Randomized sampling strategies

Felix J. Herrmann

Seismic Laboratory for Imaging and Modeling the University of British Columbia

Drivers & impediments

- "Acquisition costs"
 - Full-waveform inversion requires *hifi* data
- "Data deluge"
 - "Curse of dimensionality" compounded by over restrictive "Nyquist sampling criterion"
- "Limits on computational resources"
 - ▶ End of "Moore's law"

Wish list

Acquisition & inversion costs determined by structure of data & complexity of the subsurface

sampling criteria that are dominated by transform-domain sparsity and not by the size of the discretization

Controllable error that depends on

- degree of subsampling / dimensionality reduction
- available computational resources

Strategy

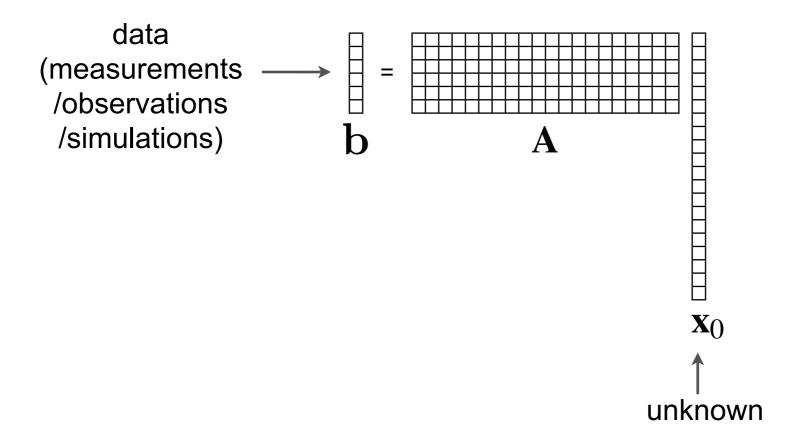
Adapt recent compressive sensing (CS)

- randomized subsampling turn aliases/interferences into noise
- sparsity promotion removes subsampling noise by exploiting signal structure

This is really an "acquisition" design problem

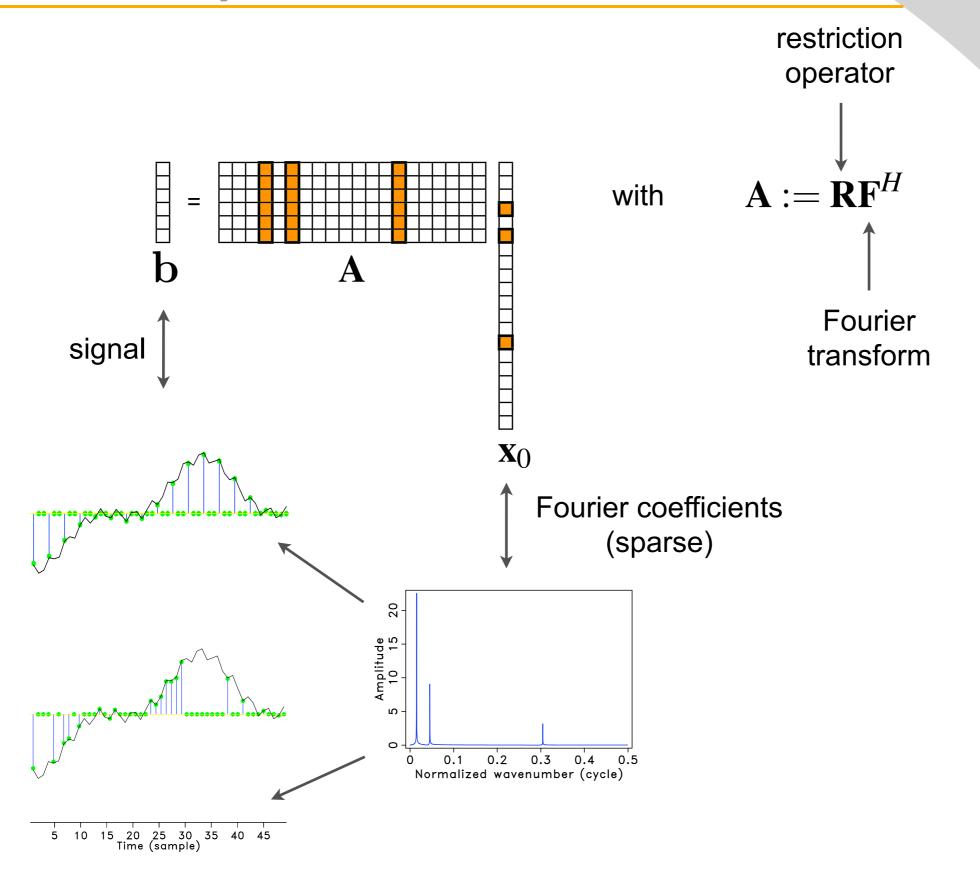
Let's have a look at a stylized recovery problem first...

Consider the following (severely) underdetermined system of linear equations:

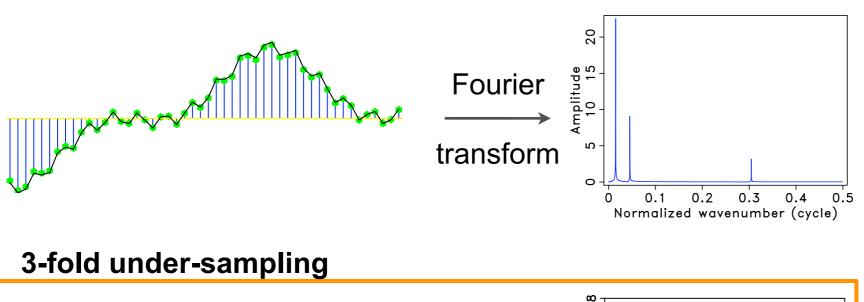


Is it possible to recover \mathbf{x}_0 accurately from \mathbf{b} ?

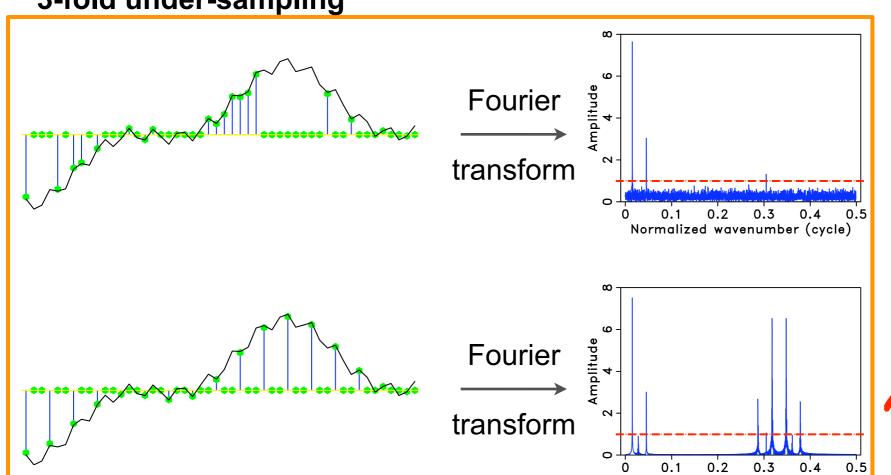
The new field of Compressive Sensing attempts to answer this.



Coarse sampling schemes



few significant coefficients



Normalized wavenumber (cycle)

significant coefficients detected

ambiguity

Signal model

$$\mathbf{b} = \mathbf{A}\mathbf{x}_0$$
 where $\mathbf{b} \in \mathbb{R}^n$

and \mathbf{x}_0 k sparse

Sparse one-norm recovery

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} ||\mathbf{x}||_1 \stackrel{\text{def}}{=} \sum_{i=1}^N |x[i]|$$
 subject to $\mathbf{b} = \mathbf{A}\mathbf{x}$

with $n \ll N$

Study recovery as a function of

- the subsampling ratio n/N
- "over sampling" ratio k/n

Recovery is possible & stable as long as each subset S of k columns of $\mathbf{A} \in \mathbb{R}^{n \times N}$ with $k \leq N$ the # of nonzeros approximately behaves as an orthogonal basis.

In that case, we have

$$(1 - \hat{\delta}_k) \|\mathbf{x}_S\|_{\ell_2}^2 \le \|\mathbf{A}_S \mathbf{x}_S\|_{\ell_2}^2 \le (1 + \hat{\delta}_k) \|\mathbf{x}_S\|_{\ell_2}^2,$$

where S runs over all sets with cardinality $\leq k$

- the smaller the restricted isometry constant (RIP) $\hat{\delta}_k$ the more energy is captured and the more stable the inversion of $\bf A$
- determined by the mutual coherence of the cols in A

Let's adapt this theory to seismic acquisition and processing

Key elements

sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

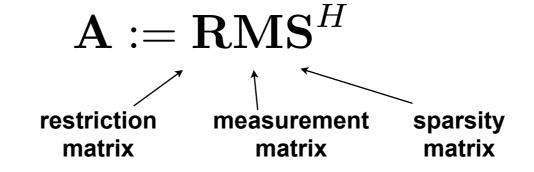
advantageous coarse randomized sampling

generates incoherent random undersampling "noise" in the sparsifying domain

sparsity-promoting solver

requires few matrix-vector multiplications

Extend CS framework:



Expected to perform well when

$$\mu = \max_{1 \le i \ne j \le N} |\left(\mathbf{RMs}^i\right)^H \mathbf{RMs}^j|$$

Generalizes to redundant transforms for cases where

- max of RIP constants for M, S are small [Rauhut et.al, '06]
- ullet or $\mathbf{S}\mathbf{S}^H\mathbf{x}$ remains sparse for \mathbf{x} sparse [Candès et.al, '10]

Open research topic...

Empirical performance analysis

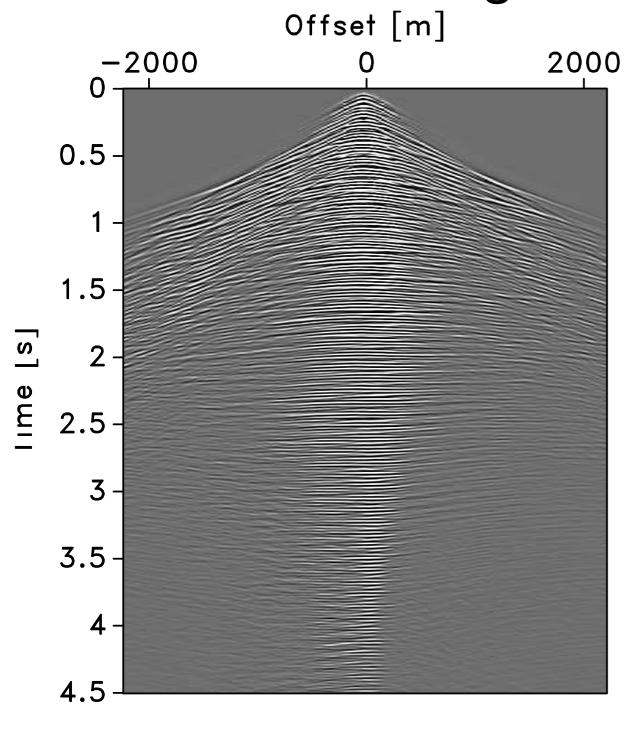
Selection of the appropriate sparsifying transform

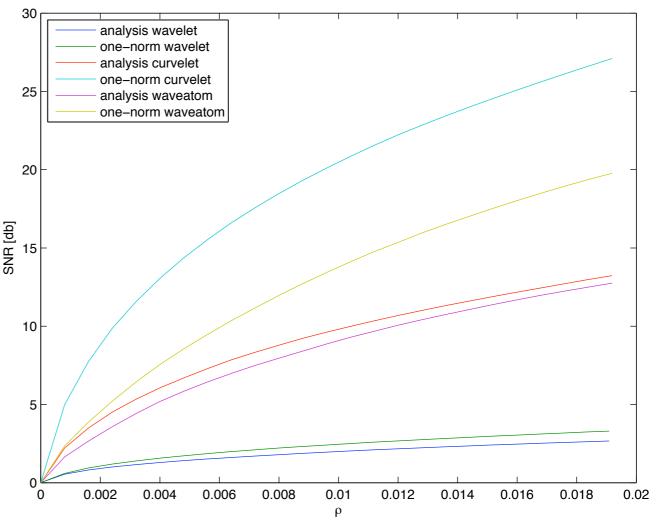
nonlinear approximation error

$$SNR(\rho) = -20 \log \frac{\|\mathbf{f} - \mathbf{f}_{\rho}\|}{\|\mathbf{f}\|}$$
 with $\rho = k/P$

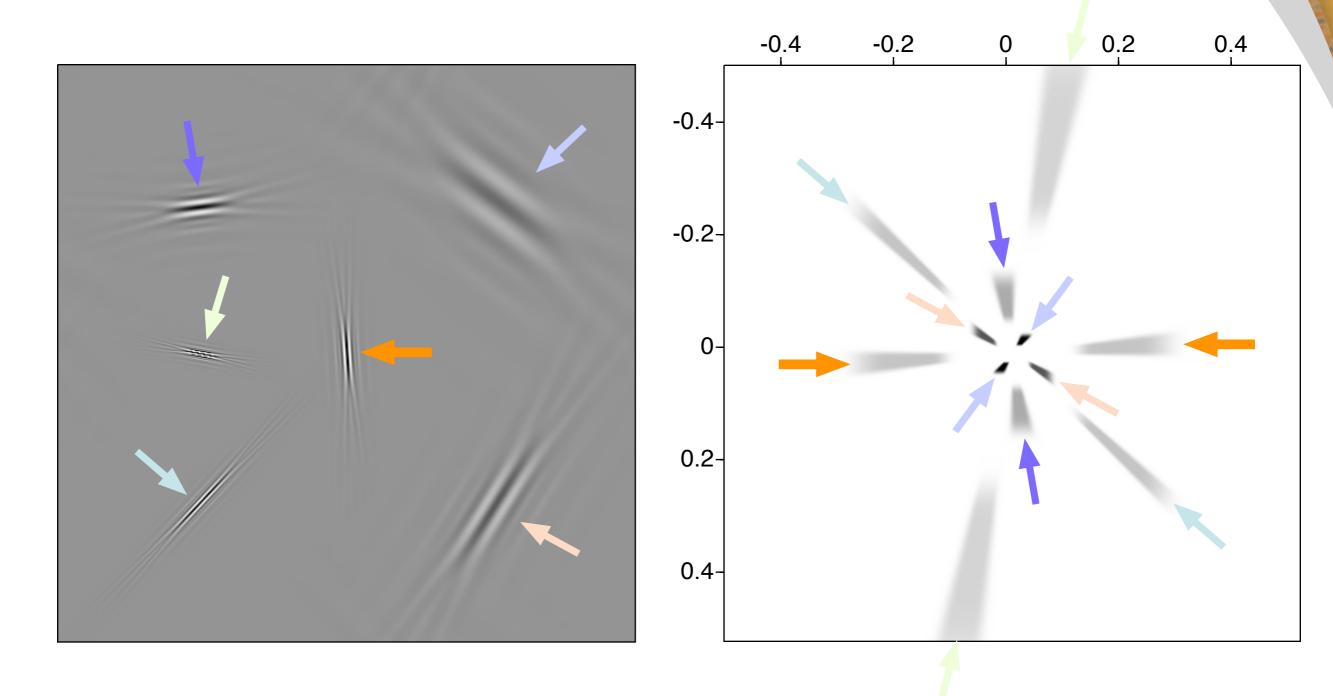
common receiver gather

recovery error





Curvelets



Key elements

sparsifying transform

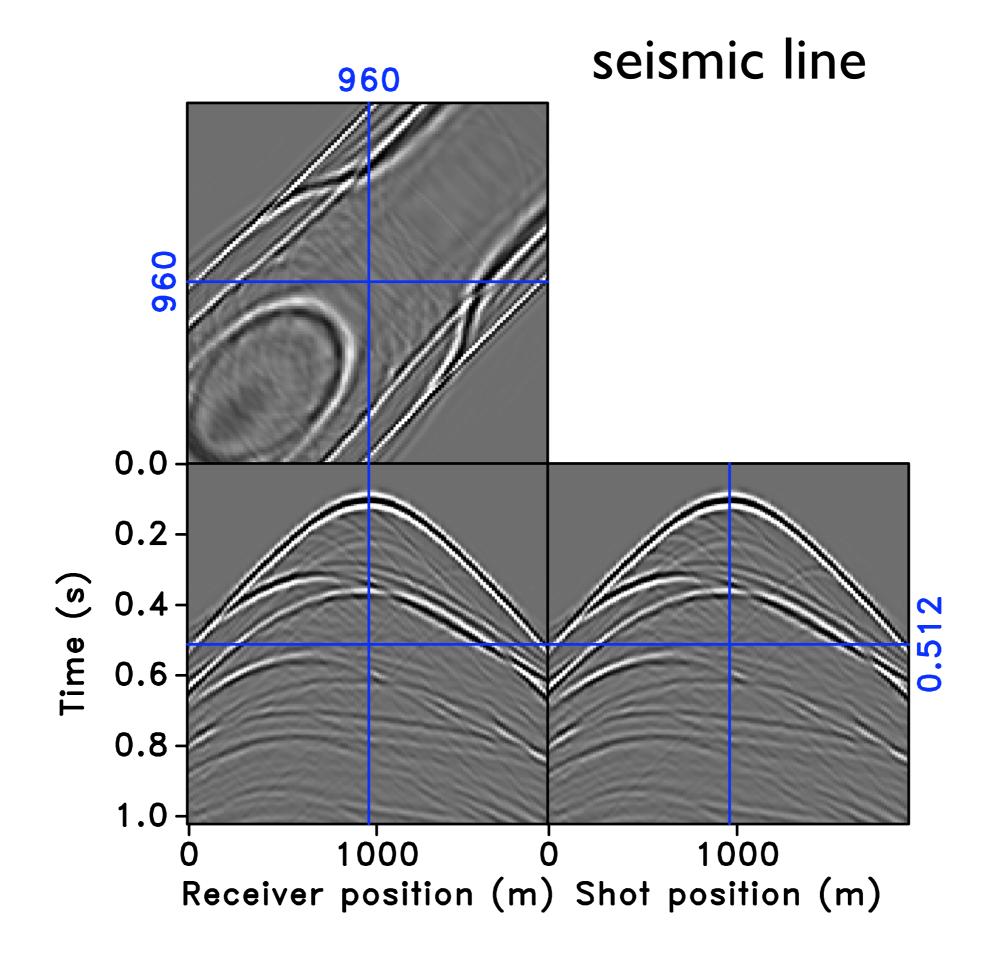
- typically localized in the time-space domain to handle the complexity of seismic data
- curvelets

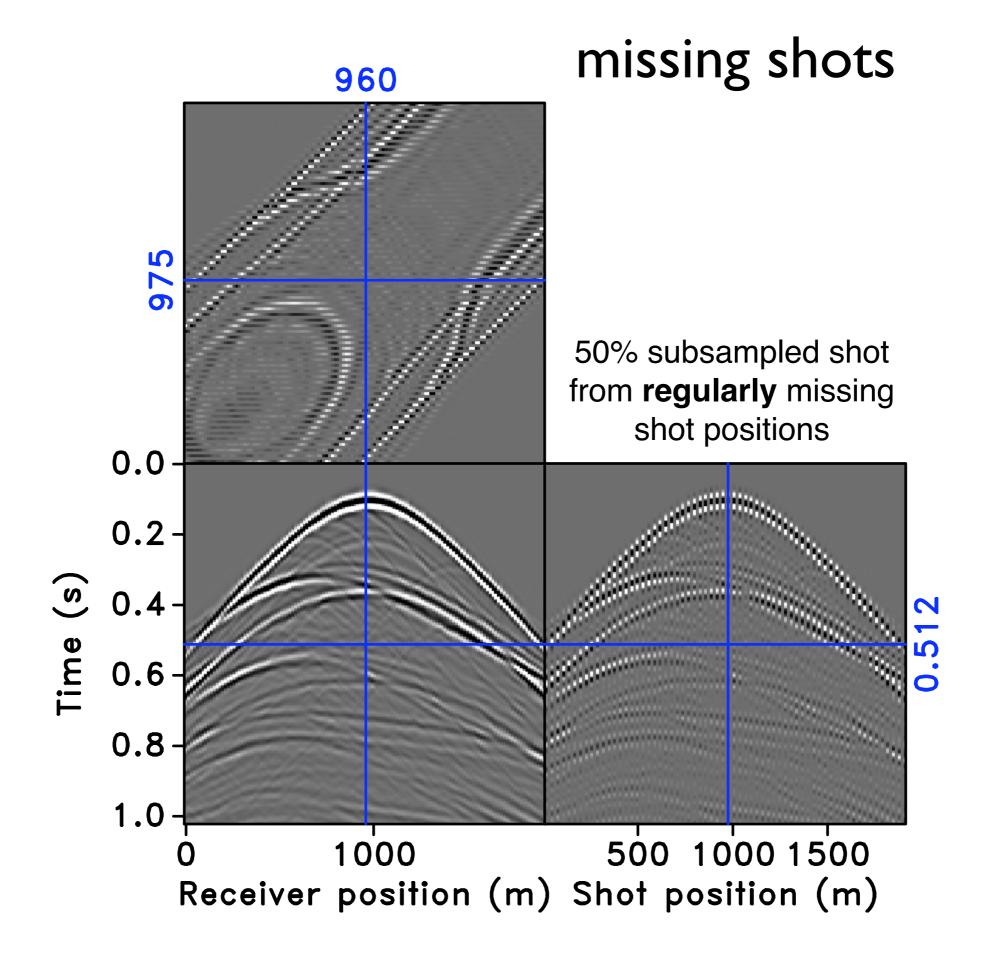
- advantageous coarse sampling
 - generates incoherent random undersampling "noise" in the sparsifying domain
- sparsity-promoting solver
 - requires few matrix-vector multiplications

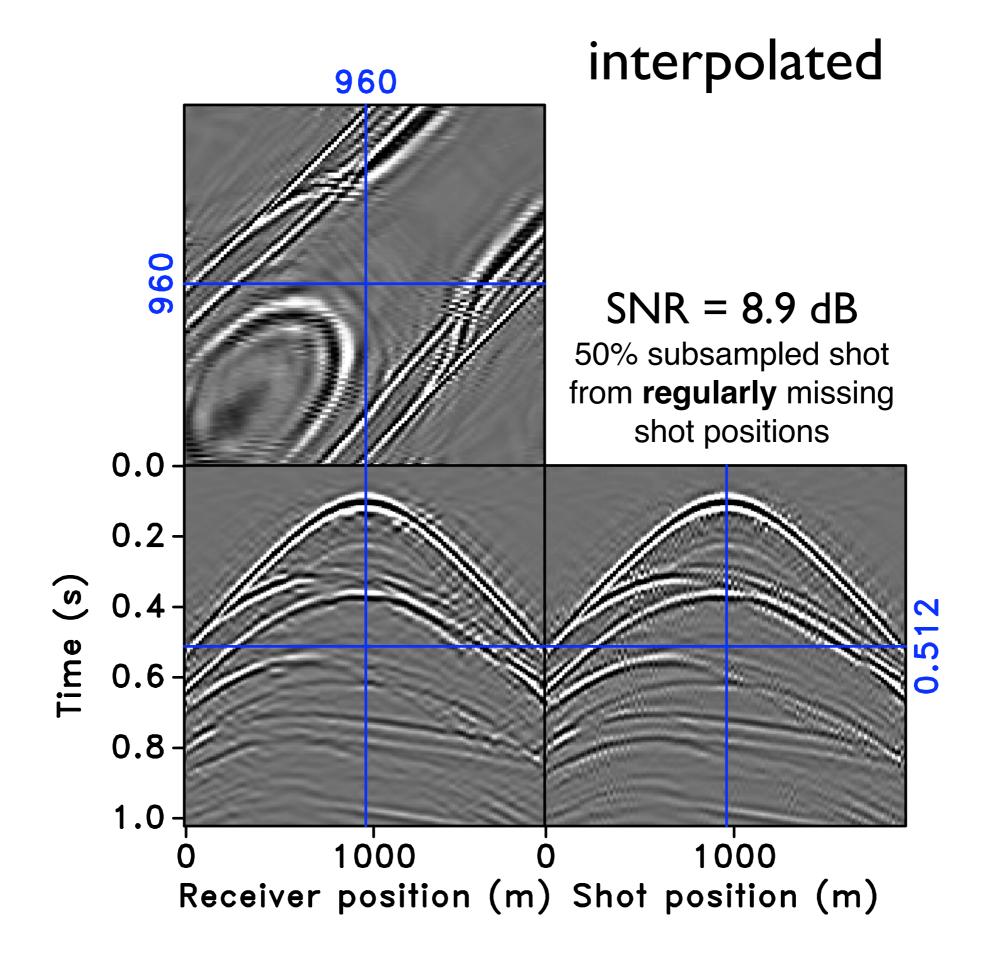
Case study I

Acquisition design according to Compressive Sensing

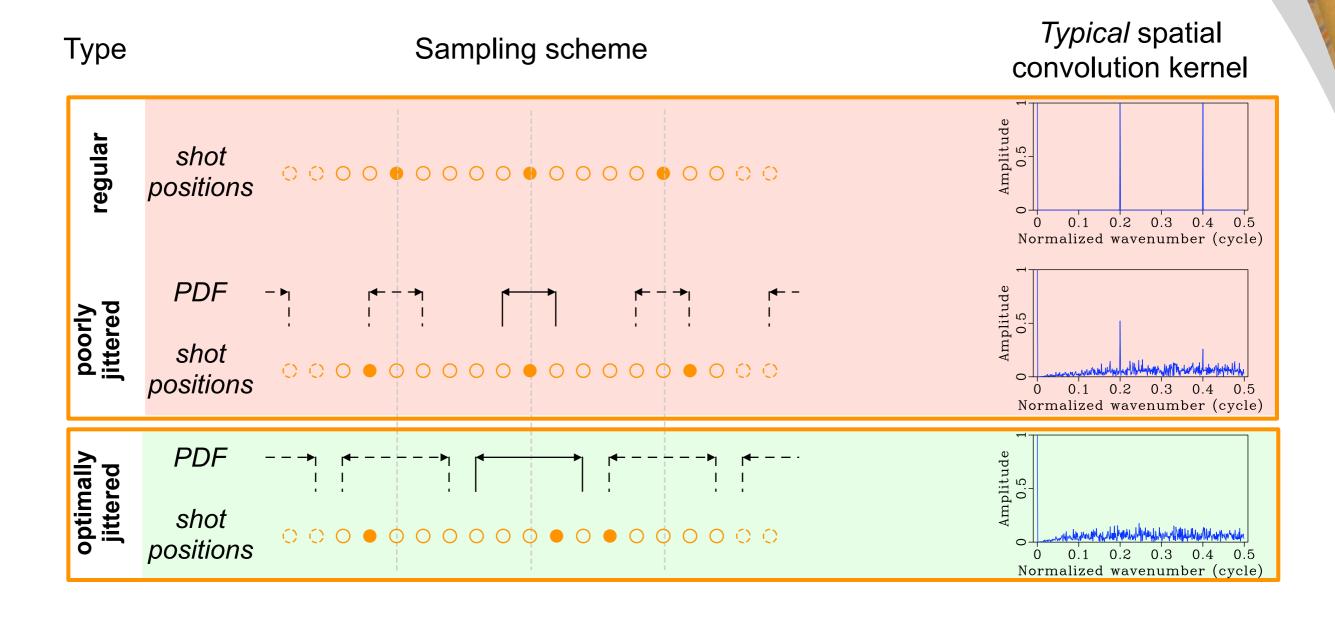
 Periodic subsampling vs randomized jittered sampling of sequential sources in 2- and 3-D

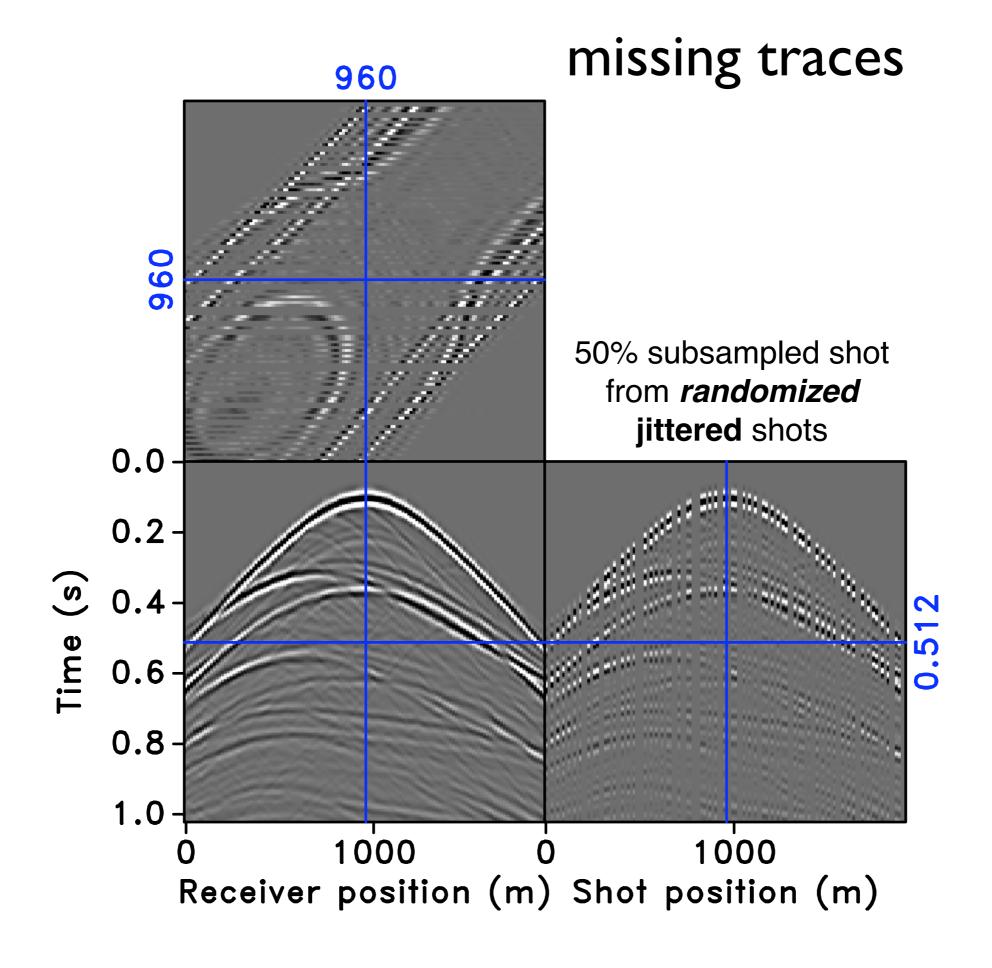


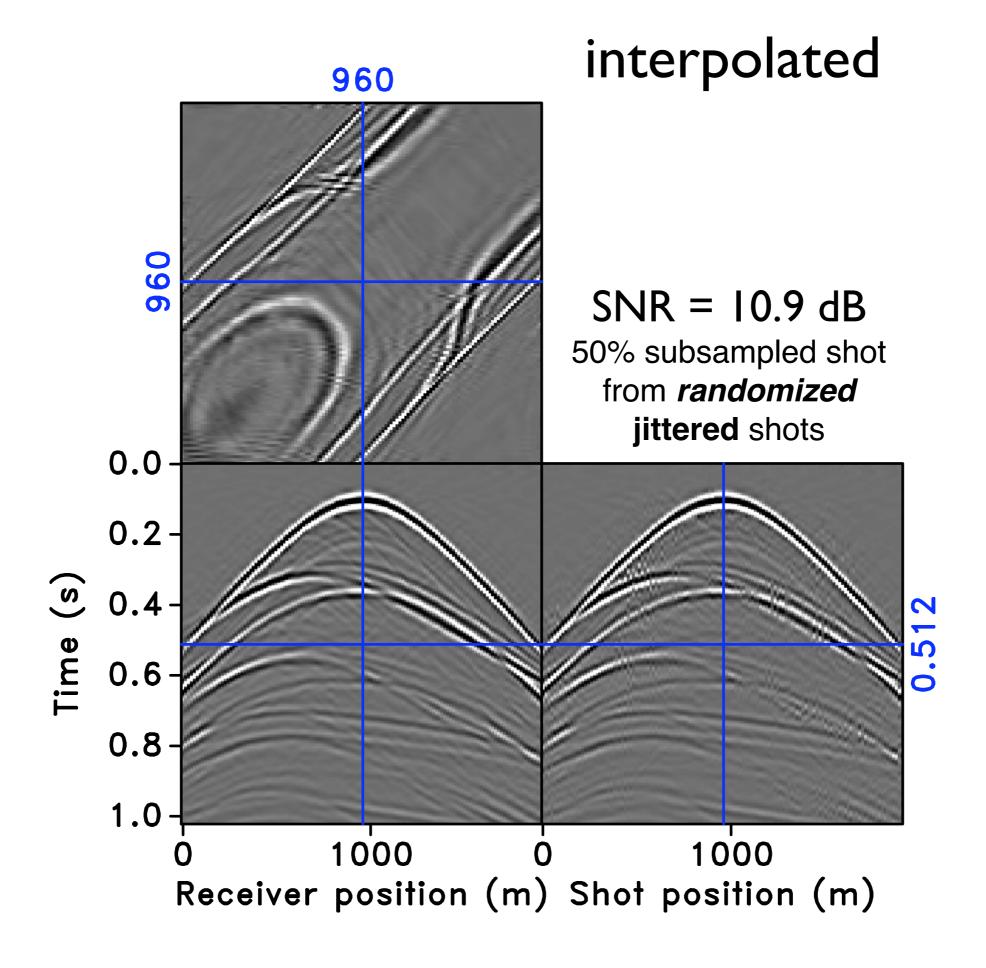


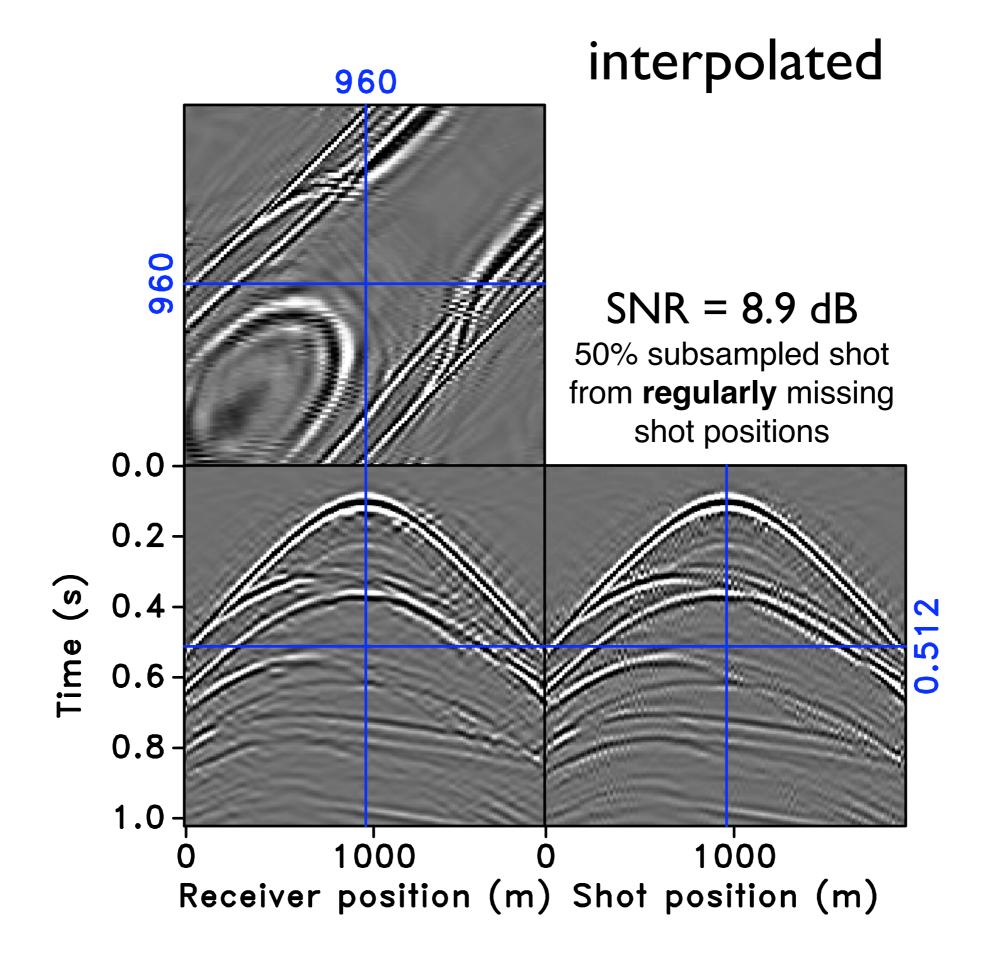


Jittered sampling



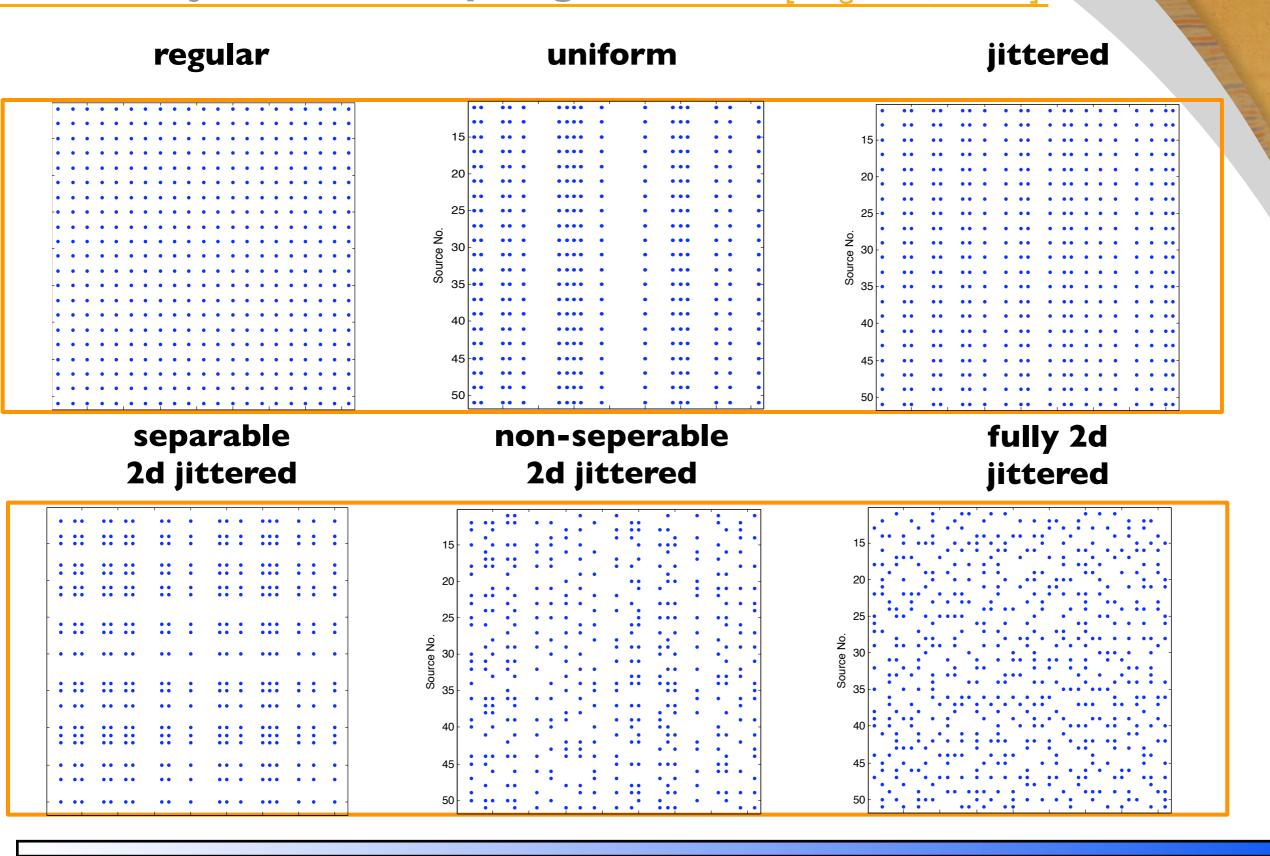




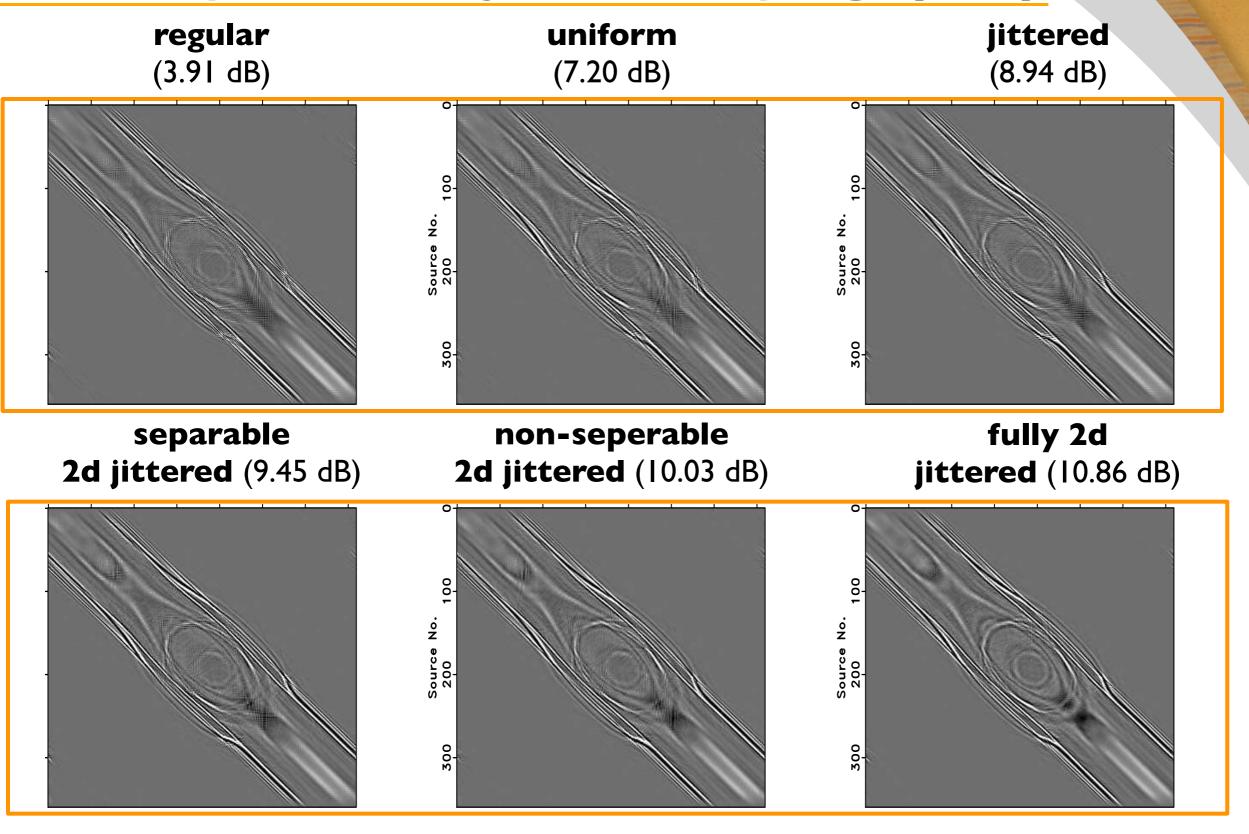


1 & 2-D jittered samplings

[Tang et. al., '09-'10]



Recovery from 1-2D jittered samplings (25%)



Case study II [Beasley et. al., '98] [Berkhout '08]

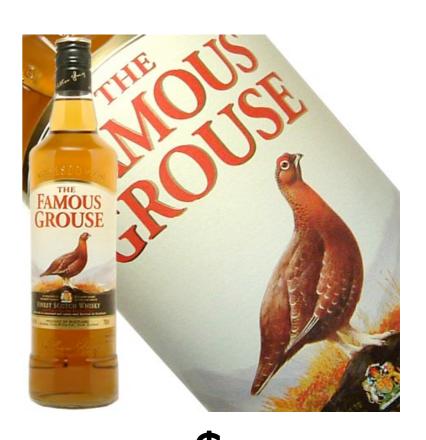
[Herrmann '09-'10]

Acquisition design according to Compressive Sensing

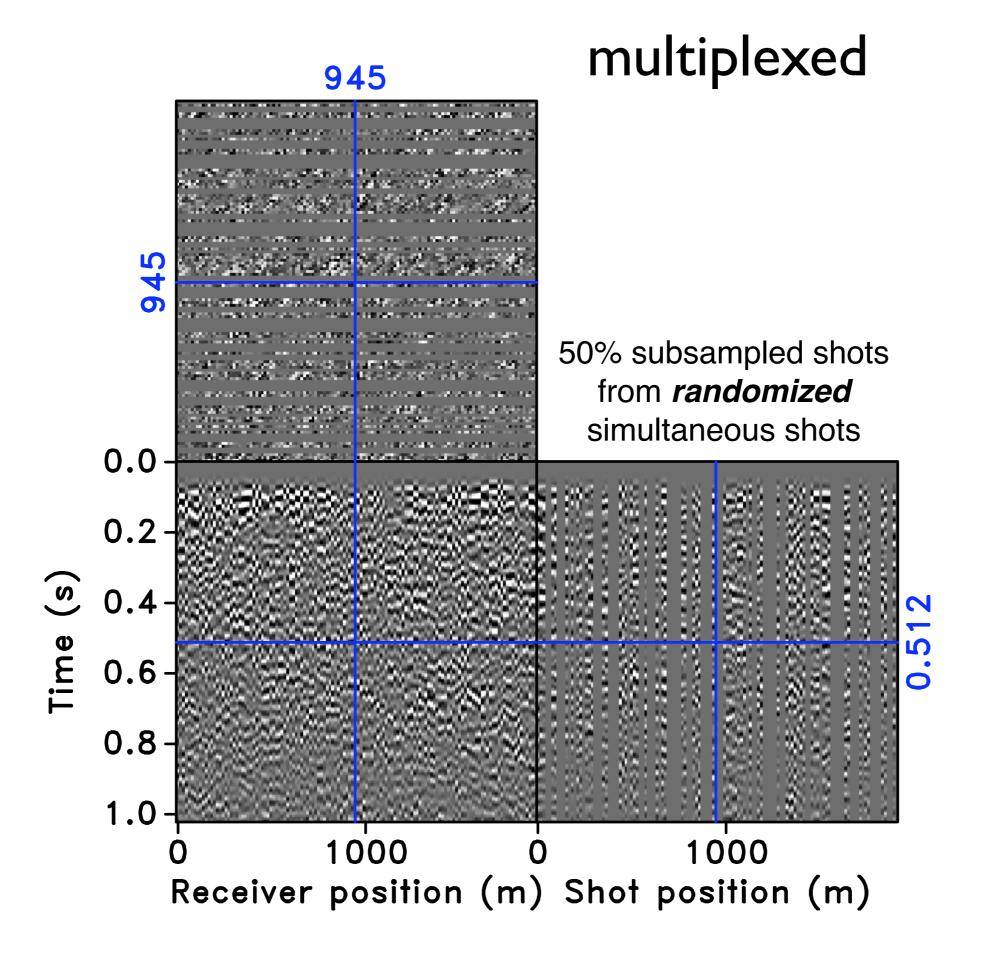
Subsampling with randomized jittered **sequential** sources vs randomized phase-encoded simultaneous sources

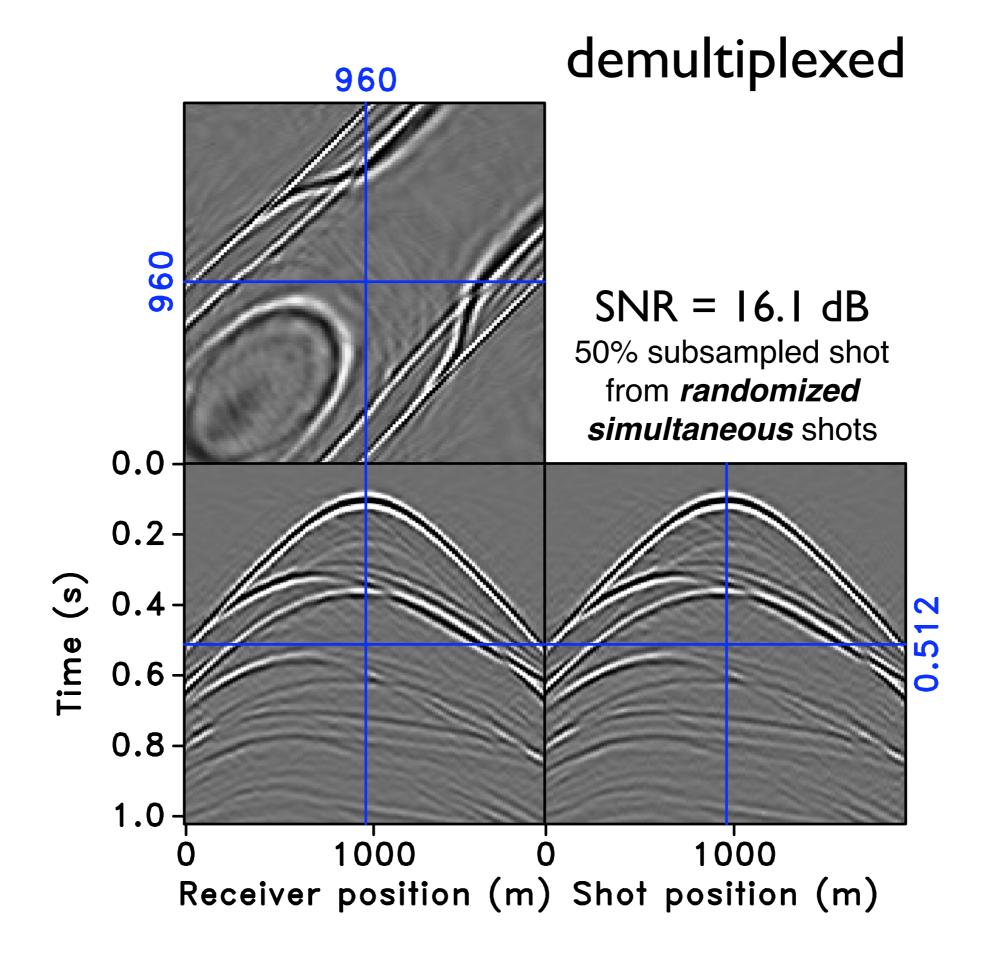
Simultaneous & incoherent sources

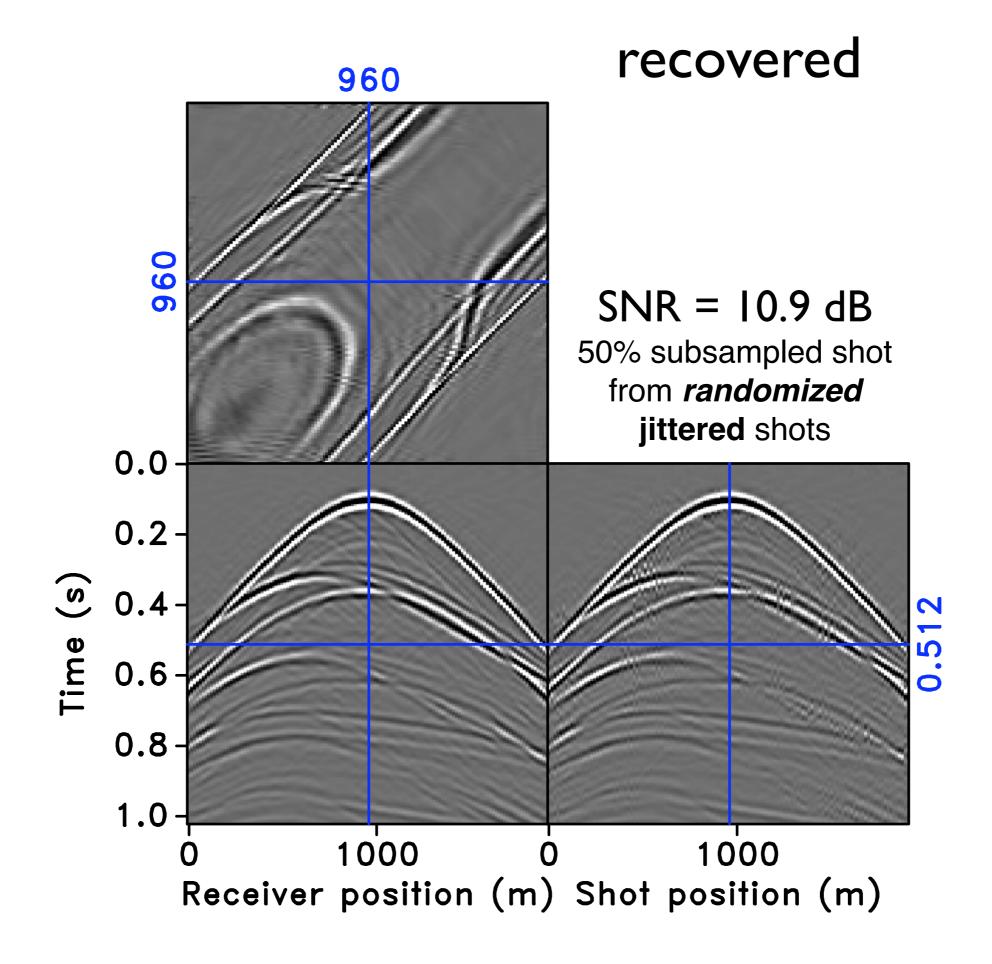
Unblending/ Demultiplexing



Blending versus unblending ...







Empirical performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

$$SNR(\rho) = -20 \log \frac{\|\mathbf{f} - \mathbf{f}_{\rho}\|}{\|\mathbf{f}\|}$$
 with $\rho = k/P$

recovery error

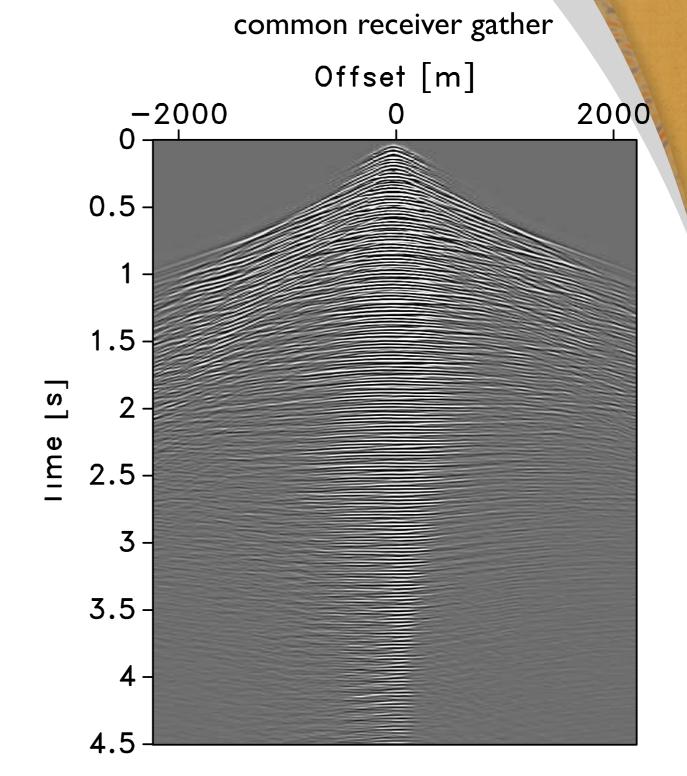
$$SNR(\delta) = -20 \log \frac{\|\mathbf{f} - \tilde{\mathbf{f}}_{\delta}\|}{\|\mathbf{f}\|}$$
 with $\delta =$

Generate 25 random experiments for varying subsampling ratios:

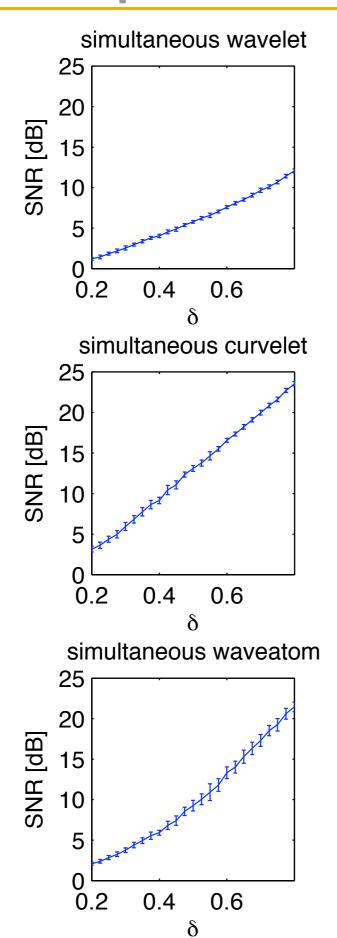
- sequential sources
- simultaneous sources

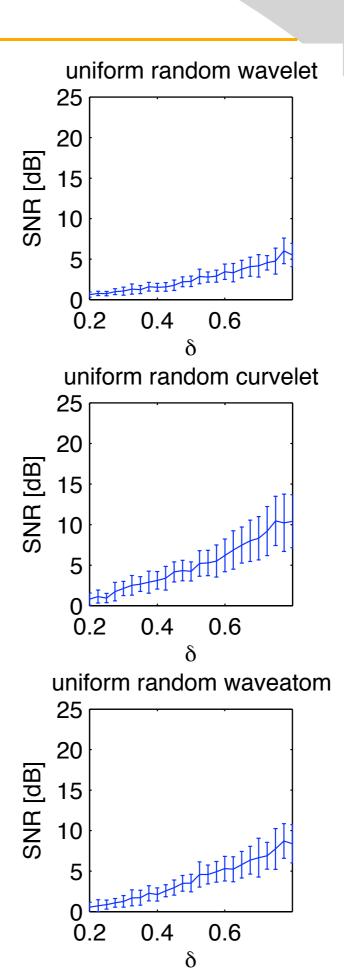
Study recovery errors & oversampling ratios for

- Wavelets
- ▶ Curvelets
- Waveatoms



Multiple experiments





Empirical performance analysis

Selection of the appropriate sparsifying transform

nonlinear approximation error

$$SNR(\rho) = -20 \log \frac{\|\mathbf{f} - \mathbf{f}_{\rho}\|}{\|\mathbf{f}\|}$$
 with $\rho = k/P$

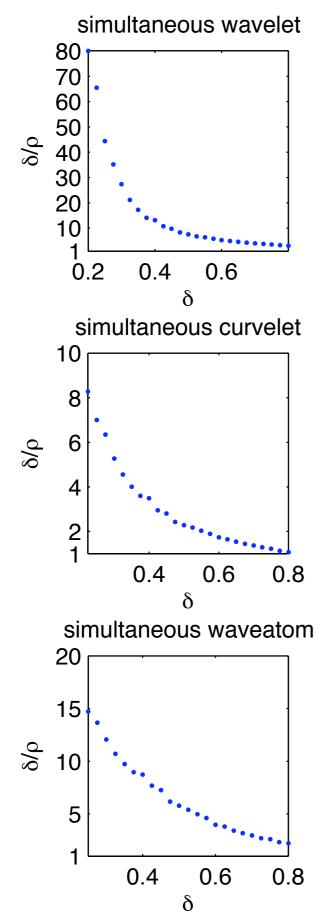
recovery error

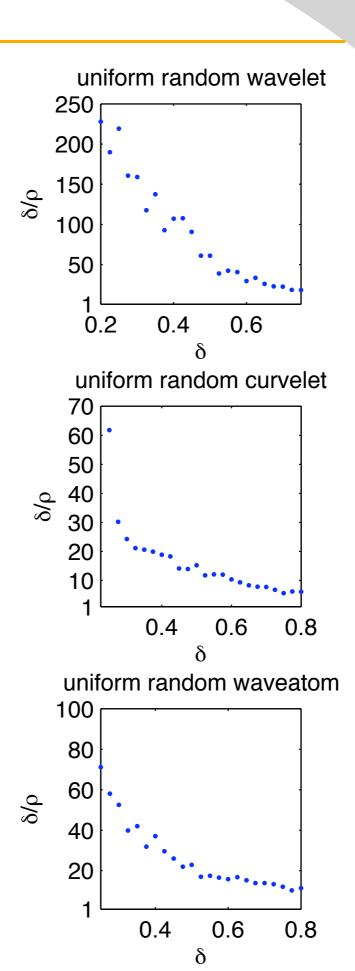
$$SNR(\delta) = -20 \log \frac{\|\mathbf{f} - \tilde{\mathbf{f}}_{\delta}\|}{\|\mathbf{f}\|}$$
 with $\delta =$

oversampling ratio

$$\delta/\rho$$
 with $\rho = \inf\{\tilde{\rho}: \overline{SNR}(\delta) \leq SNR(\tilde{\rho})\}$

Oversampling ratios





Key elements

sparsifying transform

- typically localized in the time-space domain to handle the complexity of seismic data
- curvelets

advantageous coarse sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create large gaps for measurement in the physical domain
- does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

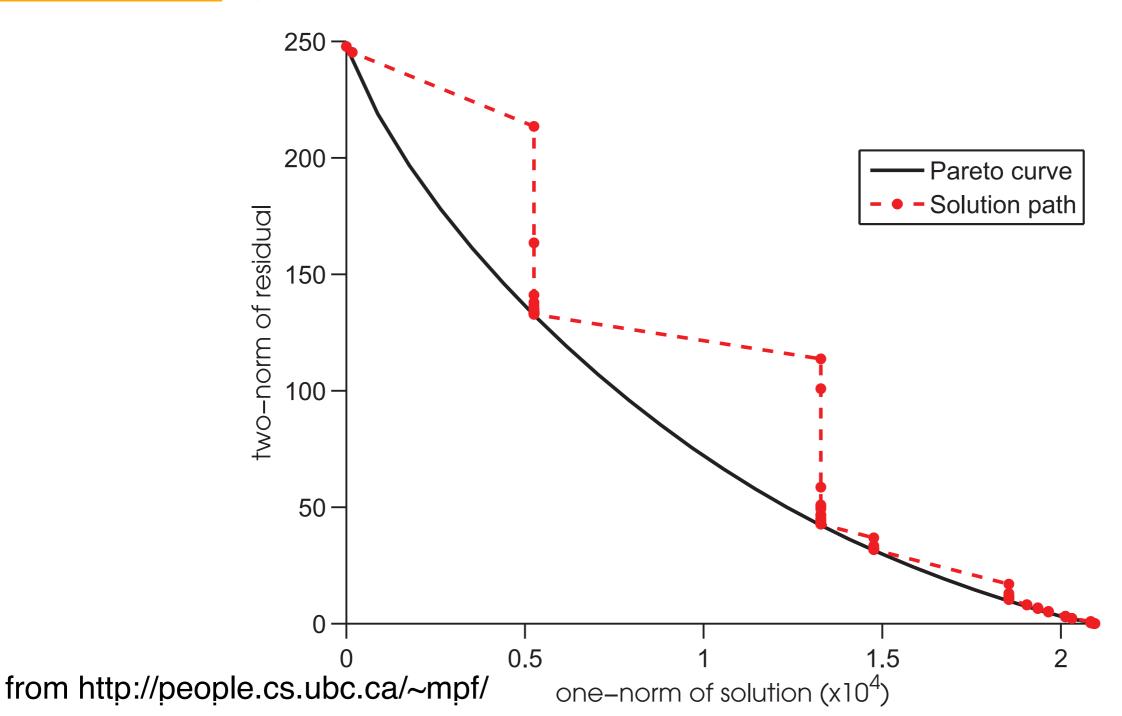
requires few matrix-vector multiplications

Reality check

"When a traveler reaches a fork in the road, the I_1 -norm tells him to take either one way or the other, but the I_2 -norm instructs him to head off into the bushes."

John F. Claerbout and Francis Muir, 1973

One-norm solver



Key elements

sparsifying transform

- typically localized in the time-space domain to handle the complexity of seismic data
- curvelets

advantageous coarse sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create large gaps for measurement in the physical domain
- does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

requires few matrix-vector multiplications

Observations

- Controllable error for reconstruction from randomized subsamplings
- Curvelets and simultaneous acquisition perform the best
- Oversampling compared to conventional compression is small
- Combination of sampling & encoding into a single linear step has profound implications
 - acquisition costs **no** longer determined by resolution & size
 - but by transform-domain sparsity & recovery error

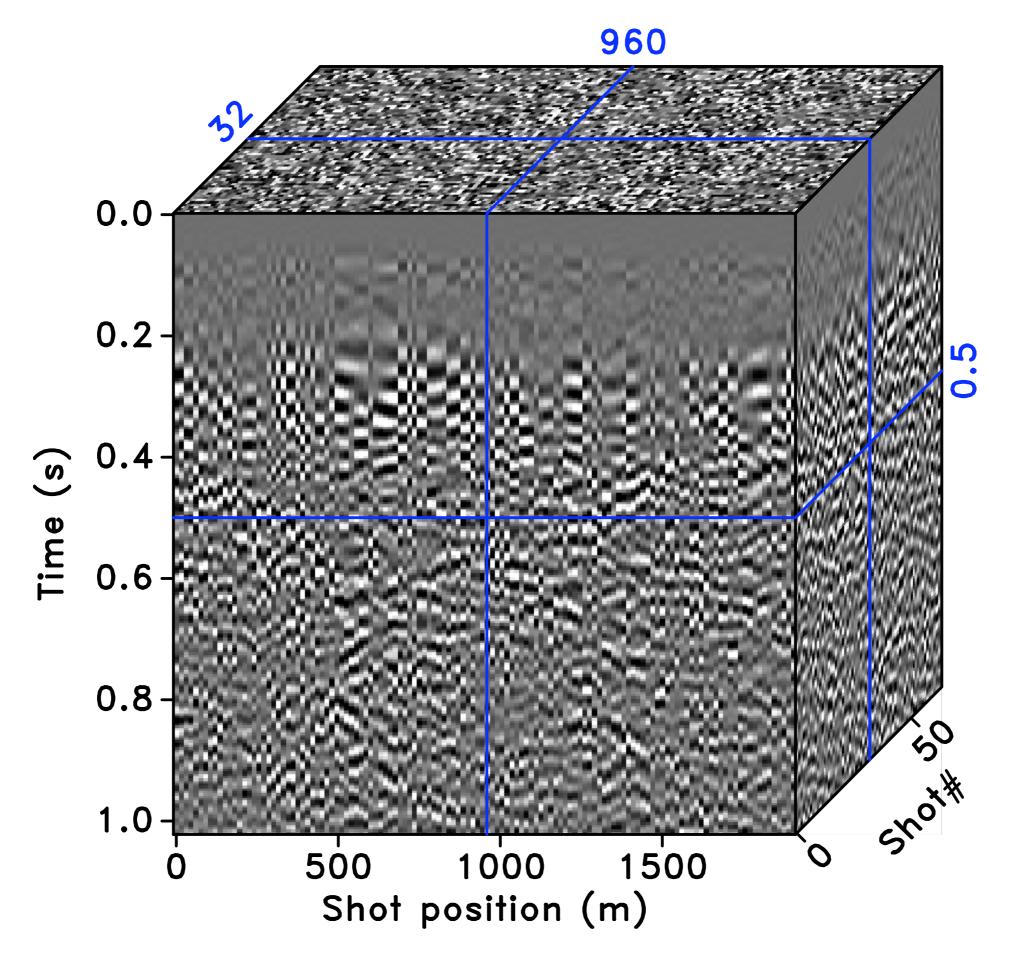
Case study II

Processing according to CS

CS recovery from simultaneous data, followed by primary estimation

VS.

• Primary estimation directly from simultaneous data

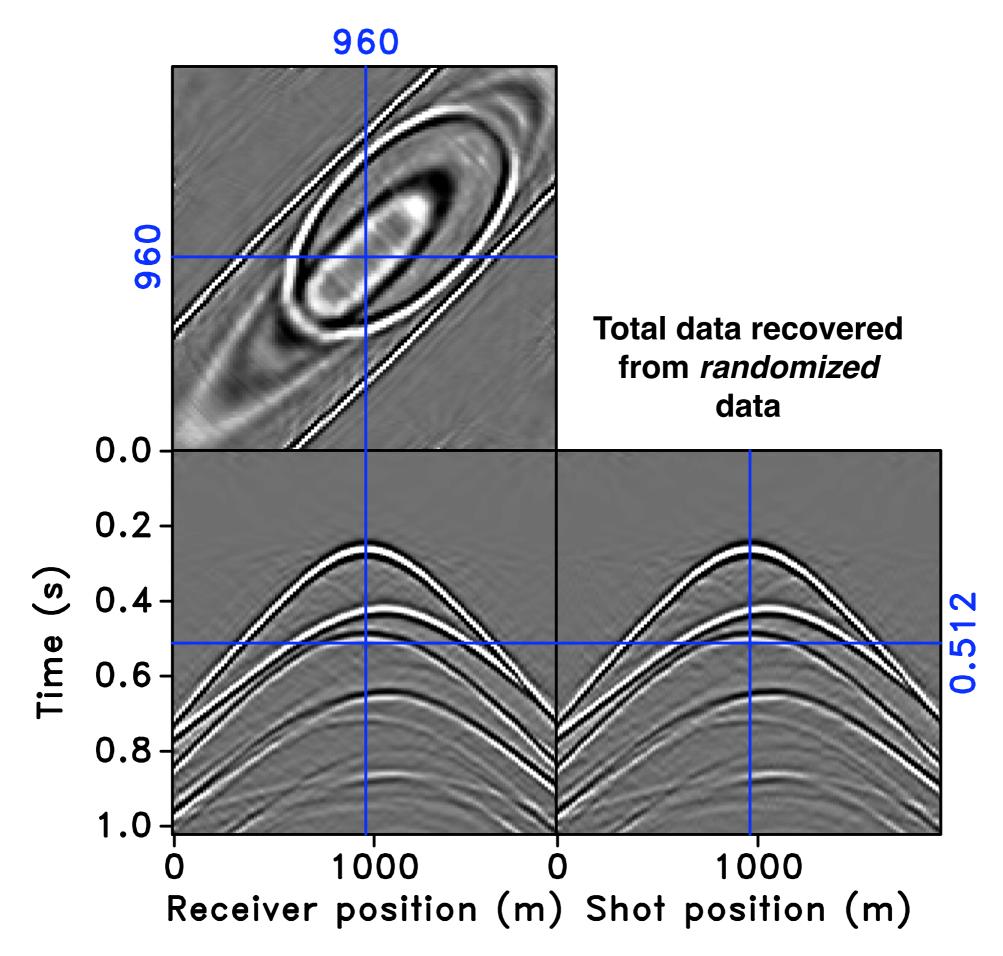


CS

Use to demultiplex

$$\mathbf{A} = \left(\mathbf{R} \begin{bmatrix} \mathsf{Gaussian} \\ \mathsf{matrix} \end{bmatrix} \otimes \mathbf{I}\right) \mathbf{S}^*$$

(Randomized simultaneous sources)



Physical principle

Modeling the surface:

upgoing wavefield

 \approx

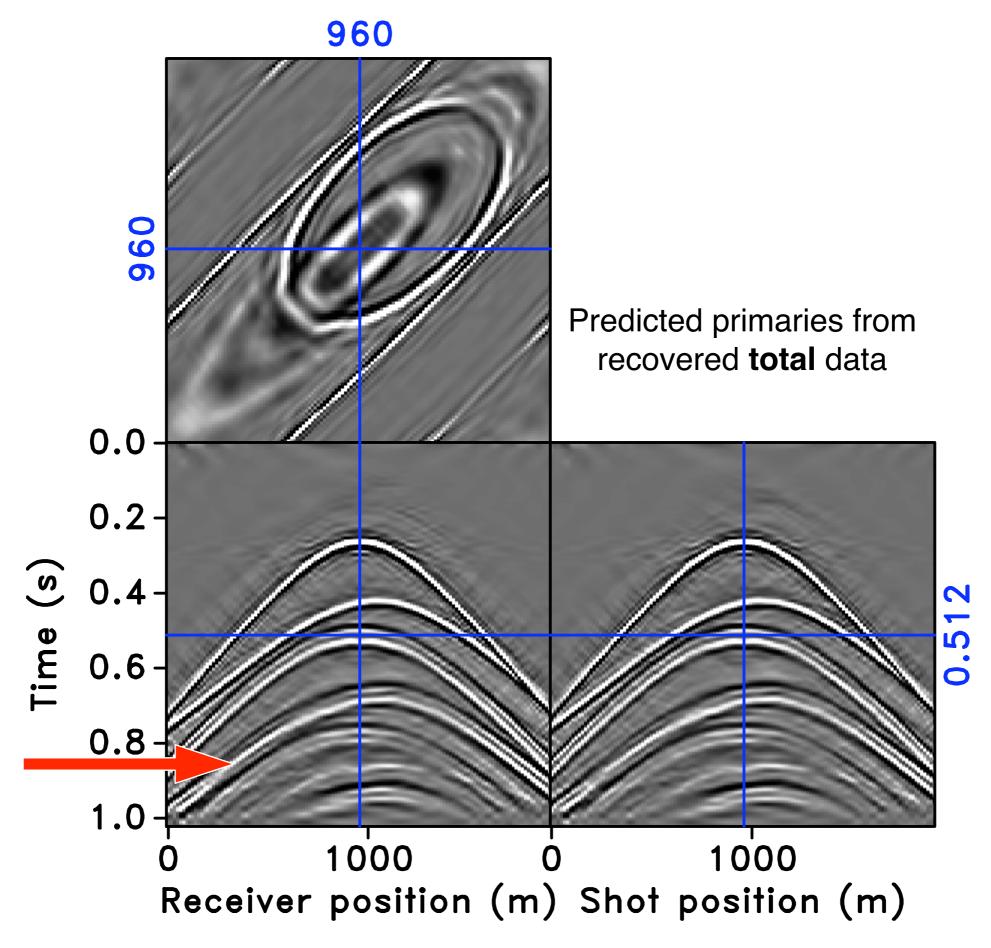
G

surface-free impulse response

downgoing wavefield

$$(Q - P)$$

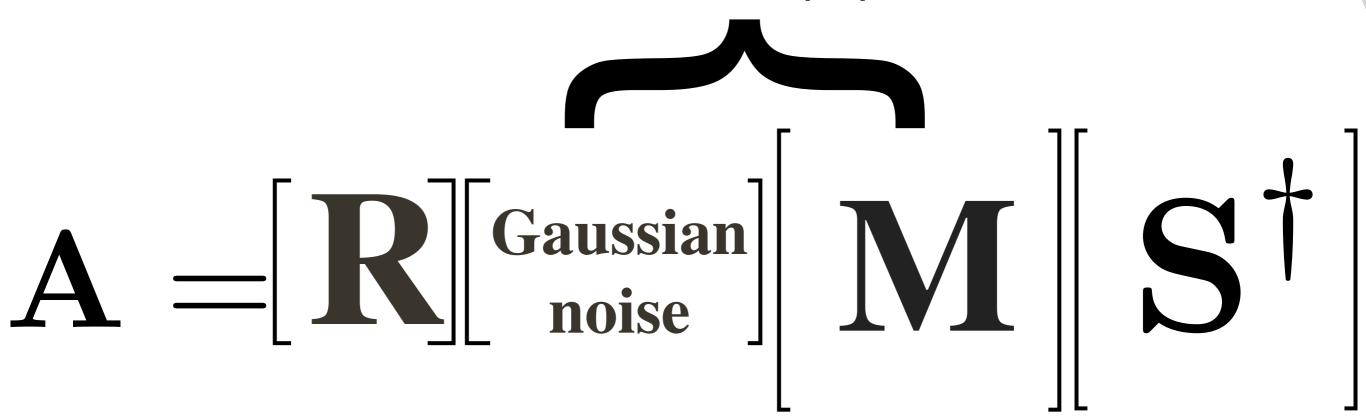
Inversion "focusses" multiples onto primaries ...



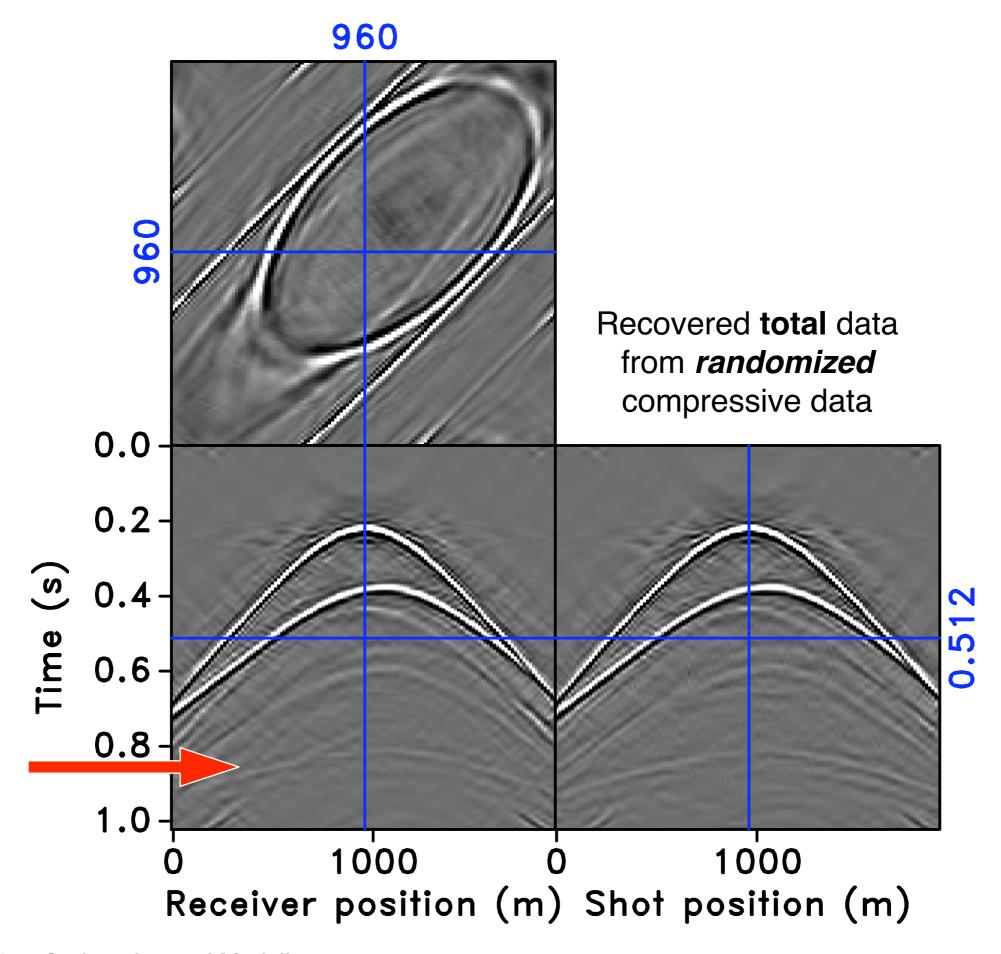
Extension CS

Use to demultiplex & predict

randomized physics



(M models free surface & source function)



Conclusions

Sparse wavefield recovery benefits from

- randomization
- sparsification
- inclusion of physics

Recovery has a controlable error

Leads to acquisition & processing where costs are **no** longer dominated by resolution & size but by transform-domain sparsity & recovery error

Acknowledgments

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05).

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Petrobras, and WesternGeco.

Thank you

slim.eos.ubc.ca

Further reading

Compressive sensing

- Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
- Compressed Sensing by D. Donoho, '06

Simultaneous acquisition

- A new look at simultaneous sources by Beasley et. al., '98.
- Changing the mindset in seismic data acquisition by Berkhout '08.

Transform-based seismic data regularization

- Interpolation and extrapolation using a high-resolution discrete Fourier transform by Sacchi et. al, '98
- Non-parametric seismic data recovery with curvelet frames by FJH and Hennenfent., '07
- Simply denoise: wavefield reconstruction via jittered undersampling by Hennenfent and FJH, '08

Estimation of surface-free Green's functions:

- Estimating primaries by sparse inversion and application to near-offset data reconstruction by Groenestijn,
 '09
- Unified compressive sensing framework for simultaneous acquisition with primary estimation by T. Lin & FJH, '09

Review

Randomized sampling and sparsity: getting more information from fewer samples by FJH, '09-'10