 \quad \text{subject to} \quad \| p - Eg \|_2 \leq \sigma \]

- sparsity promoting part
- data fitting part

Lin and Herrmann, 2010
Migration operator relates...

Model Perturbation

Linearized Born-scattering operator

Invert the Born-scattering operator

Linearized Surface-free Green's function
Sparsity promoting migration

By leveraging curvelet domain sparsity in the image space:

\[
\delta \tilde{m} = S^* \min_{\delta x} ||\delta x||_1 \text{ subject to } ||\delta g - KS^* \delta x||_2 \leq \sigma
\]
What about combine...

- **Model Perturbation**
- **EPSI & Migration**
- **Combined Inversion**
- **Total Up-going Wavefield**

Lin, Tu, and Herrmann, 2010

Thursday, June 16, 2011
Approximate EPSI

EPSI follows the formulation of SRME:

$$\hat{P} \approx \Delta \hat{G}(\hat{Q} - \hat{P})$$

Reformulating the EPSI operator:

$$\mathcal{F}_t^* \text{BlockDiag}_{1\ldots nf}[(\hat{Q} - \hat{P})^* \otimes I] \mathcal{F}_t \delta g \approx p$$
Approx. Robust EPSI

Robust EPSI:

\[
\delta \tilde{g} = \min_{\delta g} \| \delta g \|_1 \quad \text{subject to} \quad \| p - E \delta g \|_2 \leq \sigma
\]

sparsity promoting part

data fitting part
Combine EPSI with migration

We identify the total up-going wavefield with model perturbations:

\[\delta \tilde{m} = S^* \min_{\delta x} ||\delta x||_1 \text{ subject to } ||p - E \underbrace{KS^* \delta x}_{\delta g}||_2 \leq \sigma \]
Numerical experiments

Linearized data:

• surface-free data
 \[p_1 = K \delta m \]

• total data
 \[p_2 = EK \delta m \]
Data preview: surface free data

total shots: 128, shot number: 65
Data preview:
total data

total shots: 128, shot number: 65

Thursday, June 16, 2011
Case study 1

- scenario 1: inversion from surface-free data
- scenario 2: inversion from total data
- scenario 3: combined inversion from total data
Sparse inversion of surface-free data
Sparse inversion of total data
Sparse inversion of data with multiples with EPSI
Sparse inversion of surface-free data
Do multiples really help?

Both scenario 1 and scenario 3 give good results...Will this still be true when we invert from incomplete data?
Case study 2

From incomplete data

• scenario 1: inversion from surface-free data
• scenario 2: combined inversion from total data
Incomplete data

• 16 sequential shots selected randomly from a total number of 128 shots
• 300m missing near-offset
Sparse inversion from surface-free data

SNR: 3.08dB (compared to true dm)
Combined inversion of total data

SNR: 3.72dB (compared to true dm)
Recovered Green’s function

![Graph showing a recovered Green's function with axes labeled Time(s) and Offset(m).]

- Total shots: 128, shot number: 65, SNR: 15.4dB

Thursday, June 16, 2011
In EPSI’s point of view

- Model perturbation is sparser than the Green’s function
- Primary estimation in image space
- One joint inversion outperforms two separate inversions
Case study 3

From 12 simultaneous shots

- scenario 1: EPSI & migration
- scenario 2: EPSI -> migration
Data preview

Receiver number

Time (s)

20 40 60 80 100 120

total shots: 12

Thursday, June 16, 2011
Combined inversion

SNR: 5.30dB (compared to true dm)
Two separate inversions

SNR: 4.52dB (compared to true dm)
Recovered Green’s function in combined inversion

total shots: 128, shot number: 65, SNR: 22.4dB
Recovered Green’s function in separate inversions

total shots: 128, shot number: 65, SNR: 5.4dB
Conclusions

By combing EPSI with migration:

• we reap benefits in seismic imaging by exploiting the extra illumination from surface multiples

• better primary estimation results by exploiting sparsity in image space
Future plans

- How to adapt EPSI for incomplete data
- Speed-up this joint inversion by introducing simultaneous sources
- extend this work to FWI
EPSI for incomplete data

EPSI contains term G^*P, matrix multiplication breaks when P is incomplete along both columns and rows.
Compressively simulate G

EPSI needs full G too for $G*P$ term.

- $P=USV^*$, use U as a simultaneous shot term for G
- $G*P=P*G$ by reciprocity, apply the simultaneous shot term on the right.
References

Herrmann, F. J., 2008, Seismic wavefield inversion with curvelet-domain sparsity promotion, Presented at SEG.

Herrmann, F. J. and X. Li, Randomized dimensionality reduction for full-waveform inversion: Presented at the 72nd EAGE Conference & Exhibition.

Lin, T., N. Tu and F. J. Herrmann, 2010, Sparsity-promoting migration from surface-related multiples: Presented at the 80th SEG Conference

Wang, J. and M. D. Sacchi, High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints: Geophysics, 72, S11-S18

Symes, W., Approximate linearized inversion by optimal scaling of prestack depth migration: Geophysics, 73, R23-R35
Nemeth, T., C. Wu and G.T. Schuster, Least-squares migration of incomplete reflection data: Geophysics, 64, 208-221

Verschuur, D. J. and Berkhout A.J., 2011, Seismic migration of blended shot records with surface-related multiple scattering: Geophysics, 76, A7-A13
Acknowledgements

- Thank every SLIM group member for your help
- Thank Eric Verschuur for his advice on working with incomplete data

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.
Thanks for your attention