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Relation to existing work
 filter-based methods [Spitz’91, Fomel’00]

– convolve the incomplete data with a data-adaptive interpolating filter

 wavefield-operator-based methods [Canning and Gardner’96, Biondi et al.’98, Stolt’02]

– explicitly include wave propagation
– require knowledge of velocity model
– computationally intensive

 transform-based methods [Sacchi et al.’98, Trad et al.’03, Zwartjes and Sacchi’07]

– non-adaptive and fast
– no explicit link with wave propagation
– related to recent developments in Compressive Sensing (CS)
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Motivation
 Seismic data processing, modeling & inversion:

– firmly rooted in Nyquist’s sampling paradigm for high-dimensional wavefields 
– too pessimistic for signals with structure, i.e, there exists some sparsifying transform (e.g. 

Fourier, curvelets)

 Recent theoretical & hardware developments
– Alternative multiscale, localized & directional transform domains that compress seismic data
– New nonlinear sampling theory that supersedes the overly pessimistic Nyquist sampling 

criterion
– New autonomous data acquisition devices that allow for more flexibility during acquisition
– New simultaneous & continuous recording

 Extensions to higher-D through blue-noise sampling
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Motivation cont’d
 Solution strategy:

– leverage new paradigm of compressive sensing (CS) 
• identify wavefield reconstruction from missing sources & receivers or from 

simultaneous acquisition as instances of  CS
• reduce acquisition, simulation, and inversion costs by randomization and 

deliberate subsampling
– recovery from sample rates ≈ computational cost proportional to transform-

domain sparsity of data or model

 Remove the “curse of dimensionality” by removing 
constructive aliases/interferences

– breaking the periodicity of regular sampling
– using incoherent sources

 Turn problem into a “simple” denoising problem ....
– use blue-noise sampling techniques from computer graphics community
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Problem statement
Consider the following (severely) underdetermined system of linear 
equations

Is it possible to recover x0 accurately from y?

unknown

data
(measurements
/observations
/simulations)

x0

Ay
=
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Perfect recovery

 conditions
– A obeys the uniform uncertainty principle
– randomized A <=> mutual incoherence
– x0 is sufficiently sparse

 nonlinear recovery procedure:

 performance
– S-sparse vectors recovered from roughly on the order of S measurements (to within 

constant and log factors)

min
x

‖x‖1

︸ ︷︷ ︸

sparsity

s.t. Ax = y
︸ ︷︷ ︸

perfect reconstruction

x0

Ay
=

[Candès et al.‘06]
[Donoho‘06]
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Simple example

x0

A

A := RFH

y
=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal
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NAIVE sparsity-promoting recovery

inverse
Fourier

transform

detection +
data-consistent

amplitude recovery

Fourier
transform

y

A
H

=

A

y
=detection

Ar data-consistent amplitude 
recovery

y

A
†
r

=

x0
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 “noise”
– due to AHA ≠ I
– defined by AHAx0-αx0 = AHy-αx0

Undersampling “noise”

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

1 out of 2 1 out of 4 1 out of 6 1 out of 8
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Wavefield sampling and nonlinear recovery
 sparsifying transform

– typically localized in the time-space domain to handle the complexity of 
seismic data

• curvelet transform (dyadic-parabolic partition of the f-k domain)

• [windowed Fourier transform]

 sampling scheme
– generates incoherent random undersampling “noise” in the sparsifying 

domain
– do not create large gaps

• because of the limited spatiotemporal extend of transform elements used 
for the reconstruction

 sparsity-promoting solver
– requires few matrix-vector multiplications
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2D discrete curvelets
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Fourier reconstruction

1 % of coefficients
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Wavelet reconstruction

1 % of coefficients
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Curvelet reconstruction

1 % of coefficients
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Wavefield sampling and nonlinear recovery
 sparsifying transform

– typically localized in the time-space domain to handle the complexity of 
seismic data

• curvelet transform (dyadic-parabolic partition of the f-k domain)

• [windowed Fourier transform]

 sampling scheme
– generates incoherent random undersampling “noise” in the sparsifying 

domain
– do not create large gaps

• because of the limited spatiotemporal extend of transform elements used 
for the reconstruction

 sparsity-promoting solver
– requires few matrix-vector multiplications
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Localized transform elements & gap size

v v

✓ ✗

x̃ = arg min
x

||x||1 s.t. y = Ax
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Discrete randomized jittered undersampling
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positions
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[Hennenfent and FJH ‘08]
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Model
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Random 3-fold undersampling
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CRSI from random 3-fold undersampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 9.72 dB
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Optimally-jittered 3-fold undersampling
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CRSI from opt.-jittered 3-fold undersampling

SNR = 10.42 dB
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Question
 Question: What is better? Having missing single-source or 

missing randomized simultaneous experiments?

 Comparison between different undersampling strategies for source 
experiments:

– Randomized jittered shot positions
– Randomized simultaneous shots
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Model
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Interpolate

 
50% subsampled shot

from randomized 
jittered shots
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Interpolate

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots



Simultaneous & continuous sources



Seismic Laboratory for Imaging and Modeling

Demultiplex

 
50% subsampled shots

from randomized
simultaneous shots
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Interpolate

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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Demultiplex

SNR = 16.1 dB
50% subsampled shot

from randomized
simultaneous shots
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Model
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Regular vs uniform randomized 2D sampling 

CRSI reconstruction from 
regular 2-D sampling
(25% of data taken)
SNR: 4.161 dB

CRSI reconstruction from 
randomized 2-D sampling
(25% of data taken)
SNR: 9.979 dB
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Regular vs randomized sampling - residuals

Regular sampling
residual

Random sampling
residual
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Regular vs. irregular sampling - freq. domain

Original model Original model spectrum

Reg. undersampled spectrumIrreg. undersampled spectrum
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2-D discrete random jittered sampling

Mask’s spectra Samples’ spectraSampling schemeType

Square

Hexagon
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2-D discrete random jittered subsampling
 Cartesian & hexagonal jittered reconstructions almost the same.

CRSI Recovery (Cartesian)
SNR = 10.820

CRSI Recovery (Hexagonal)
SNR = 10.904
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2-D discrete jittered subsampling

CRSI Residual (Cartesian)
SNR = 10.820

CRSI Residual (Hexagonal)
SNR = 10.904



Seismic Laboratory for Imaging and Modeling

Blue-noise spectra from 2D sampling methods
Poisson Disk Farthest PointJitteredUniform random

Spectra become increasingly “blue”
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Randomized 2D uniform vs jittered

Random sampling of X-spread 
data (25% total data sampled)Text

Jittered sampling of X-spread 
data (25% sampled)Text
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Randomized 2D uniform vs jittered - reconstruction

CRSI reconstruction from uniform samples
SNR=8.134

CRSI recon., 2D jittered (hexagonal) samples
SNR=8.434
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Randomized 2D uniform vs jittered - residues

CRSI recon. residual from random samplesextCRSI recon. residual from jittered
(hexagonal) samples
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Farthest point vs Poisson disk - reconstruction

CRSI reconstruction from Farthest Point 
samples, SNR=8.496

CRSI recon. from Poisson Disk samples
SNR=8.483
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Farthest point vs Poisson disk - residual

CRSI recon. residual from 
Farthest Point samplesext

CRSI recon. residual from 
Poisson Disk samplesext
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Observation & extensions
 Findings from 1D jittered sampling extend to higher dimensions

– randomized is better than regular subsampling
– Cartesian versus hexagonal sampling are equivalent for optimal jittered sampling
– Furthest point and Poisson sampling lead to similar results

 Gap-size control
– jittered sampling gives explicit control max distance between adjacent samples
– farthest point and Poisson disk also have bounds but not explicit

 Future extensions
– variable density sampling
– ungridded
– exploring symmetry (e.g. reciprocity)
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Conclusions
 Randomization is essential for recovery from incomplete data

 Good randomized sampling
–  with blue-noise characteristics give good curvelet recovery
– with simultaneous sources gives excellent curvelet recovery

 Randomization leads to 
– “acquisition” of smaller data volumes that carry the same information or
– to improved inferences from data using the same resources

 Bottom line: acquisition costs are no longer determined by the 
size of the discretization but by transform-domain sparsity of 
the sampled wavefield ...
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