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ABSTRACT

A non-linear singularity-preserving solution to the least-squares seismic imaging problem with
sparseness and continuity constraints is proposed. The applied formalism explores curvelets as
a directional frame that, by their sparsity on the image, and their invariance under the imaging
operators, allows for a stable recovery of the amplitudes. Our method is based on the estimation
of the normal operator in the form of an ’eigenvalue’ decompsoition with curvelets as the
’eigenvectors’. Subsequently, we propose an inversion method that derives from estimation
of the normal operator and is formulated as a convex optimization problem. Sparsity in the
curvelet domain as well as continuity along the reflectors in the image domain are promoted as
part of this optimization. Our method is tested with a reverse-time ’wave-equation’ migration
code simulating the acoustic wave equation.

INTRODUCTION

Motivated by recent results on stable signal recovery for natural images from incomplete and noisy
data (see e.g. Candes et al., 2005), the seismic image recovery problem is formulated as a nonlinear
optimization problem. After linearization and by ignoring the source and receiver signatures, the
discretized forward model that generates seismic data can be written as

d = Km. (1)

In this single-scattering expression, m(x) represents the (singular) fluctuations in the earth’s acous-
tic properties with respect to an appropriately chosen smoothly varying background velocity model
(the density of mass is assumed constant). These fluctuations are referred to as the model and
seismic imaging aims to recover both the locations and the relative amplitudes of the velocity fluc-
tuations from seismic data. Applying the adjoint of the linearized scattering operator to the data
vector (d in Eq. (1)) leads to the migrated image,

y = KTd. (2)

An extensive literature has emerged on restoring the migration amplitude by inverting the nor-
mal matrix Ψ = KTK (Nemeth. et al., 1999; Kuhl and Sacchi, 2003) and involves the computation
of the Moore-Penrose pseudo inverse (denoted by the symbol †) of the scattering or demigration
matrix K,

m =

ΨDO︷ ︸︸ ︷(
KTK

)−1
KT︸︷︷︸
FIO

d = K†d. (3)

Unfortunately, the normal operator it too big to be constructed explicitly and is too expensive to
be evaluated as part of an iterative Krylov-subspace solver to invert the Hessian (see e.g. Nemeth.
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et al., 1999). Instead, we argue that a stable amplitude recovery scheme can be obtained when
a curvelet decomposition is used that not only sparsely represents the unknown image, but also
whose curvelets are invariant under the action of the normal operator. We show that in that case an
amplitude weighting (Symes, 2006a) can be performed as part of a nonlinear optimization procedure
that exploits these properties and hence adds stability. This stability includes insensitivity to noise
and the ability to recover the true amplitudes.

SPARSITY- AND CONTINUITY-PROMOTING IMAGING

We address the above issues by exploiting recently developed curvelet frames. These frame ex-
pansions compress seismic images and consist of a collection of frame elements ’curvelets’ that
are invariant under pseudo-differential operators. These properties allow us to develop an approach
similar to the so-called wavelet-vaguelette method (WVD), as proposed by Donoho (1995) and later
by Candès and Donoho (2000), where scale-invariant homogeneous operators are inverted using the
eigenfunction-like behavior of multiscale transforms such as the wavelet and curvelet transform.

The solution is formulated in terms of a sparsity-promoting nonlinear optimization problem
and can be seen as a formalization of earlier ideas on stable seismic image recovery. During the
optimization, sparsity in the transformed domain as well as continuity along imaged reflectors, are
jointly promoted. Both penalties are part of the following nonlinear optimization problem (see e.g.
Herrmann et al., 2006)

P :

{
x̃ = minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x̃,
(4)

where the sparsity vector x is optimized with respect to the penalty functional J(x) and the data
misfit. We use the term sparsity vector for x to point out that this vector corresponds to the coeffi-
cients of a transform that is designed to be sparse on the model.

The penalty functional J(x) is designed to promote sparsity and continuity. The above opti-
mization problem solves for the model by finding a coefficient vector x that minimizes the penalty
term subject to fitting the data to within a user-specified tolerance level ε. We reserved the ’tilde’
symbol (˜) to denote estimates that are found through optimization. The recovered model m is
calculated by computing the pseudo inverse (denoted by the symbol †) of AT , which represents the
diagonally-weighted curvelet synthesis matrix. This synthesis matrix is designed such that

AAT r ' Ψr, (5)

with r an appropriately chosen discrete reference vector and Ψ the discrete normal operator formed
by compounding the discrete scattering and its transpose the migration operator. With A = CTΓ
and C the curvelet transform, Eq. (5) expresses the normal operator as a form of ’eigenvalue’
decomposition with curvelets as ’eigenvectors’. Γ is the square-root of the ’eigenvalues’ and can be
shown to be smooth in the curvelet domain. Our algorithm for approximately inverting the normal
operator involves the following sequence of steps:

1. Form the normal operator using one’s favorite numerical implementation for the migration
operator and its adjoint, i.e., Ψ = KTK with the symbol. This discrete normal operator
needs to be made zero order;

2. Select a relevant reference vector, r, that is close enough to the unknown image;

3. Estimate the diagonal approximation. This diagonal approximation defines the synthesis ma-
trix A;
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4. Estimate x by solving the nonlinear optimization problem P. This program inverts the syn-
thesis matrix. The discretized model vector m is calculated from the recovered coefficient
vector x through the pseudo inverse of AT ;

EXAMPLE

Figures 1-2 show the evaluation of our method on a typical subsalt imaging problem. Fig. 1(a)
shows a sufficiently smooth background velocity for SEG-AA’ salt model, with reflectivity shown
in Fig.1(b). This reflectivity is de-migrated and migrated (KTK) using the smooth SEG-AA’ back-
ground velocity, Fig. 2(a) shows the result of this process. Fig. 2(b) shows the recovered image
using our proposed recovery algorithm. Fig.2 (c) shows the trace comparision between the migrated
image (properly scaled) (Fig.2(a)), original reflectivity (Fig.1(b)) and recovered image (Fig.2(b))
along the horizontal line in the bottom of image (3500 m depth) for the offsets from 4.3 to 7.2 km.
For this example, we used a two-way wave-equation reverse-time migration and modeling (Symes
(2006b)). The dataset consist of 324 shots and 176 receivers for each shot.

(a) (b)

Figure 1: (a) SEG-AA Sufficiently smooth background model, (b) Reflectivity model.

CONCLUSION

The method presented in this paper combines the compression of images by curvelets with the
invariance of this transform under the normal operator. This combination allows us to formulate
a stable recovery method for seismic amplitudes. Compared to other approaches for migration
preconditioning, our method (i) brings the amplitude correction problem within the context of stable
signal recovery; (ii) provides for a diagonal approximation of normal operator. The recovery results
show an overall improvement of the image quality. The joined sparsity- and continuity-enhanced
image has diminished artifacts, improved resolution and recovered amplitude.

ACKNOWLEDGMENTS
The authors would like to thank the authors of CurveLab for making their codes available. The authors would also
like to thank W. Symes for providing the migration code. This work was in part financially supported by the Natural
Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and Collaborative Research and
Development Grant DNOISE (334810-05) of Felix J. Herrmann and was carried out as part of the SINBAD project with
support, secured through ITF (the Industry Technology Facilitator), from the following organizations: BG Group, BP,
Chevron, ExxonMobil and Shell.

Candes, E., J. Romberg, and T. Tao, 2005, Stable signal recovery from incomplete and inaccurate measurements. to
appear in Comm. Pure Appl. Math.



4

(a)

(b)

(c)

Figure 2: Example of seismic amplitude recovery. (a) Normal operator (modeling followed by migration) applied
on the SEG-AA’ reflectivity model, (b) recovered image using our proposed method, (c) amplitude comparison for the
bottom reflector between original, migrated-demigrated and the recovered image.
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