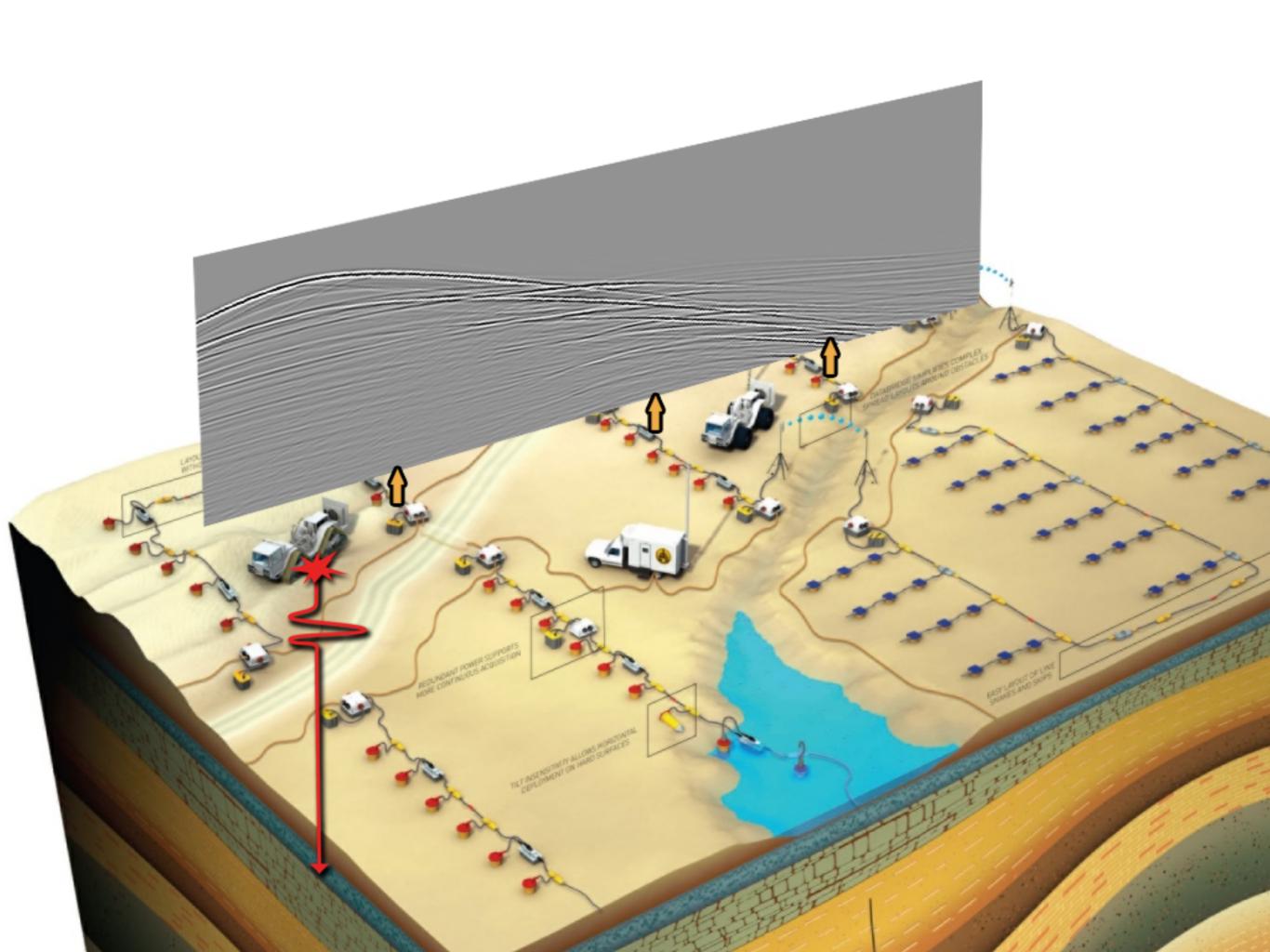


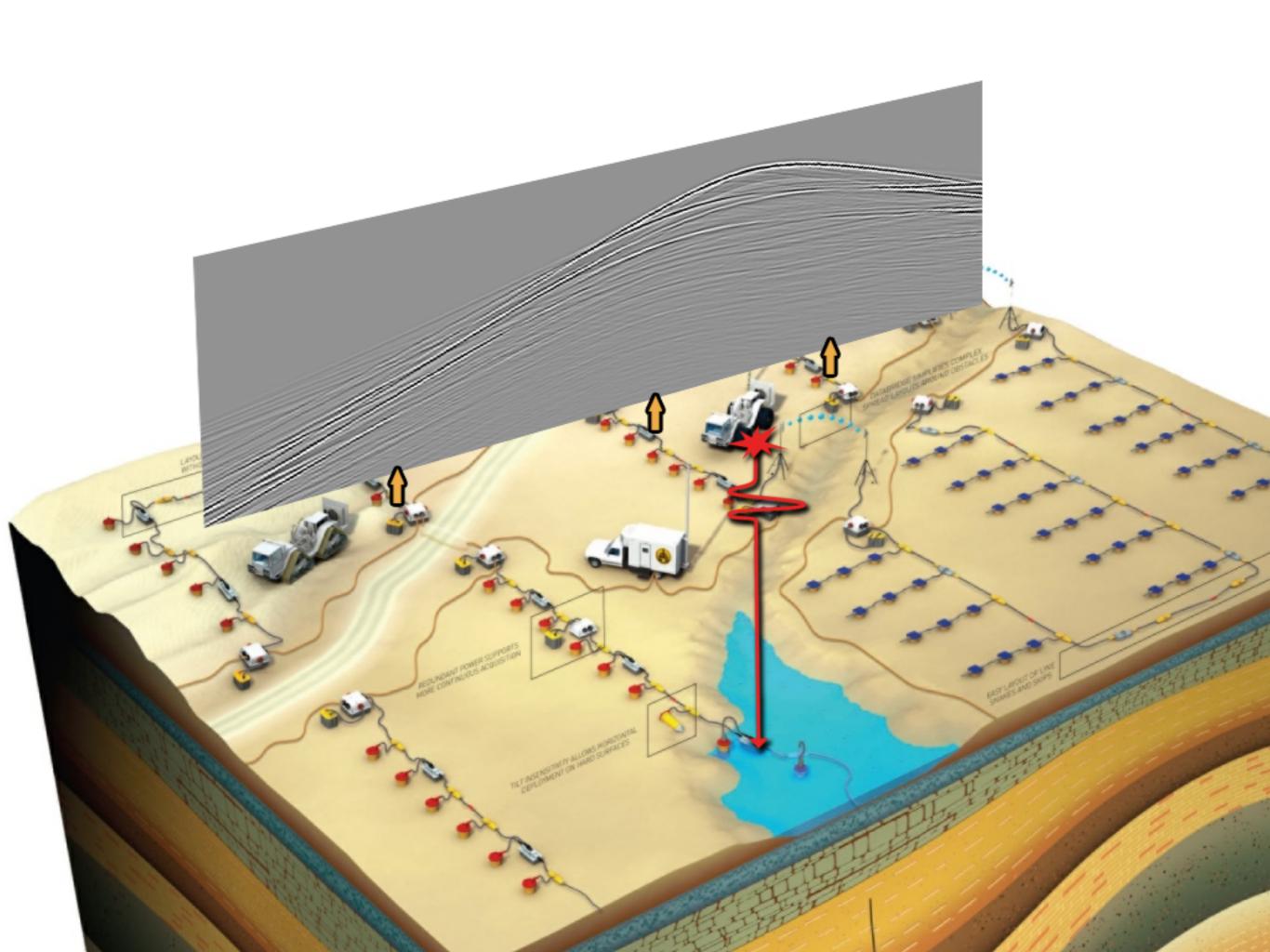
Designing simultaneous acquisitions with Compressive Sensing

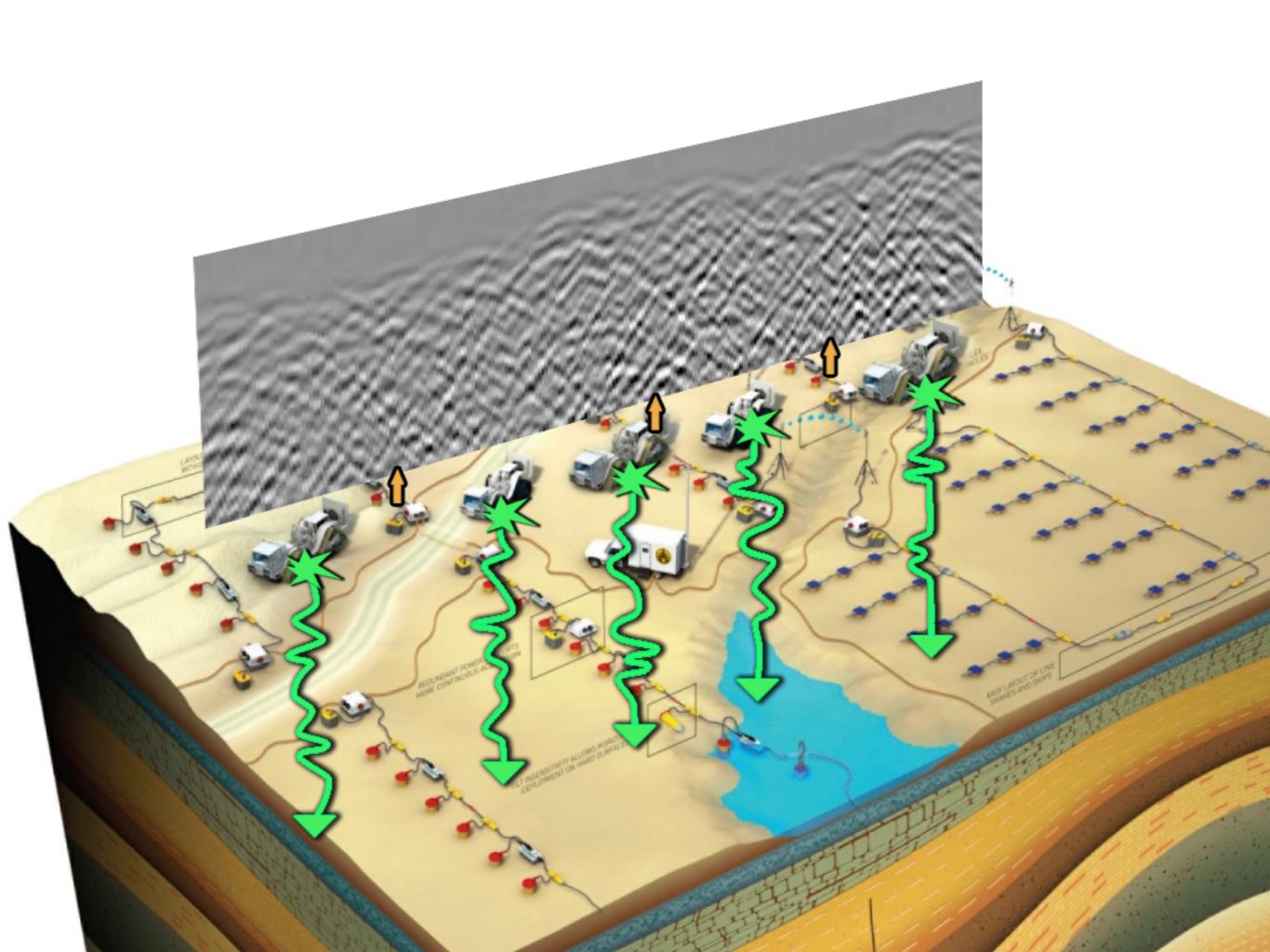
Tim T.Y. Lin jointly with Felix J. Herrmann

meet...

...the blended shot record







fact:

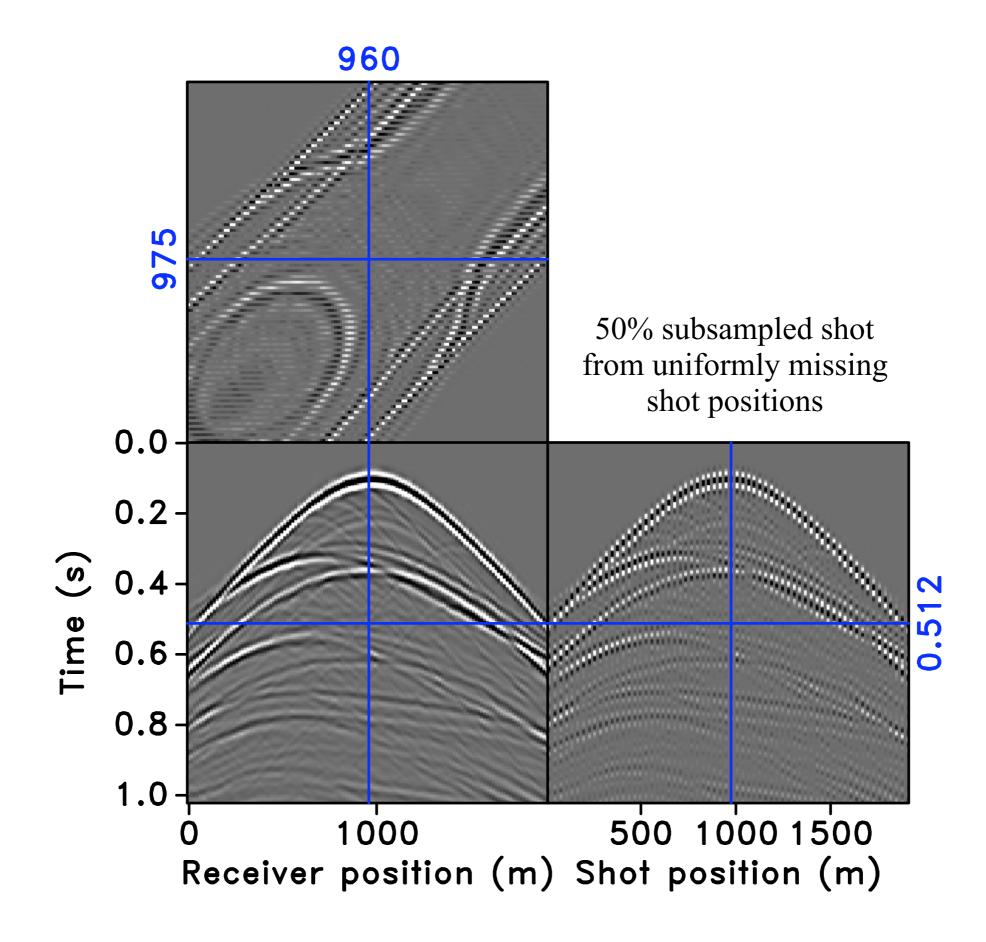
blended shots will never stop looking ugly

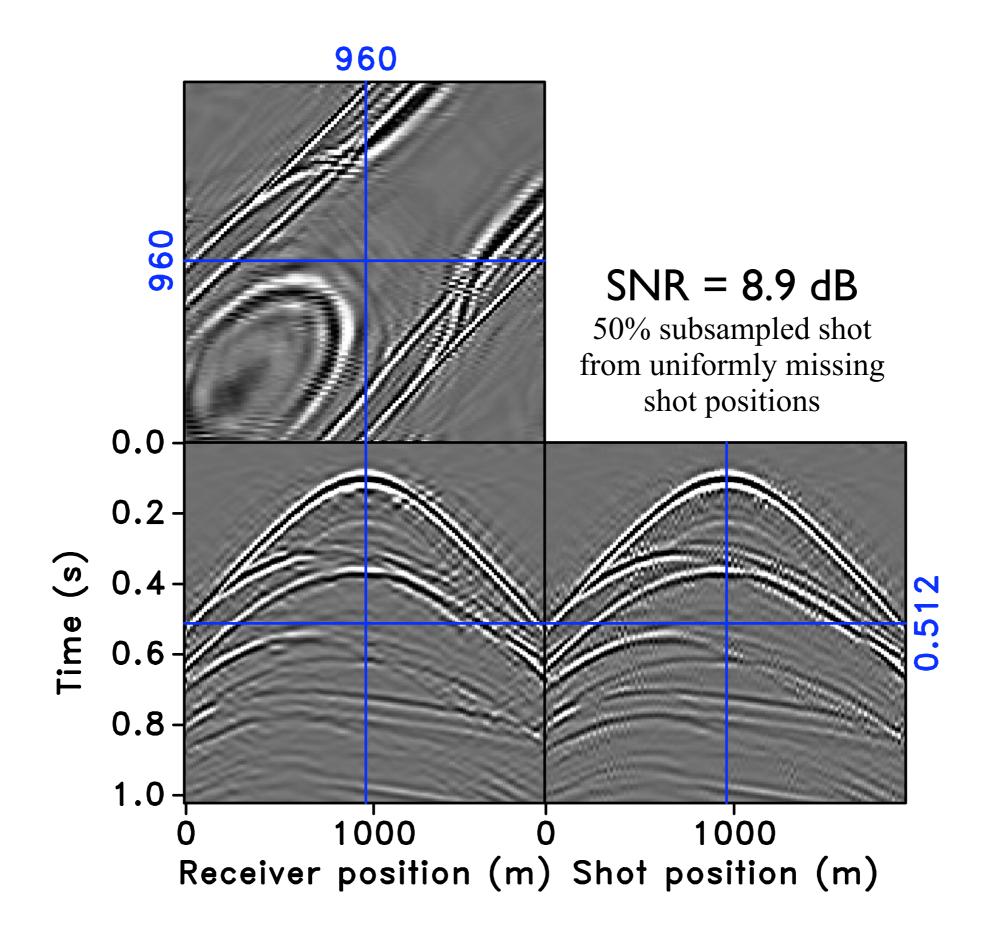
but

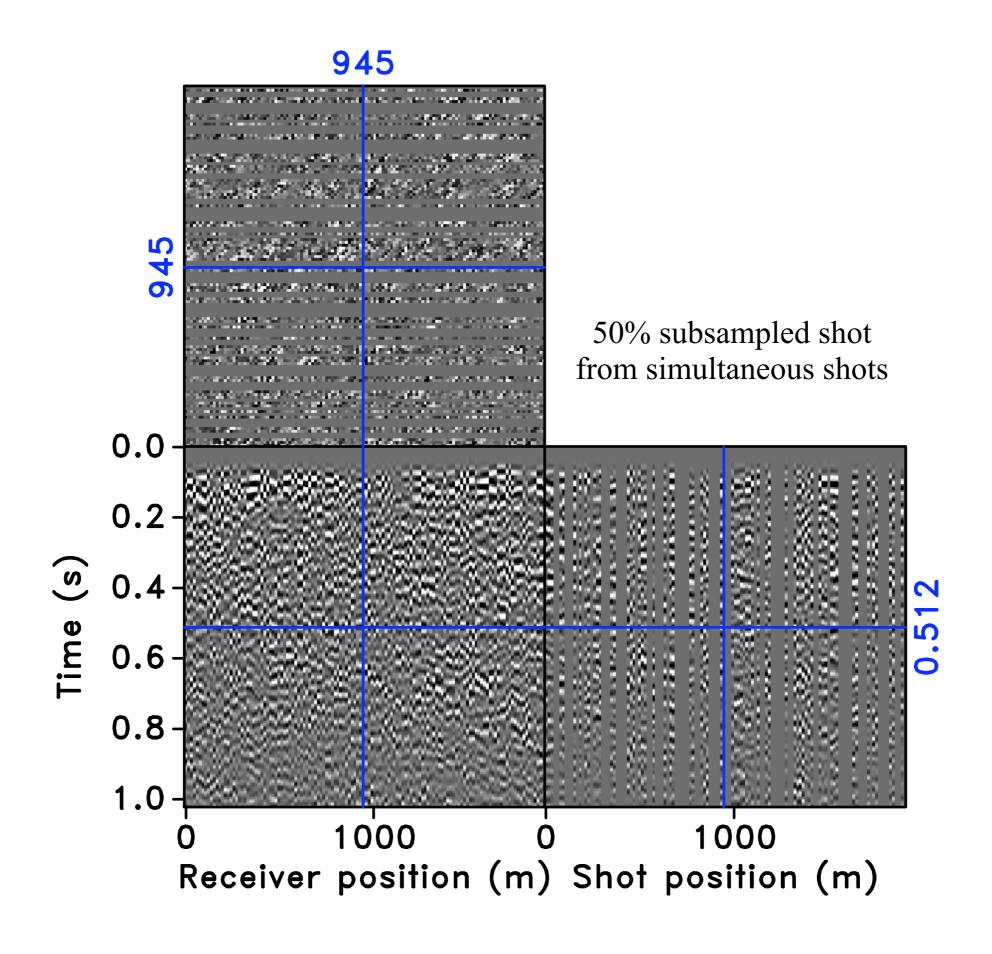
you know... *never* judge a book by its cover

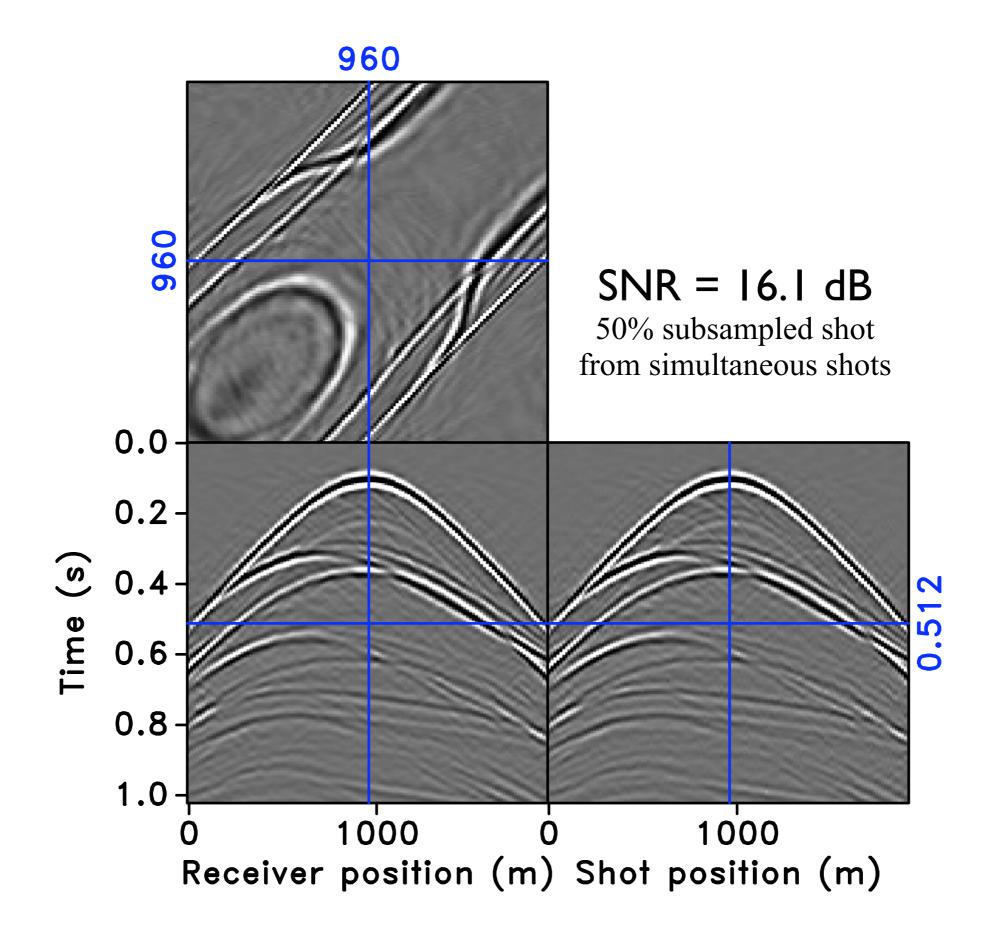
pathology

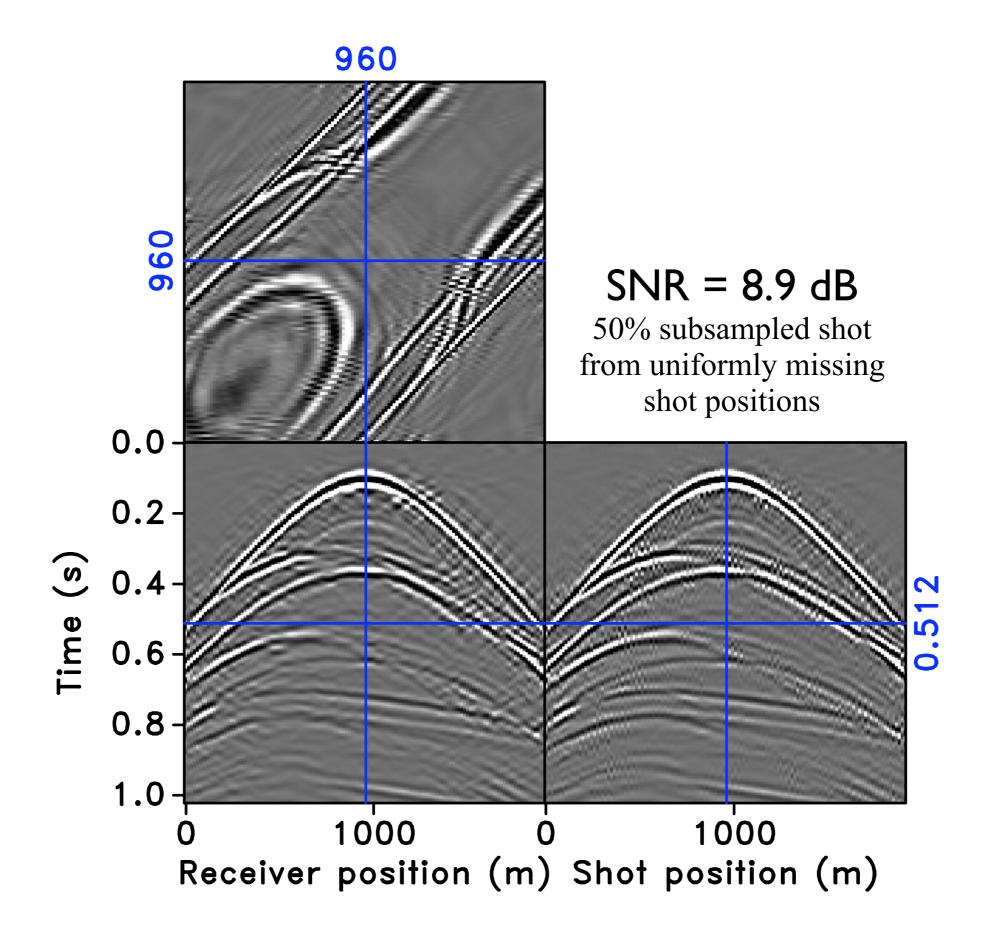
shot interpolation 12.5m to 25m







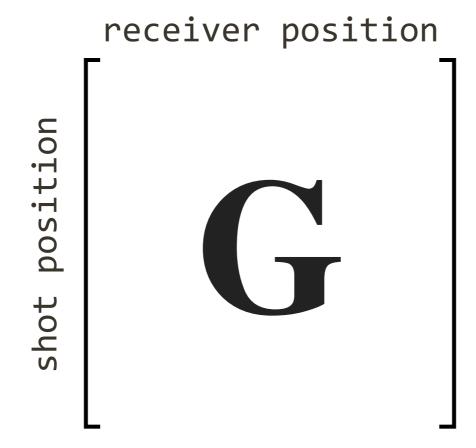




how? need to know why why? need to know how

HOW? part one

it's a matrix



Green's function

it's a matrix

receiver position

shot position

Green's function

it's linear algebra

$$\mathbf{D} = \begin{bmatrix} \mathbf{Q} \end{bmatrix} \begin{bmatrix} \mathbf{Q} \\ \mathbf{Shot} \end{bmatrix}$$
Recv

represents acquisition of data

eg: ideal coverage

$$\mathbf{D} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
identity matrix

eg: 2x undersampled shots

now,
$$D \leftarrow G \checkmark$$

 $D \rightarrow G$?

simplest formulation

$$\min \|\mathbf{D} - \mathbf{Q}\mathbf{G}\|_2$$

solve least-squares for G

but wait...

I know *geophysics*! **G** has some sort of structure

it's information theory

I know... a compressive representation **S**

$$G = S^{\dagger}x$$

(x is compressible or sparse)

it's statistics

${f X}_{f mismatch}$ for a given energy

min NNZ(x)
s.t.
$$\|\mathbf{D} - \mathbf{Q}\mathbf{S}^{\dagger}\mathbf{x}\|_{2} \leq \sigma$$

it's statistics

${f X}_{f mismatch}$ for a given energy

min
$$NNZ(\mathbf{x})$$
s.t. $\|\mathbf{D} - \mathbf{Q}\mathbf{S}^{\dagger}\mathbf{x}\|_{2} \leq \sigma$

WHY?

when does...

$$\mathbf{S}^{\dagger}\mathbf{x}_{\mathrm{ml}} \approx \mathbf{G}$$

how do we know?

talk to strangers mathematicians

Candes

Tao

Donoho

Romberg

talk to strangers mathematicians

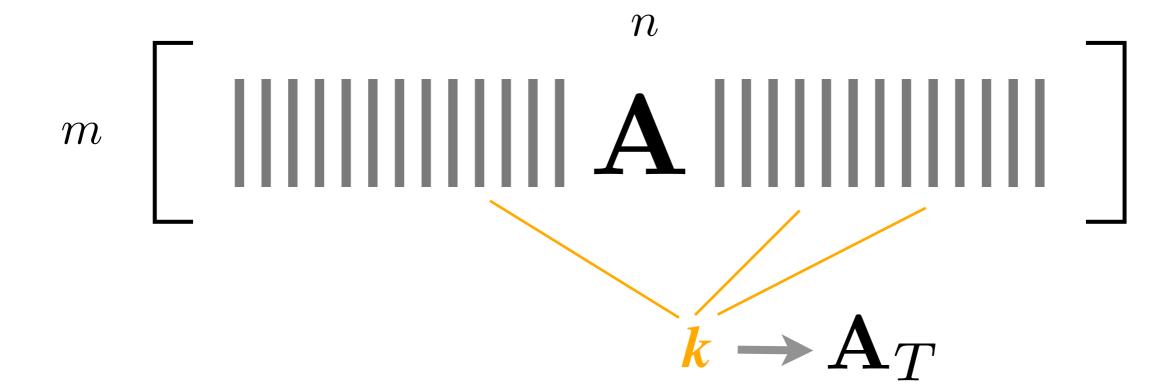
Look at A!"

(Compressive Sensing)

talk to strangers mathematicians

$$(1 - \delta_k) \|\mathbf{x}_T\|_{\ell 2} \le \|\mathbf{A}_T \mathbf{x}\|_{\ell 2} \le (1 + \delta_k) \|\mathbf{x}_T\|_{\ell 2}$$
 (Restricted Isometry Property)

RIP for $k \leq m \ll n$



RIP for $k \leq m \ll n$

\mathbf{A}_{T} how close is it to an orthonormal basis?

(if close enough, then if $NNZ(\mathbf{x}) \leq k/2$, $\mathbf{S}^{\dagger}\mathbf{x}_{ml} = \mathbf{G}$ with overwhelming probability)

only downside... you can't actually calculate whether RIP is satisfied

"that's NP hard!"

bad, bad examples

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & & \\ & 1 & 0 & \\ & & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{S}^{\dagger} & \\ \end{bmatrix}$$

(2x shot undersampling)

bad, bad examples

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{S}^{\dagger} \end{bmatrix}$$

(Blend every-other shot)

good example

(Completely blended shots)

that's why

you can *fundamentally*expect to get more info
from fully blended shots

intermediate conclusions

1) Random is good

intermediate conclusions

2) the *sparser* the signal... the **more** you can *subsample*

intermediate conclusions

3) the more you do with A...
... the more "random" it is
... the more likely it holds RIP

"more"? e.g.

$$\mathbf{A} = \begin{bmatrix} \mathbf{Gaussian} \\ \mathbf{noise} \end{bmatrix} \mathbf{M} \begin{bmatrix} \mathbf{S}^{\dagger} \end{bmatrix}$$

(M maps primaries to the data, ie in SRME and EPSI)

HOW? part two

oops...

min NNZ(
$$\mathbf{x}$$
)
s.t. $\|\mathbf{D} - \mathbf{A}\mathbf{x}\|_2 \le \sigma$

... is NP-hard

let me fix that

$$\min \|\mathbf{x}\|_{\ell 1}$$

s.t.
$$\|\mathbf{D} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

is a very good *convex* relaxation

pulled a fast one!

the results of compressive sensing specifically assumes L1 relaxation

no worries!

any good solvers?

dsp.ece.rice.edu/cs

Feb 2006: 40 papers

June 2007: 100 papers

June 2009: 500 papers

dsp.ece.rice.edu/cs

I1-Magic SparseLab GPSR ell-1 LS sparsify

solvers, Jun 2007

```
Bayesian
SPGL1
sparseMRI
FPC
```

IMPIN

Chaining Pursuit Regularized P. ece.rice.edu/cs

TWIST

Fast CS using

SRM

FPC AS

Fast Bayesian

Matching Pursuit

SL0

PPPA

CoSAMP

CS via belief prop

SpaRSA

KF-CS: Kalman

Filtered CS

Eact Payocian CC

solvers, Jun 2009

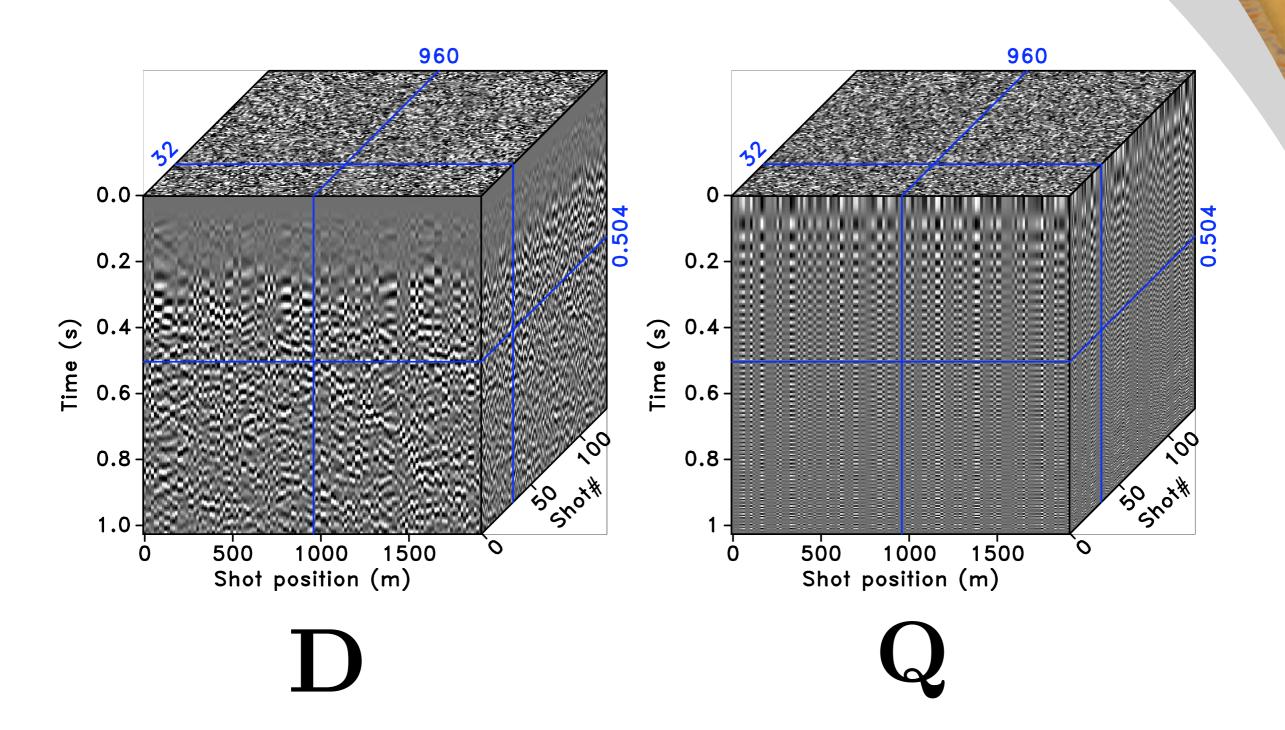
our experience?

some spectral projected gradient-based methods...

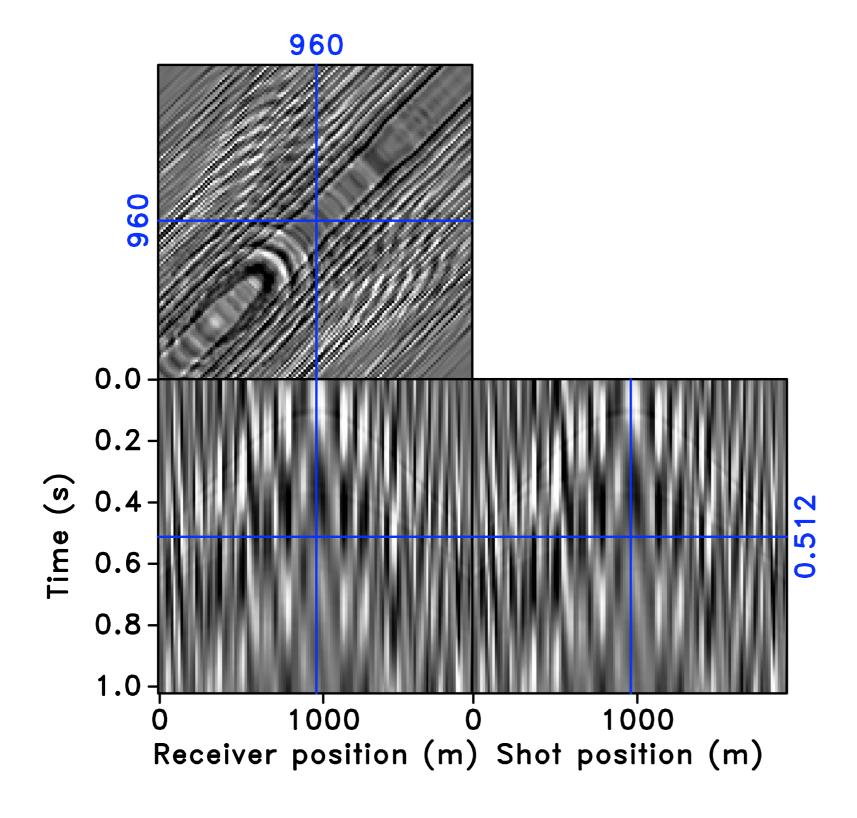
the cost of calculating $\mathbf{A}^T \mathbf{A} \mathbf{x}$ $\mathbf{30} \mathbf{x}$ to $\mathbf{90} \mathbf{x}$

that buys you...

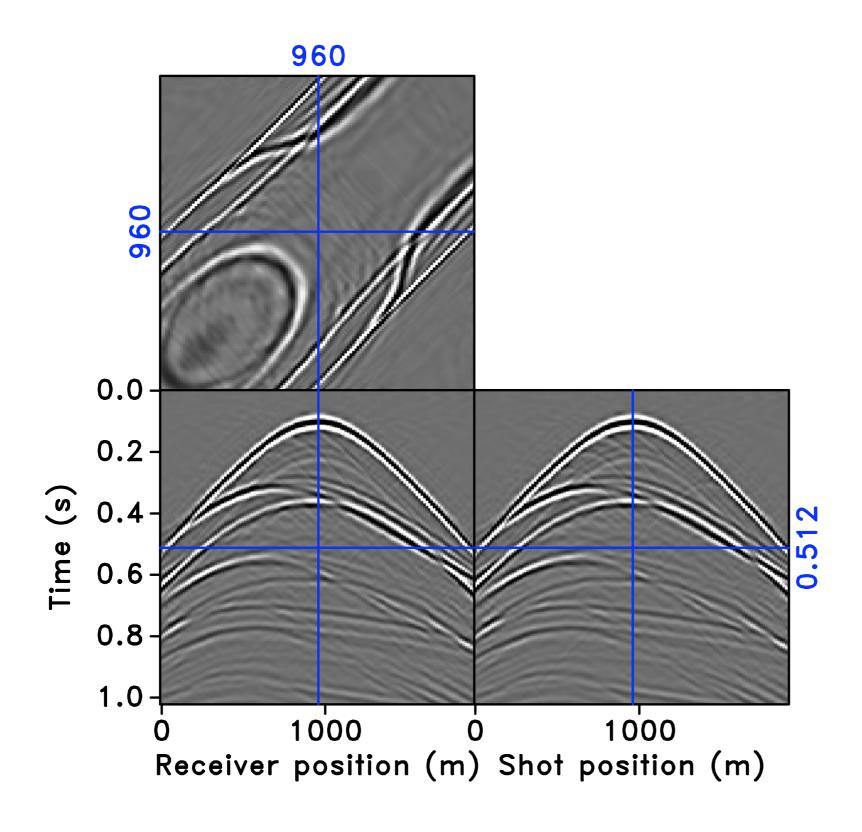
- source signature deconvolution
- separate blended data
- wavelet estimation
- primary estimation

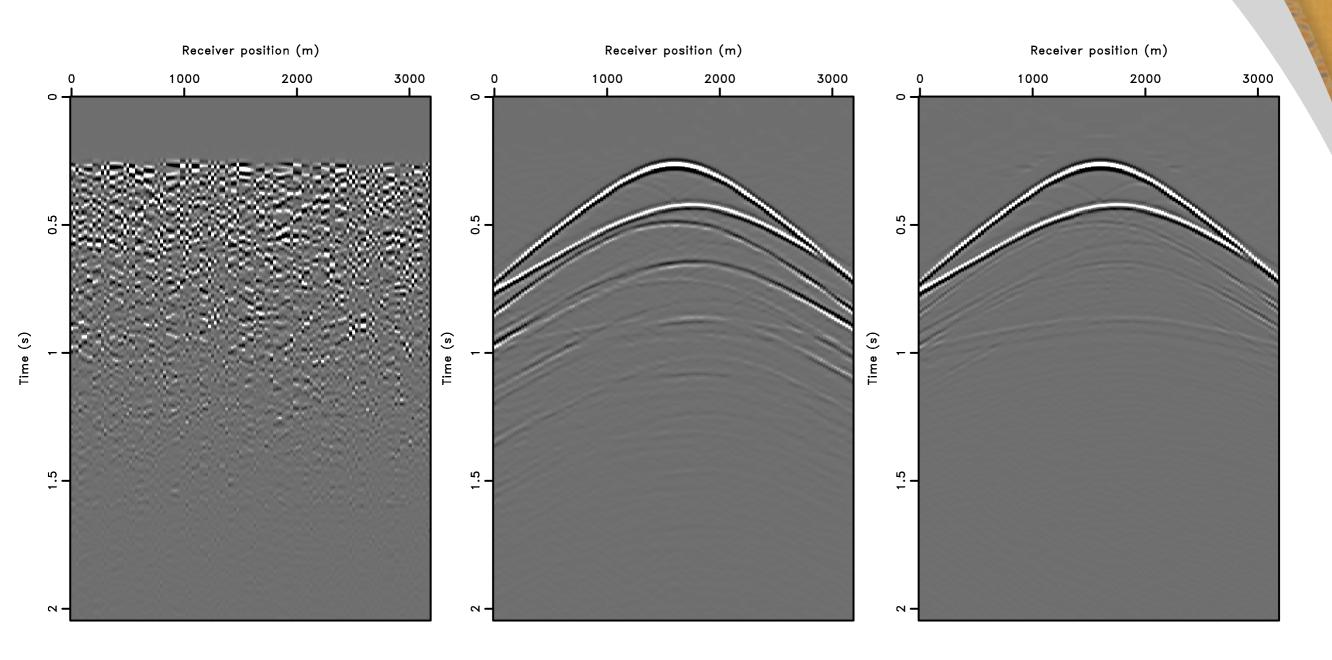


matched filter



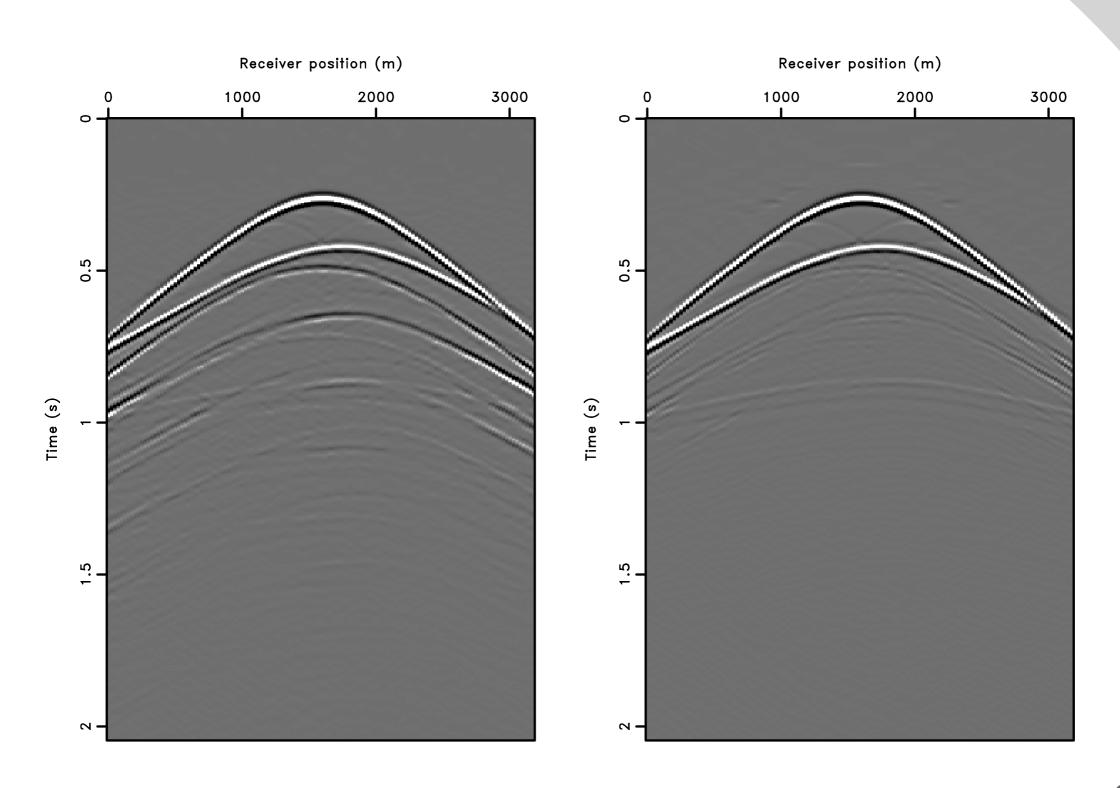
L1 inversion





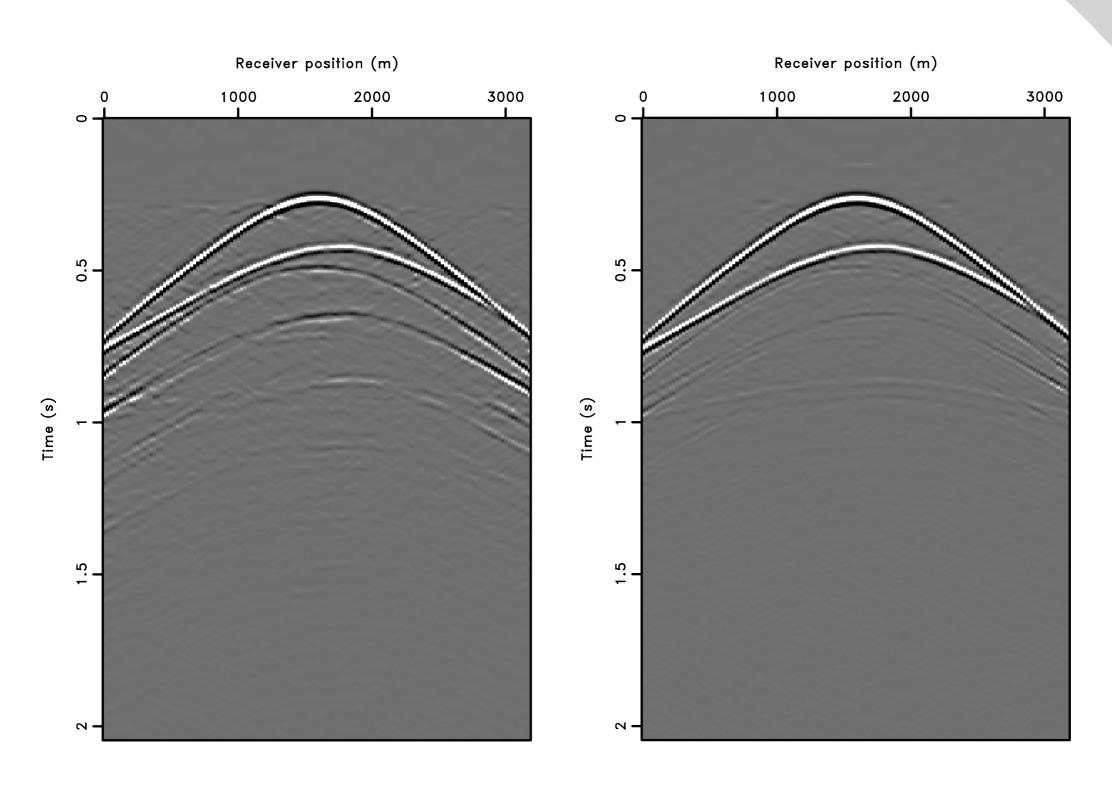
SLIM 🔚

2x downsample

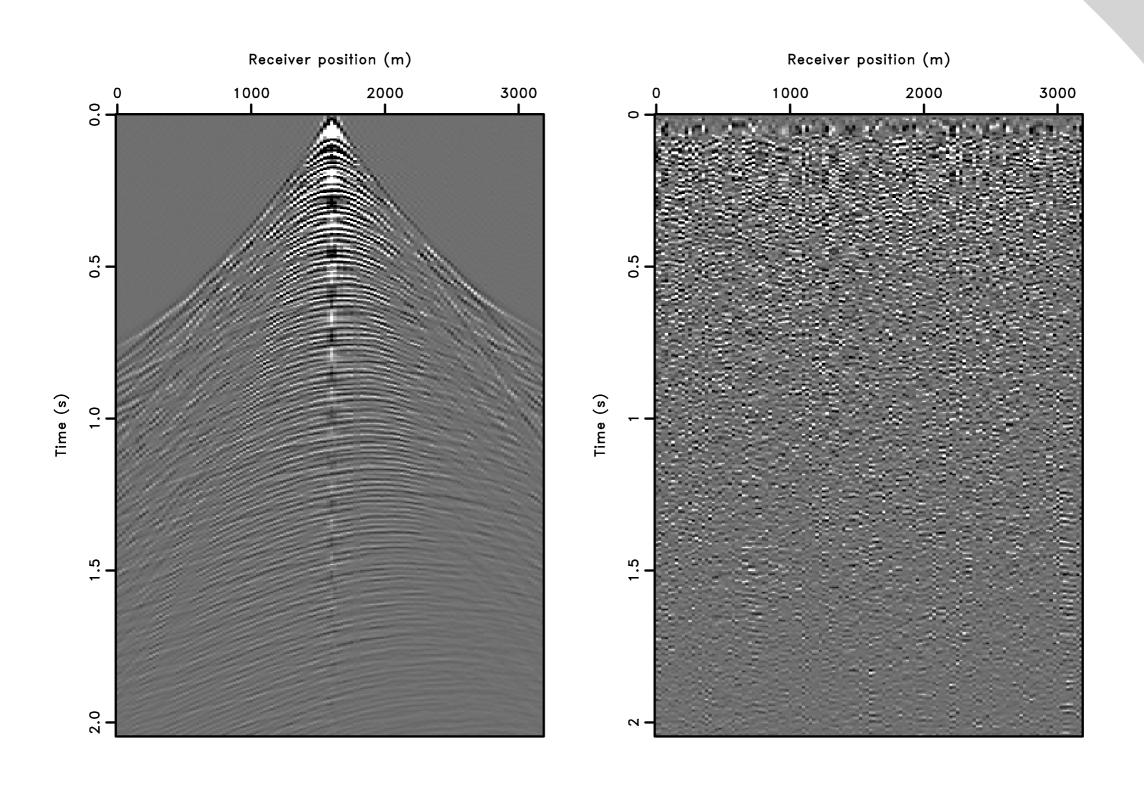


SLIM 🔚

5x downsample

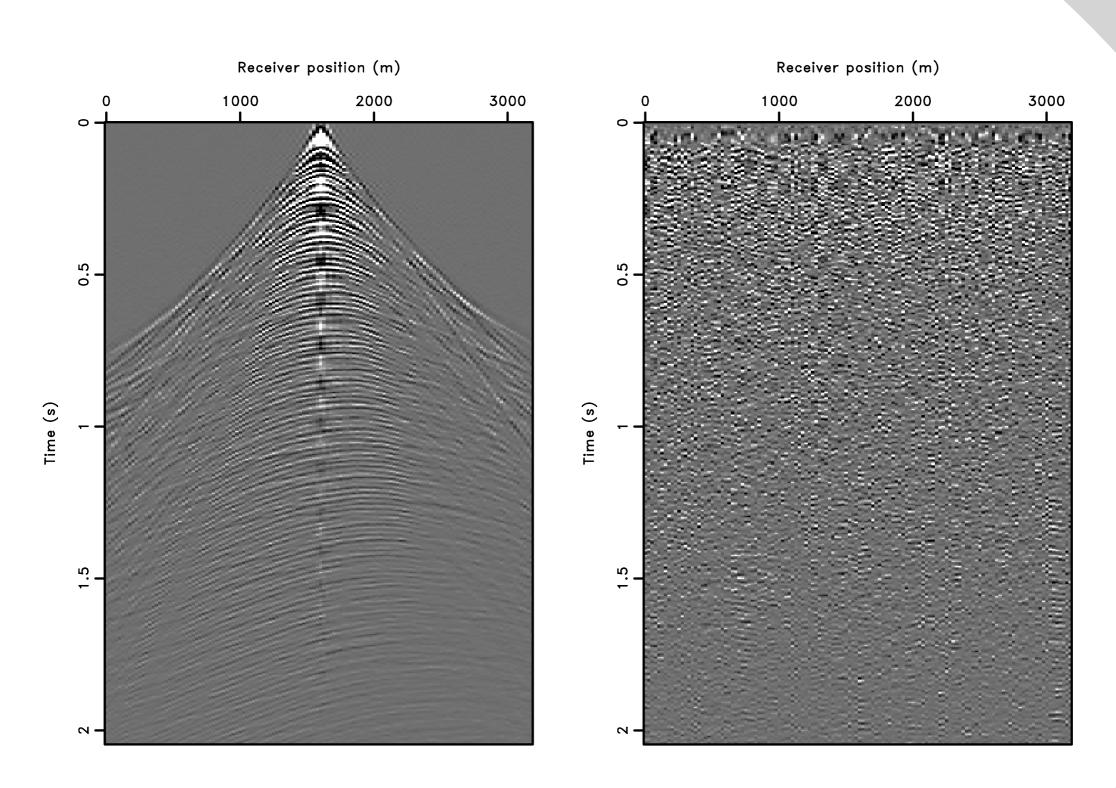


real marine data

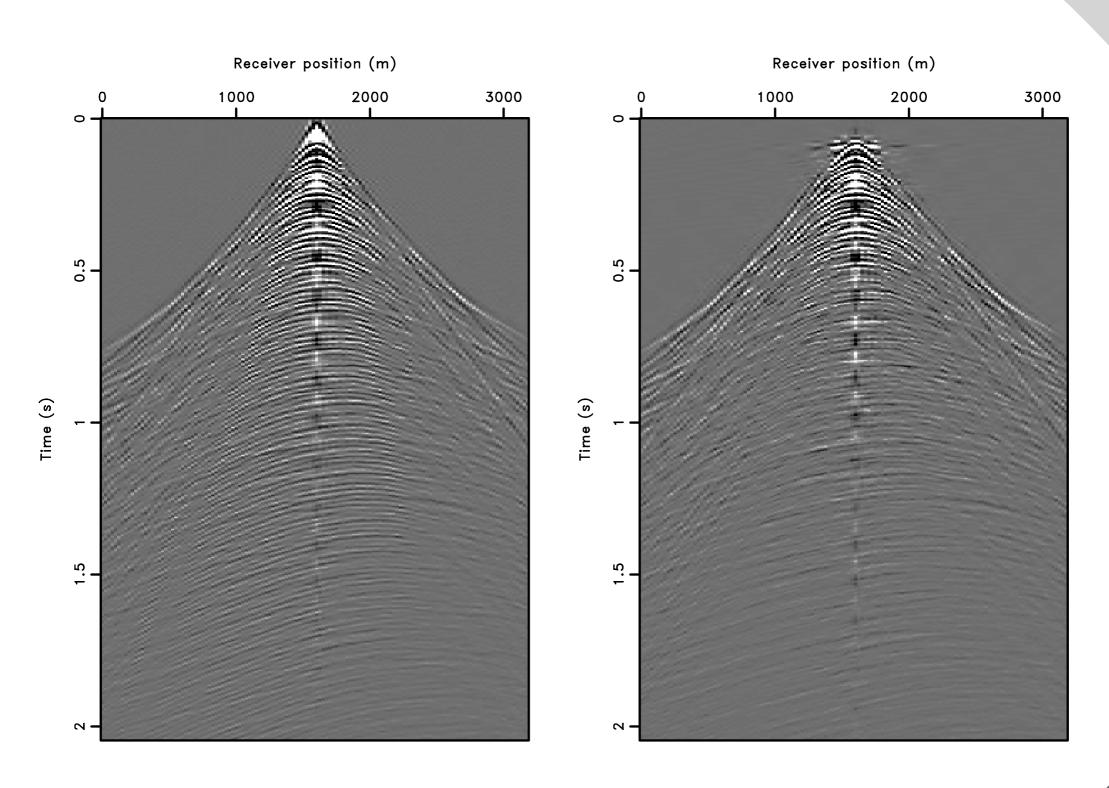


SLIM 🔚

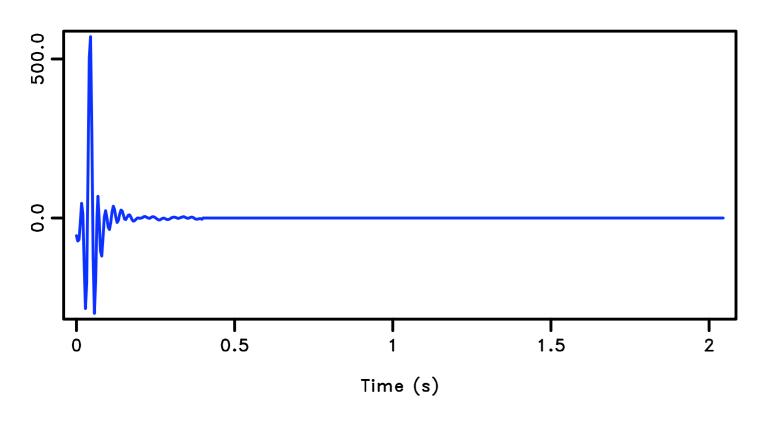
separate



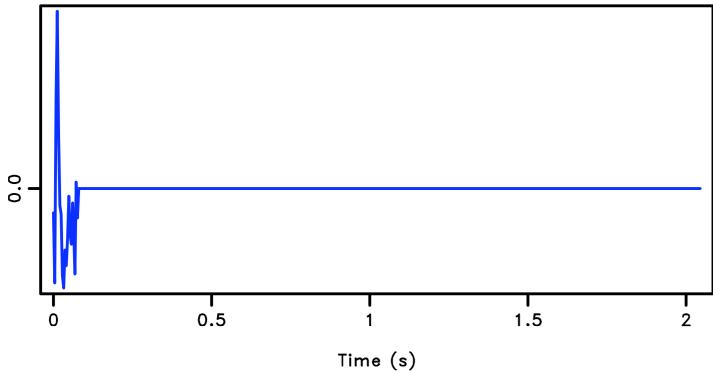
primary estimation



wavelet estimation



synth



marine

Acquisition is *sampling*Acquisition is *compressive sampling*

sampling is tied to sparsity

sparse inversion gets your data

Compressive sensing

is the framework that ties it together

bedankt

- -The DELPHI team
- -BP
- -Current sponsors of SLIM