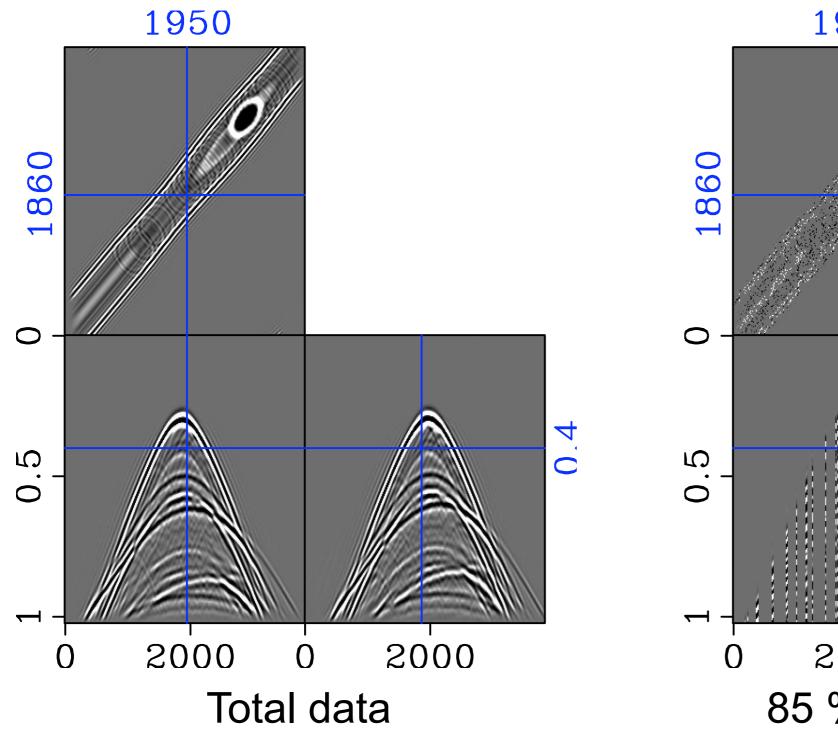
Seismic Laboratory for Imaging and Modeling

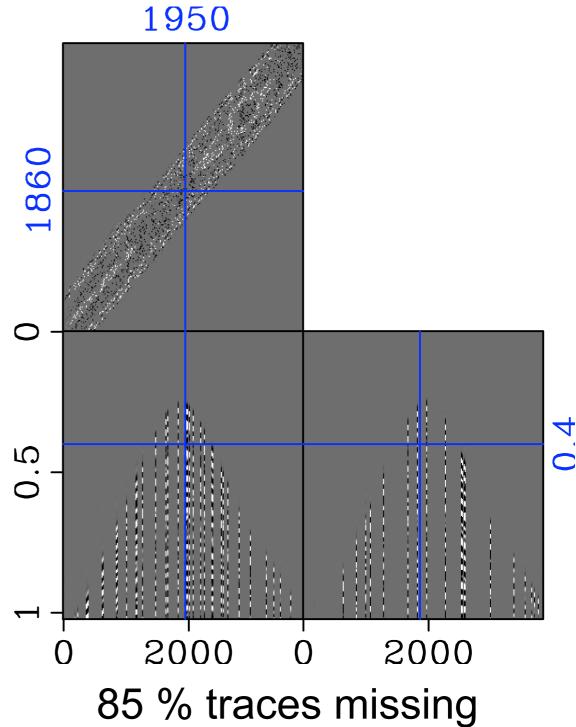
Surface-related multiple prediction from incomplete data

Felix J. Herrmann

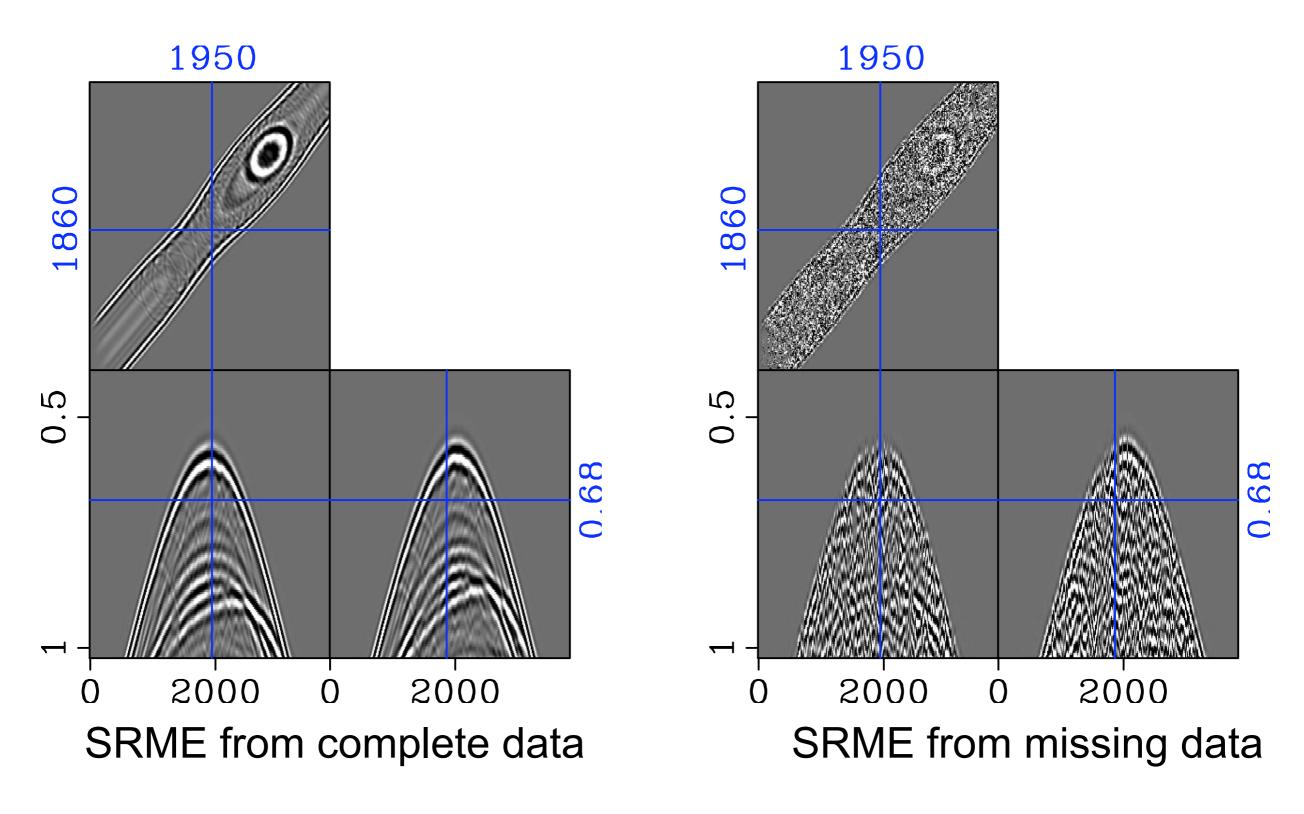
joint work with Deli Wang and Gilles
Hennenfent.

The problem

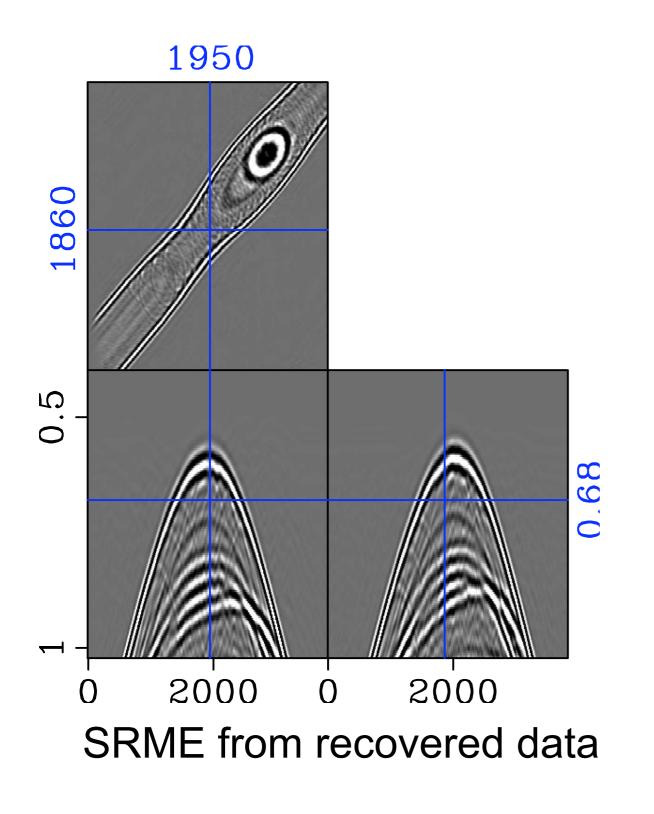


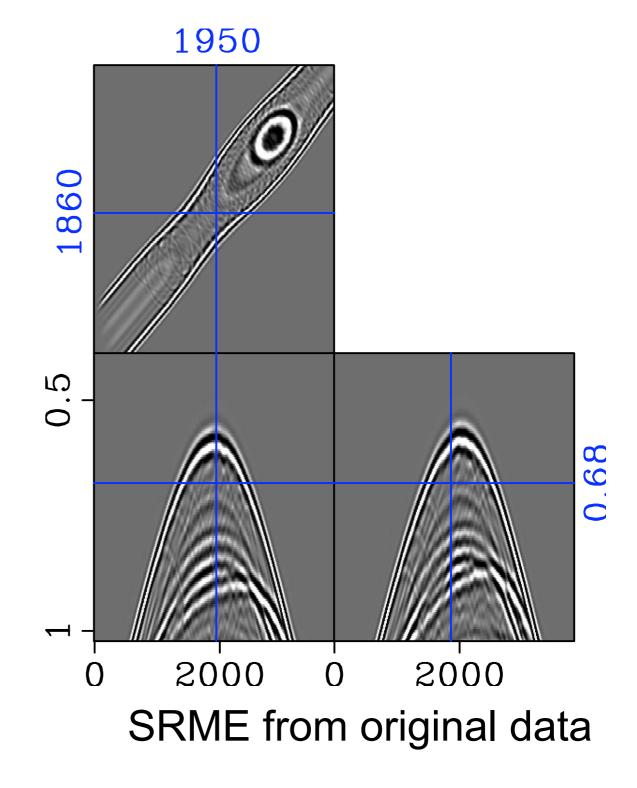


The problem cont'd



Our solution





Motivation

Data-driven (SRME) multiple prediction requires fully sampled data.

The Focal transform (Berkhout & Verschuur '06) allows for

- mapping of multiples => primaries
- incorporation of *prior* information in the recovery

Present a curvelet-based scheme for sparsitypromoting

- recovery of the data
- prediction of primaries and surface-related multiples

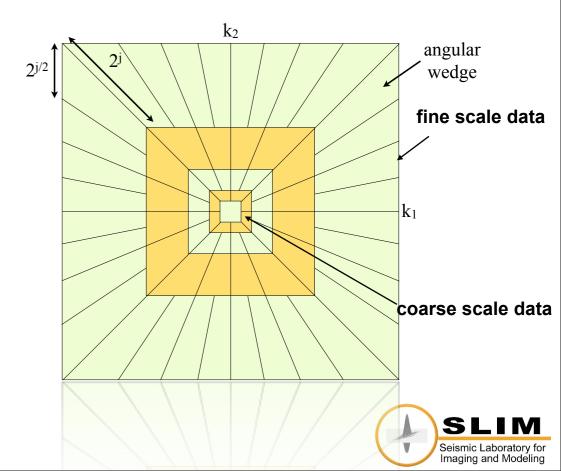
The curvelet transform

Representations for seismic data

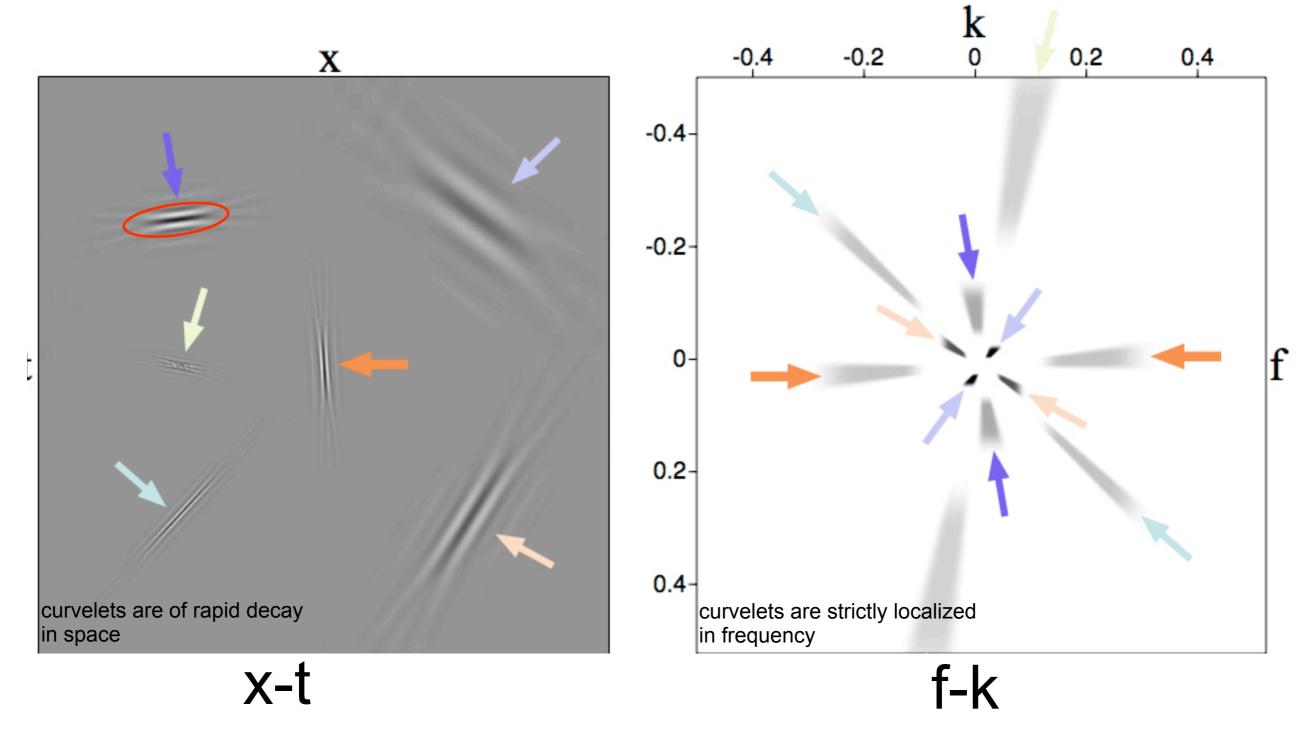
Transform	Underlying assumption
FK	plane waves
linear/parabolic Radon transform	linear/parabolic events
wavelet transform	point-like events (1D singularities)
curvelet transform	curve-like events (2D singularities)

Properties curvelet transform:

- multiscale: tiling of the FK domain into dyadic coronae
- multi-directional: coronae subpartitioned into angular wedges, # of angle doubles every other scale
- anisotropic: parabolic scaling principle
- Rapid decay space
- Strictly localized in Fourier
- Frame with moderate redundancy (8 X in 2-D and 24 X in 3-D)



2-D curvelets



Oscillatory in one direction and smooth in the others! Obey *parabolic* scaling relation $length \approx width^2$

Curvelet sparsity promotion

Sparsity-promoting program

Solve for x_0

$$\mathbf{A} \qquad \mathbf{A} \qquad$$

- exploit sparsity in the curvelet domain as a prior.
- find the sparsest set of curvelet coefficients that match the data.
- invert an underdetermined system.

Focused recovery with curvelets

joint work with Deli Wang (visitor from Jilin university) and Gilles Hennenfent

Focused recovery

Non-data-adaptive Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI) derives from **sparsity** of seismic data.

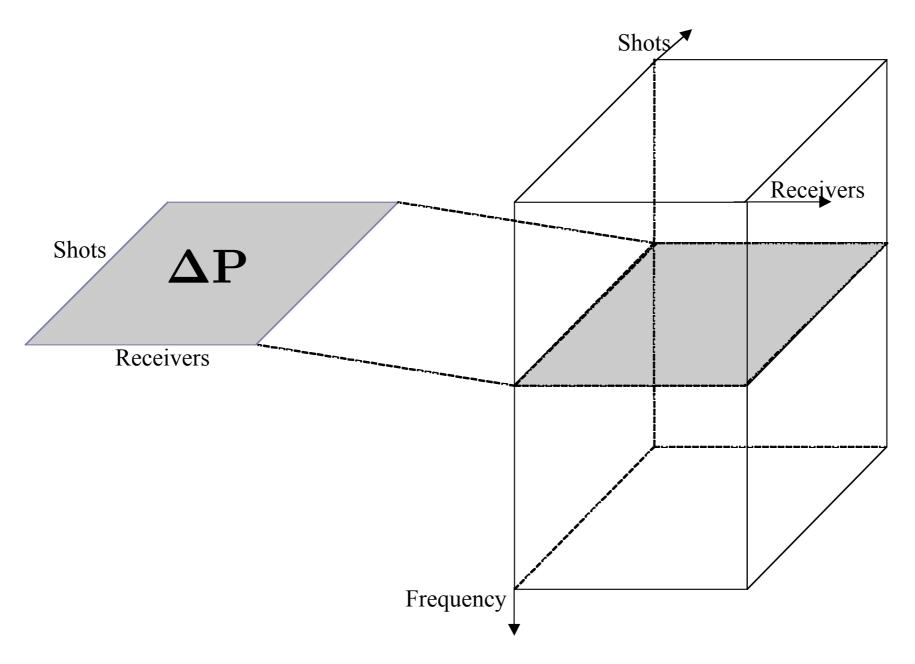
Berkhout and Verschuur's *data-adaptive* Focal transform derives from *focusing* of seismic data by the major primaries.

Both approaches entail the *inversion* of a linear operator.

Combination of the two yields

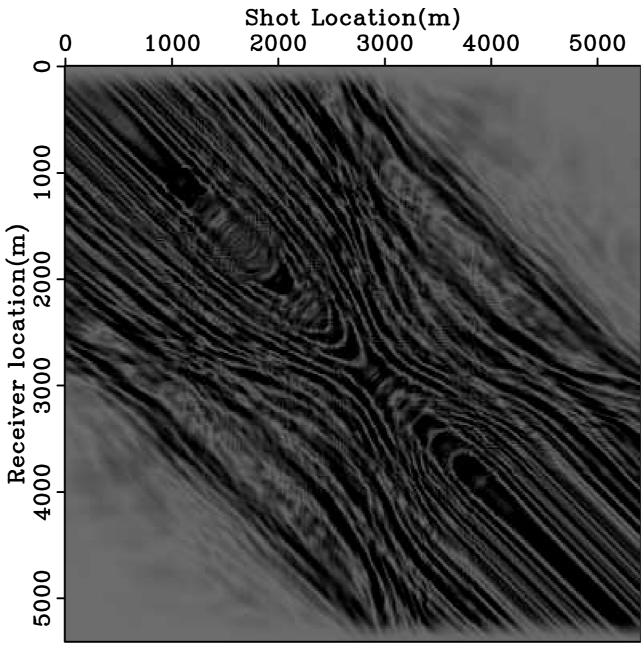
- improved focusing => more sparsity
- curvelet sparsity => better focusing

Primary operator



Frequency slice from data matrix with dominant primaries.

Primary operator



Frequency Slice (30Hz)

Primary operator

Primaries to first-order multiples:

$$\mathbf{\Delta p} \mapsto \mathbf{m}^1 = (\mathbf{\Delta P} \mathbf{\mathcal{A}} *_{t,x} \mathbf{\Delta p})$$

First-order multiples into primaries:

$$\mathbf{m}^1 \mapsto \mathbf{\Delta p} \approx (\mathbf{\Delta P} \mathcal{A} \otimes_{t,x} \mathbf{\Delta p})$$

with the acquisition matrix

$$\mathcal{A} = \left(\mathcal{S}^{\dagger} \mathbf{R} \mathcal{D}^{\dagger}
ight)$$

"inverting" for source and receiver wavelet wavelets geometry and surface reflectivity.

Curvelet-based Focal transform

Solve with 3-D curvelet transform

$$\mathbf{P}_{\epsilon}: \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} \quad \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T}\widetilde{\mathbf{x}} \end{cases}$$

with

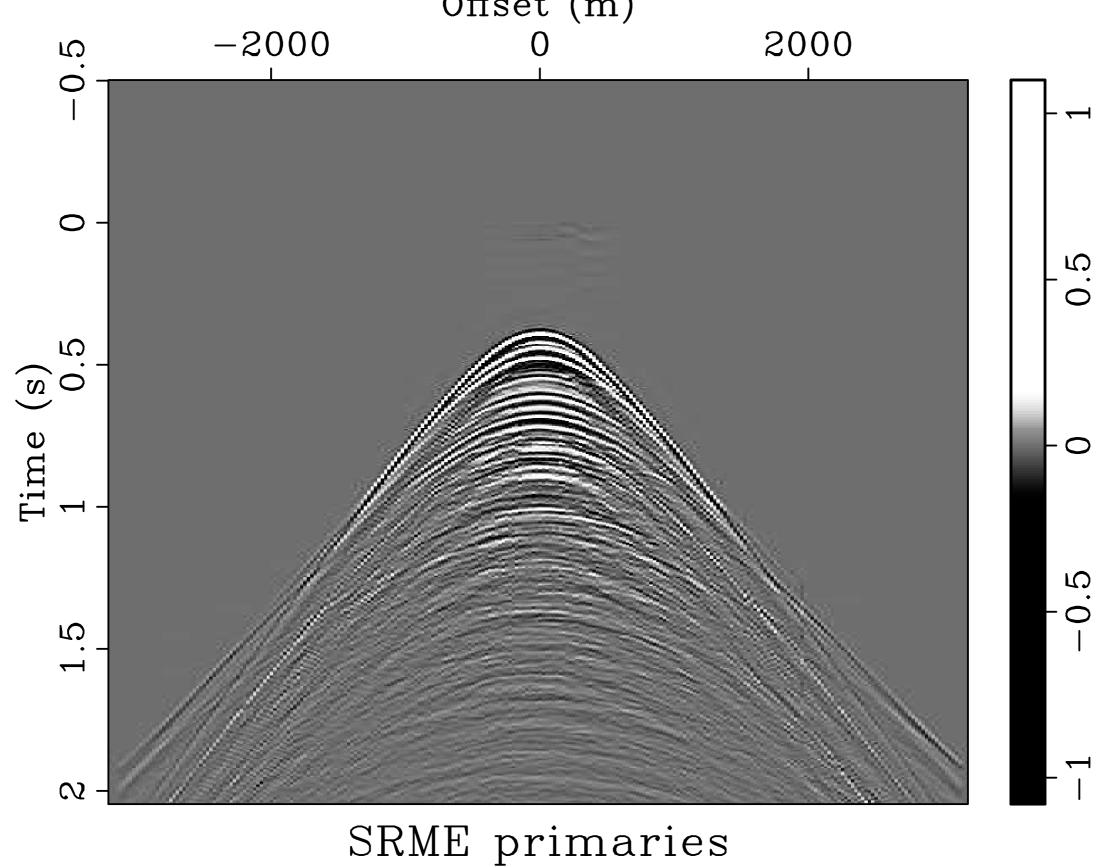
$$\mathbf{A} := \mathbf{\Delta} \mathbf{P} \mathbf{C}^T \text{ and } \mathbf{\Delta} \mathbf{P} := \mathbf{F}^H \text{block diag} \{\mathbf{\Delta} \mathbf{p}\} \mathbf{F}$$

$$S := C$$

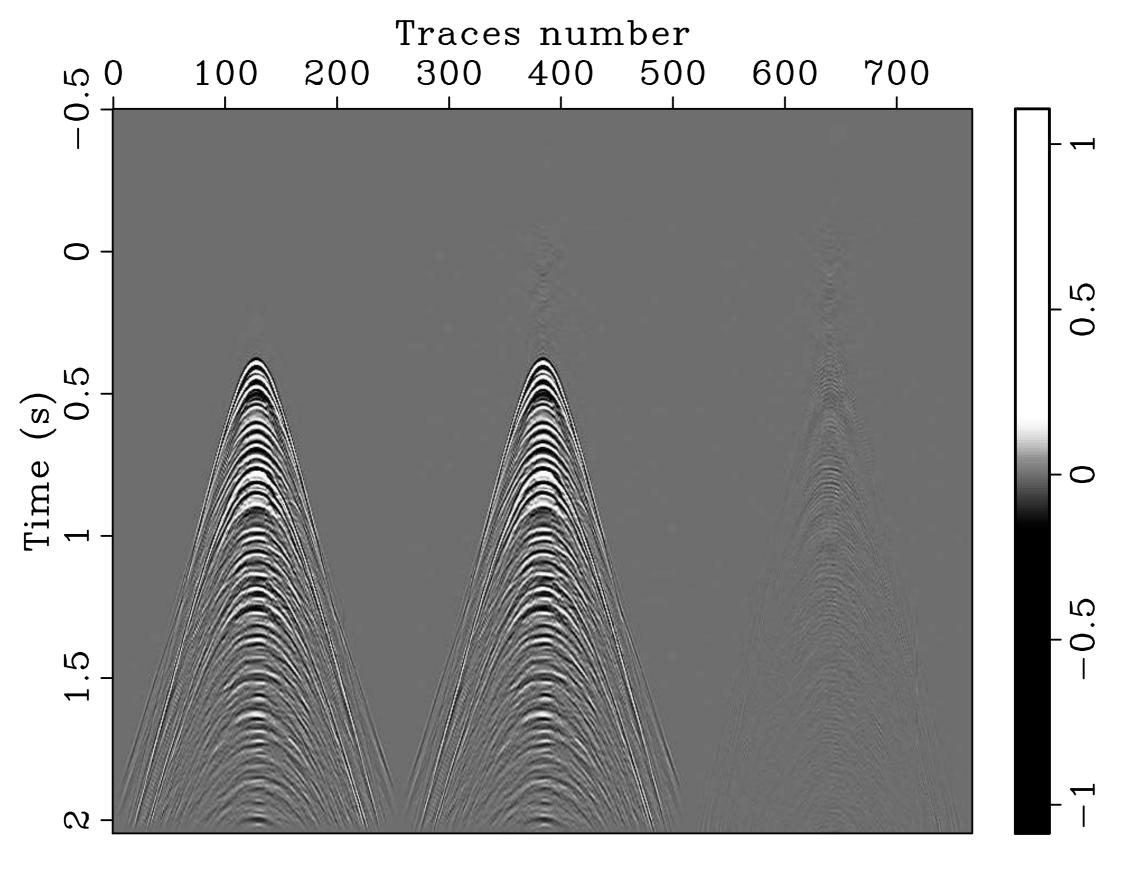
$$\mathbf{y} = \mathbf{P}(:)$$

$$\mathbf{P}$$
 = total data.

SRME estimate for the primaries Offset (m)



Difference



Recovery with focussing

Solve

$$\mathbf{P}_{\epsilon}: \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} \quad \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T}\widetilde{\mathbf{x}} \end{cases}$$

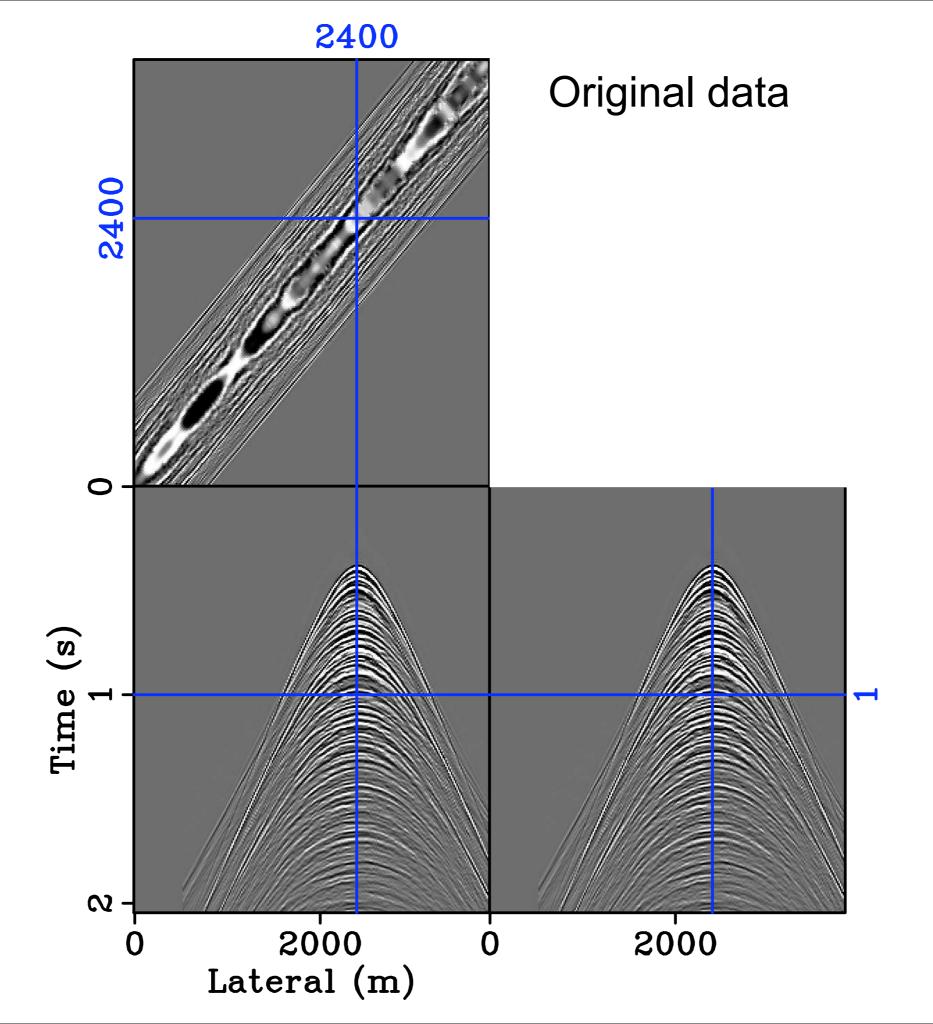
with

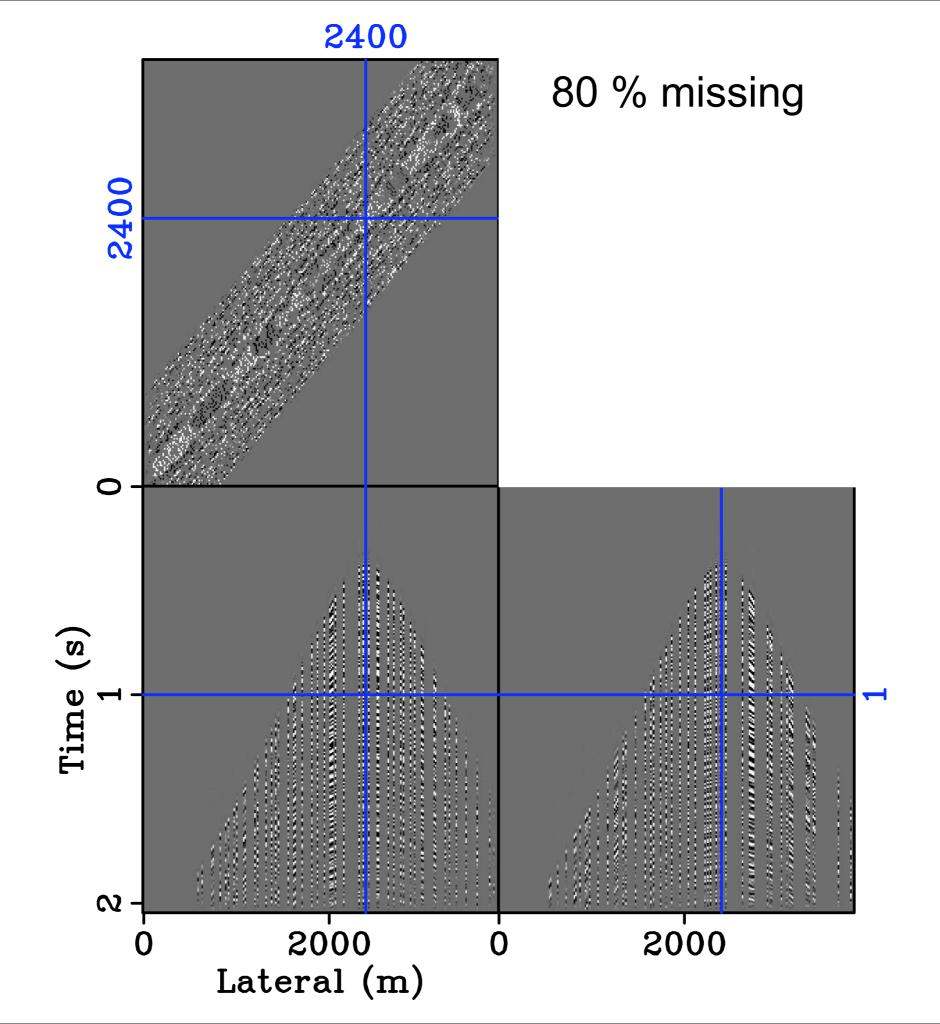
$$\mathbf{A} := \mathbf{R} \mathbf{\Delta} \mathbf{P} \mathbf{C}^T$$

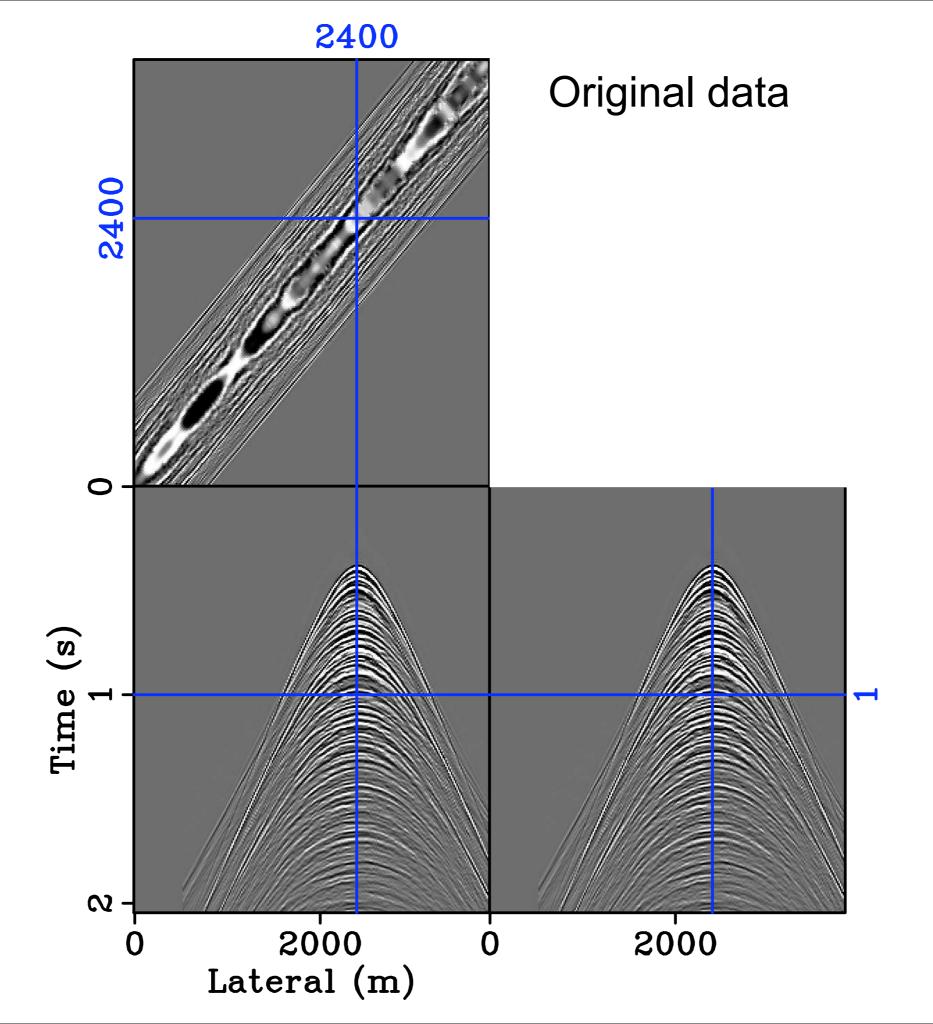
$$\mathbf{S}^T := \mathbf{\Delta} \mathbf{P} \mathbf{C}^T$$

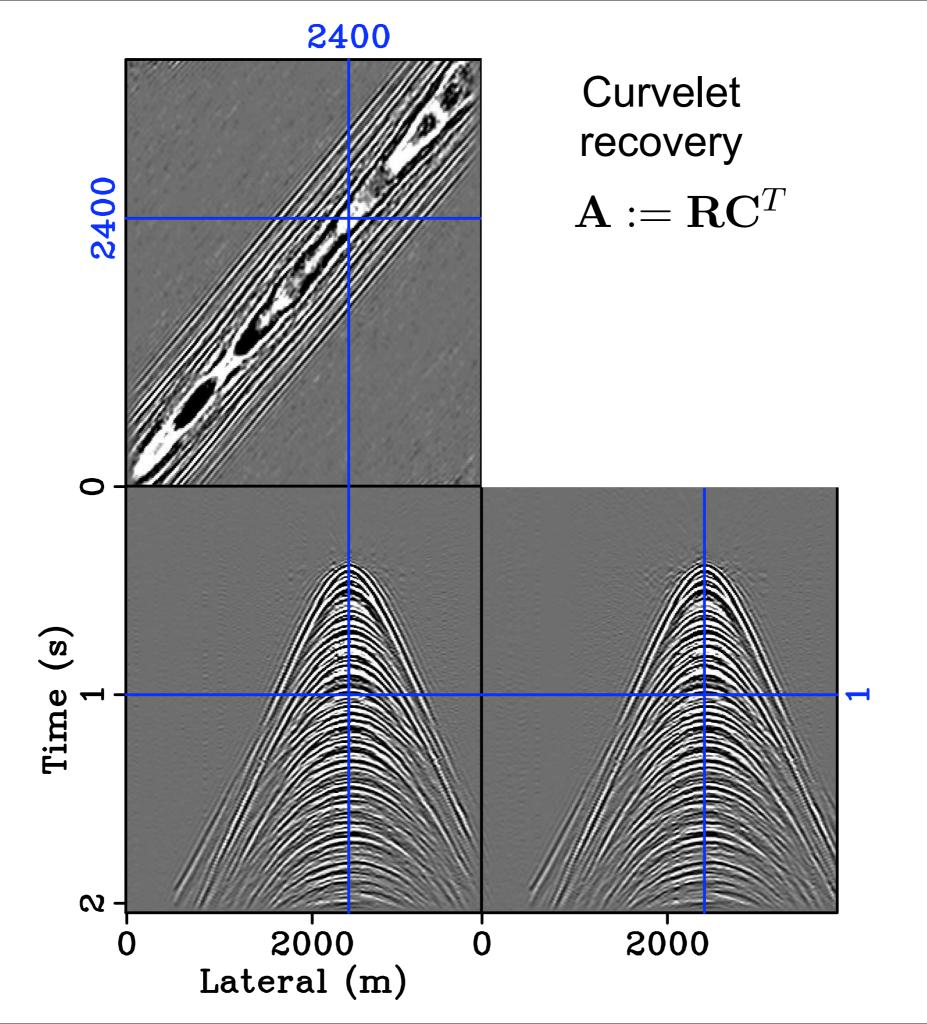
$$\mathbf{y} = \mathbf{RP}(:)$$

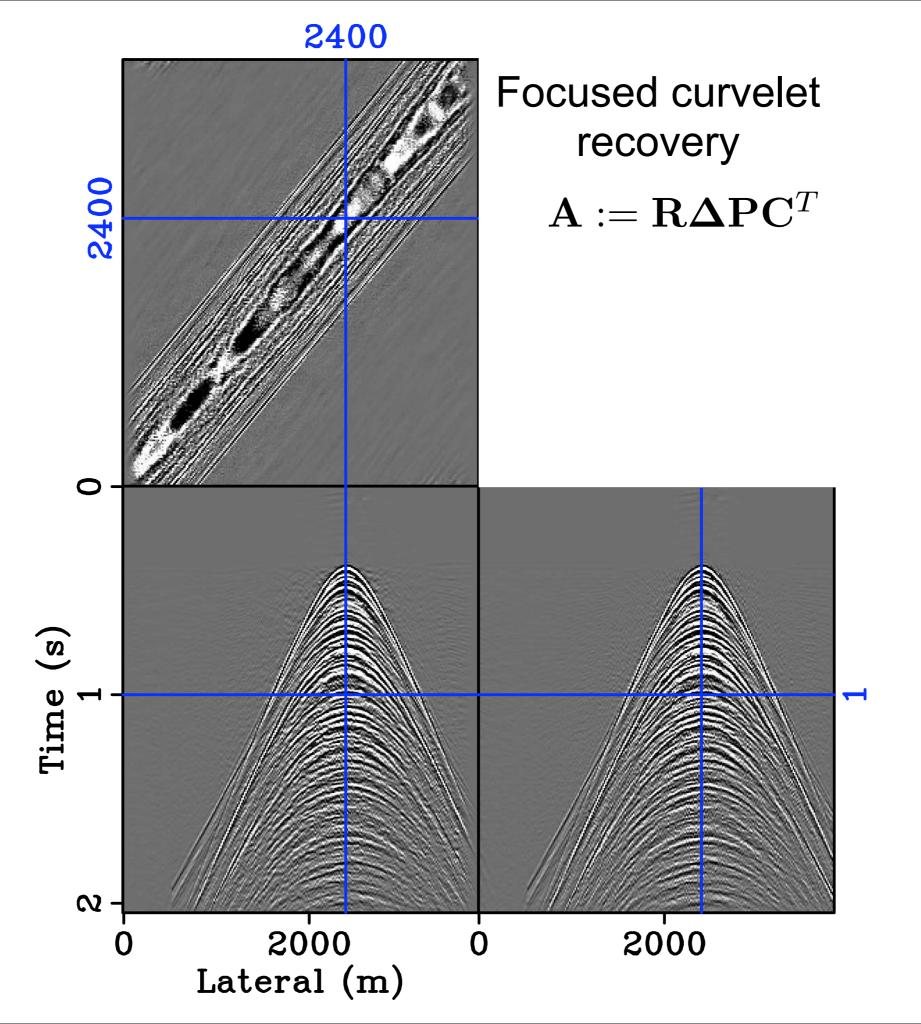
$$\mathbf{R}$$
 = picking operator.

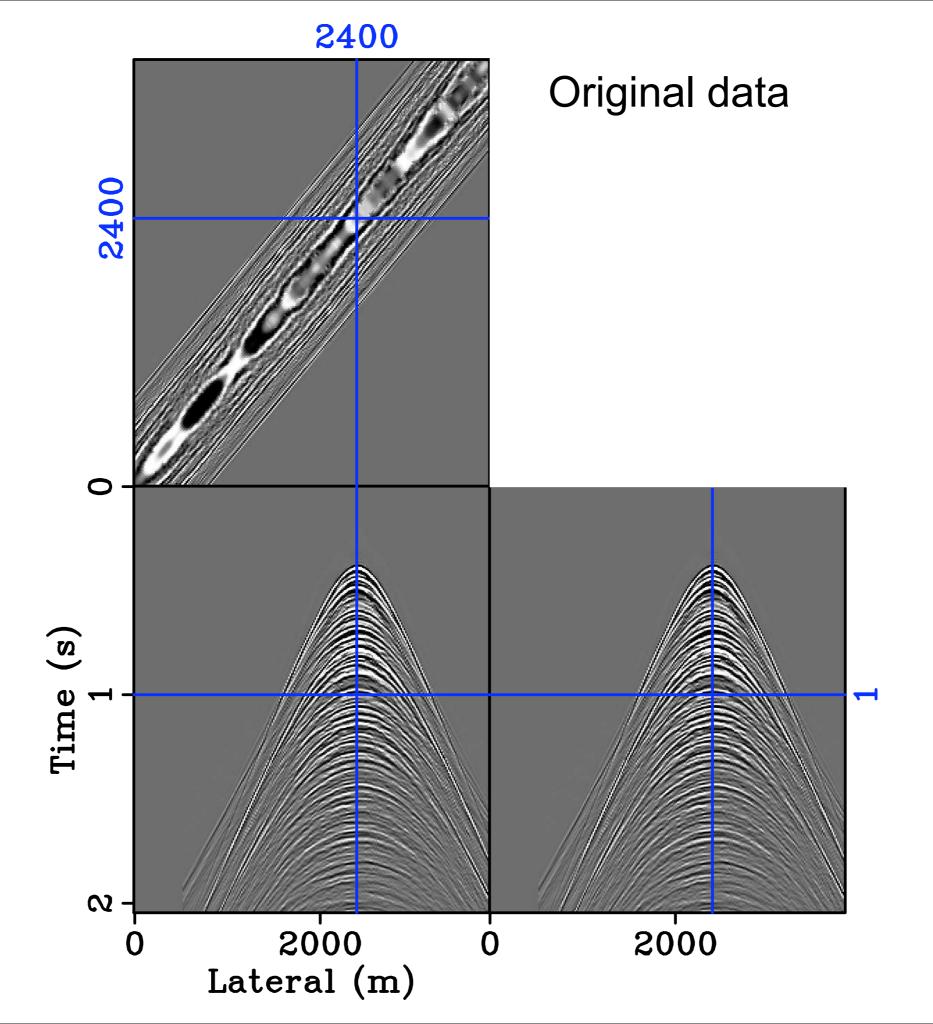


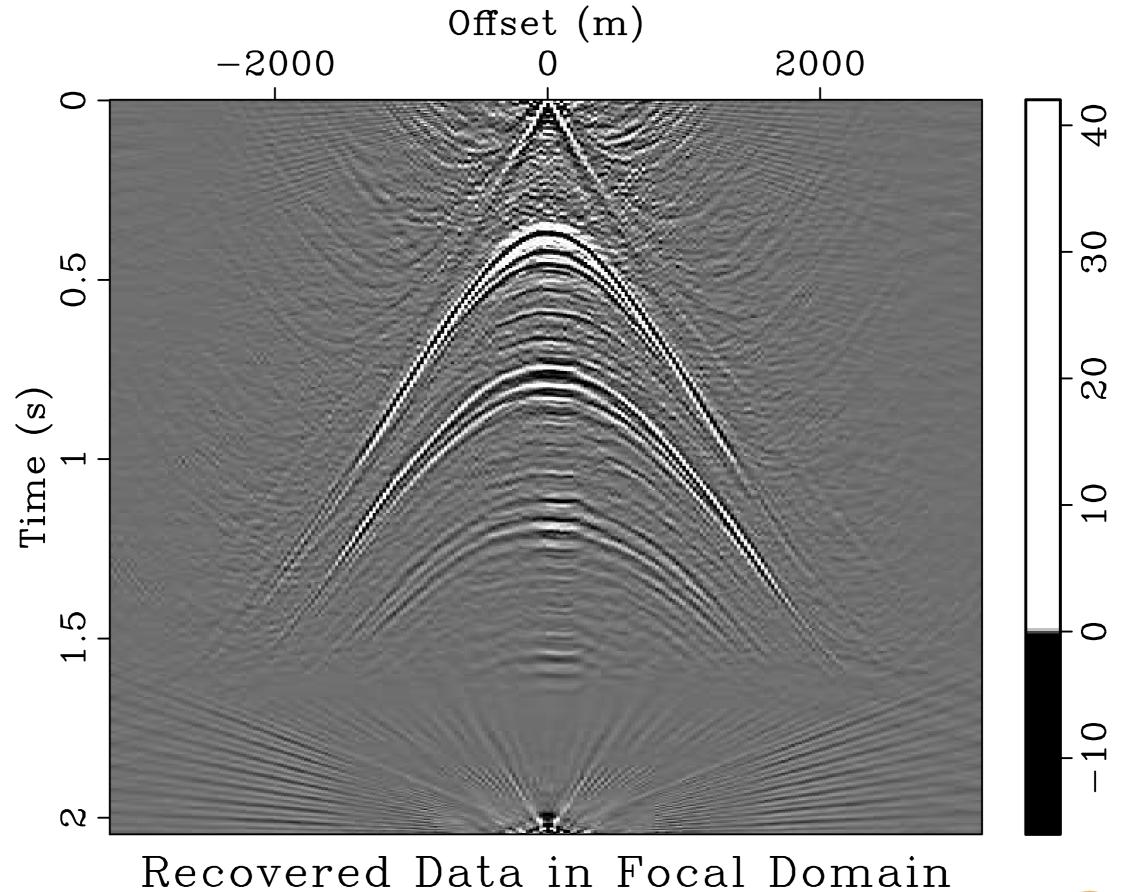








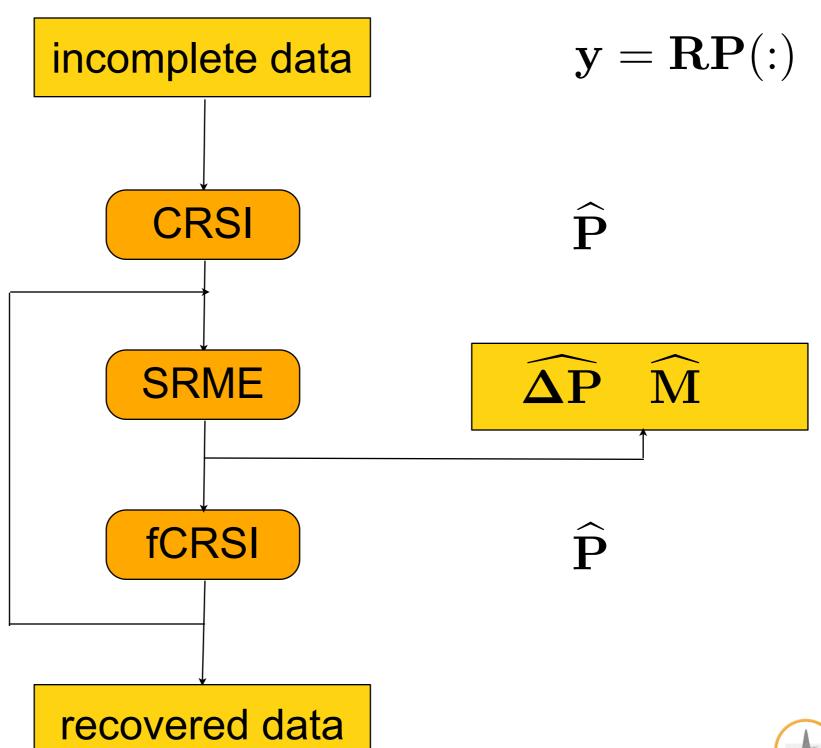


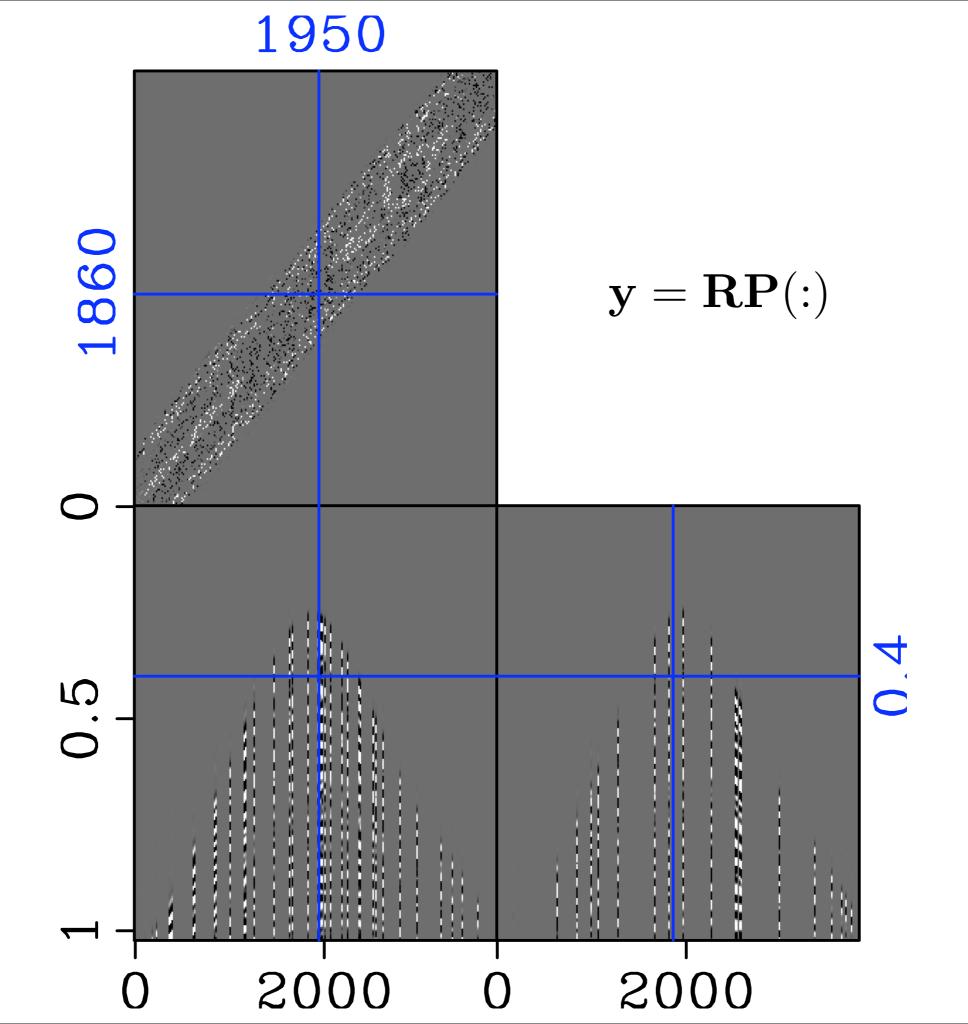


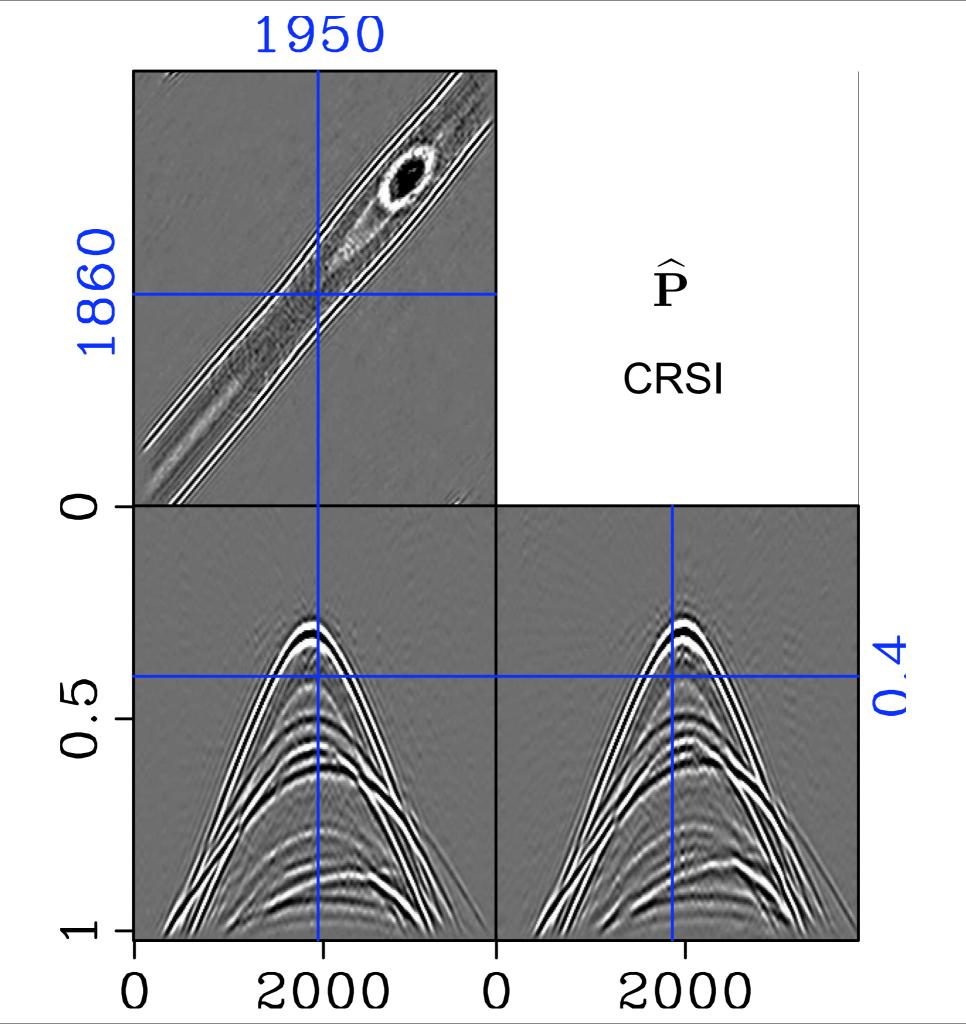
Nonlinear primarymultiple prediction

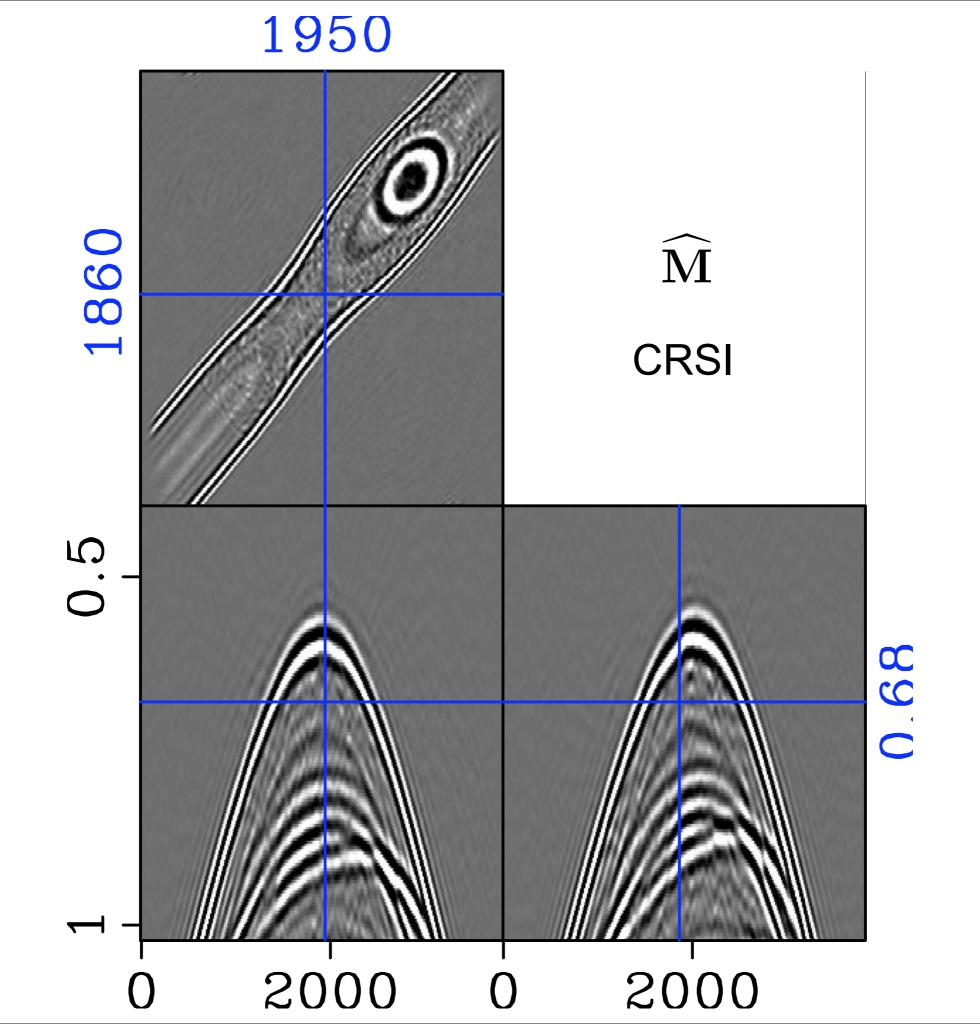
joint work with Deli Wang (visitor from Jilin university) and Eric Verschuur

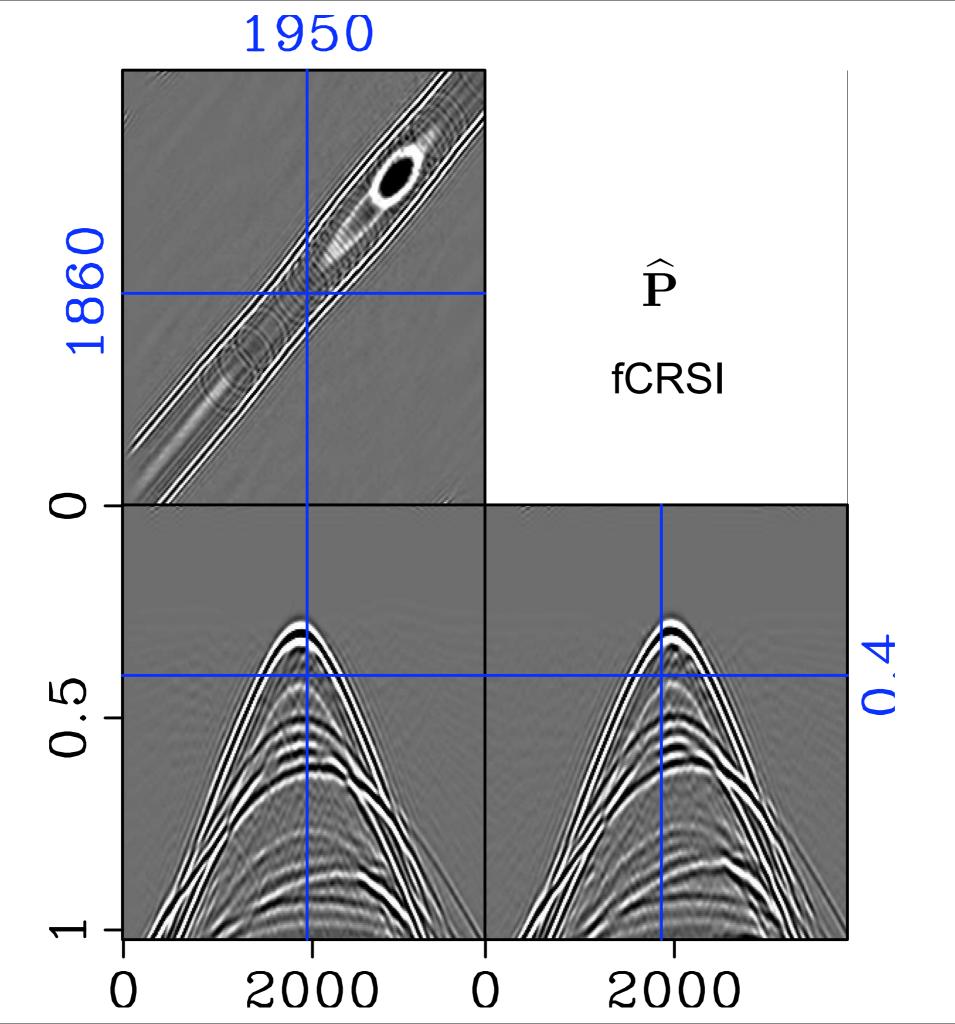
Multiple prediction with fCRSI

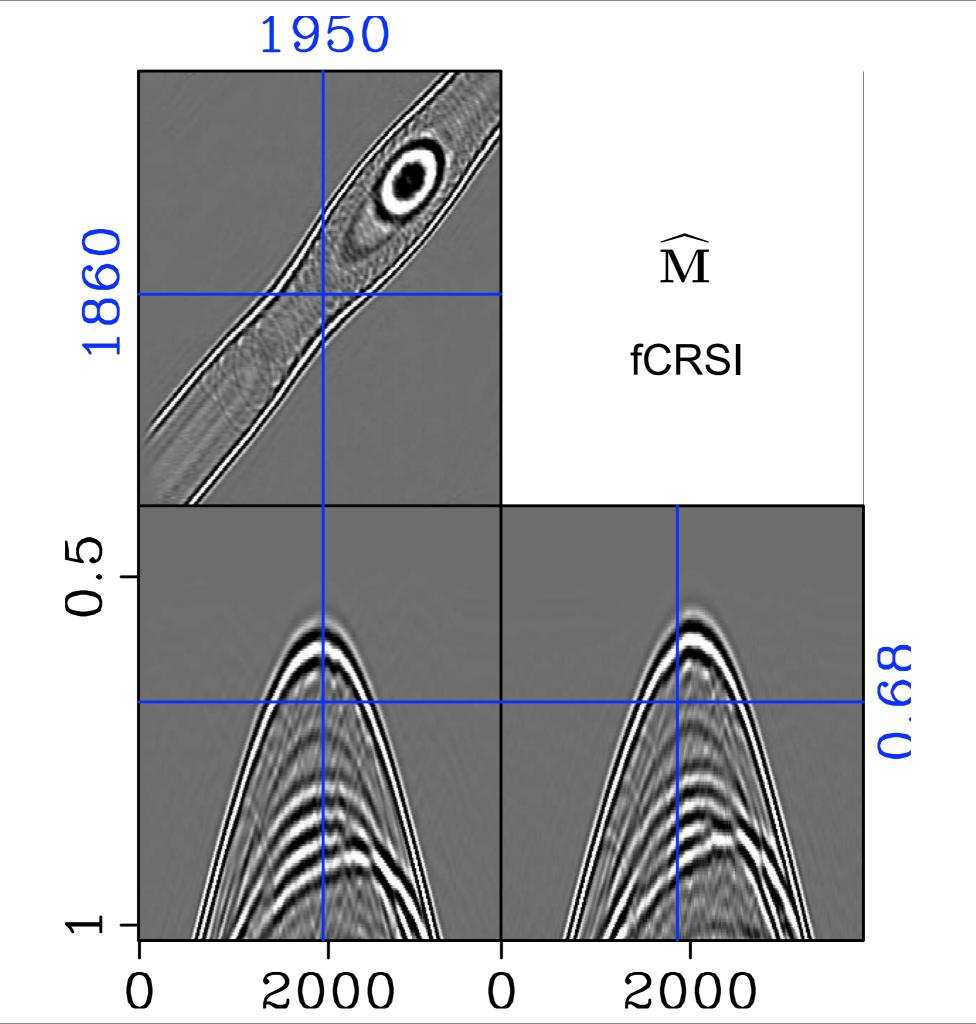




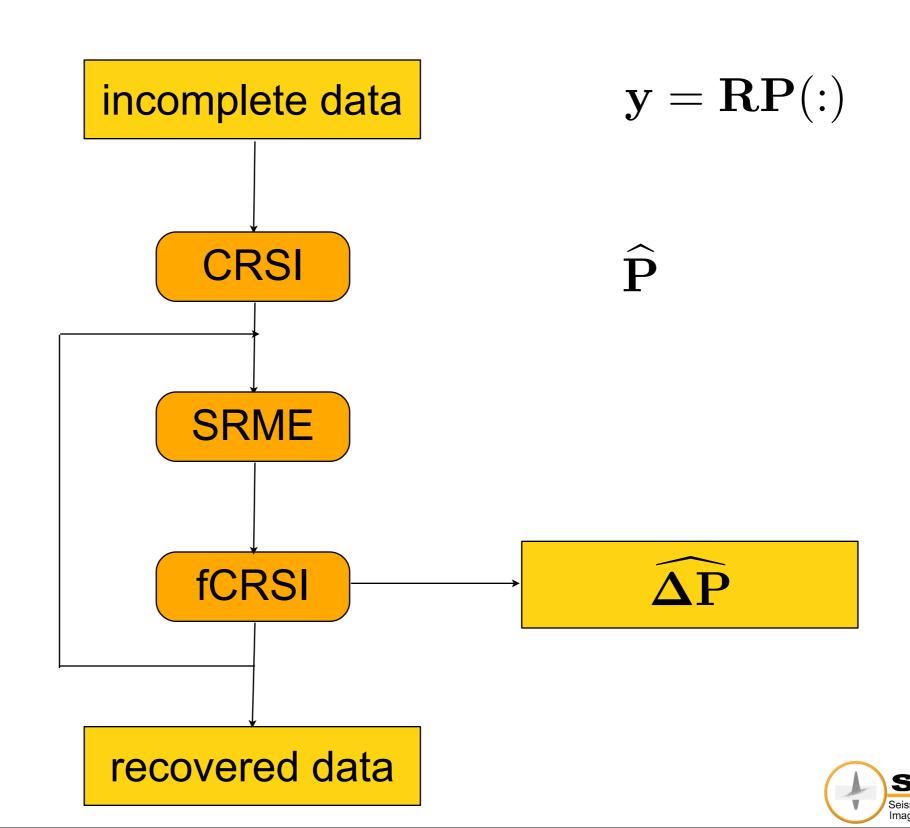








Primary prediction with fCRSI



Curvelet-based Focal transform

Solve

$$\mathbf{P}_{\epsilon}: \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} \quad \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T}\widetilde{\mathbf{x}} \end{cases}$$

with

$$\mathbf{A} := \mathbf{\Delta} \mathbf{P} \mathbf{C}^T$$

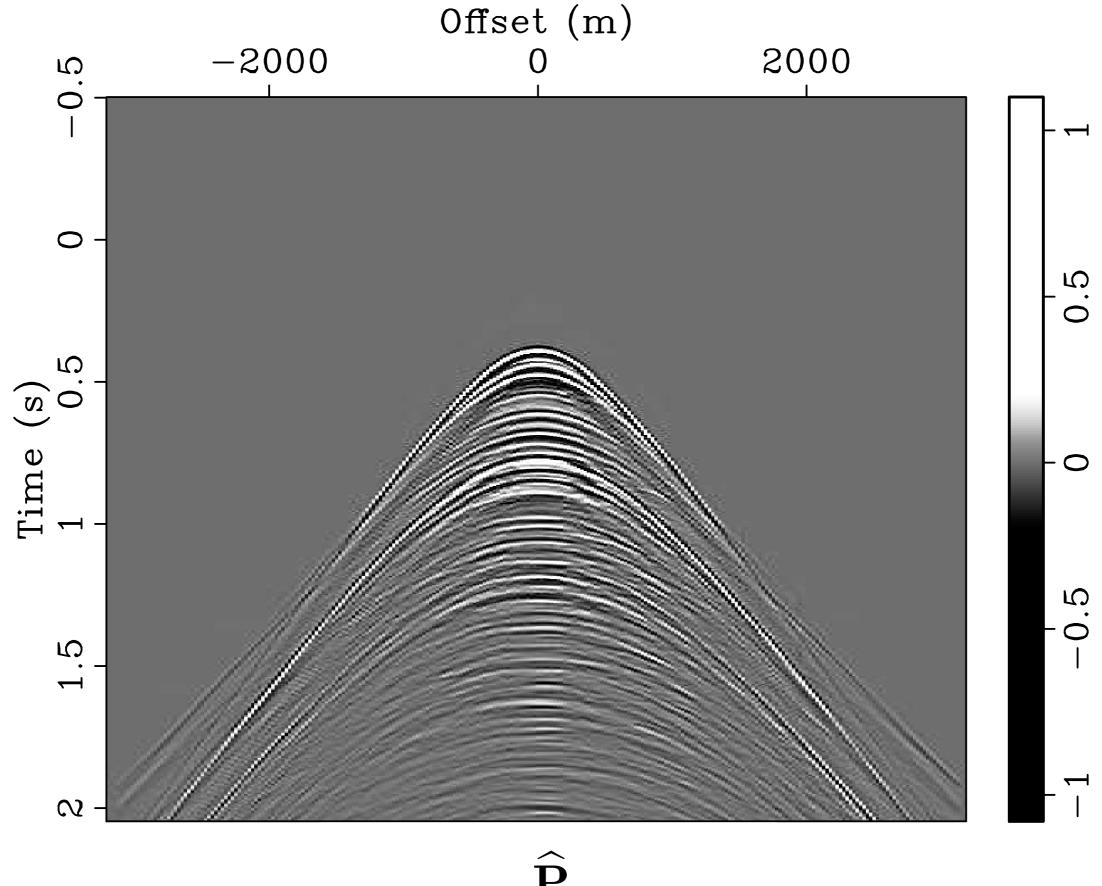
$$S := C$$

$$\mathbf{y} = \mathbf{P}(:)$$

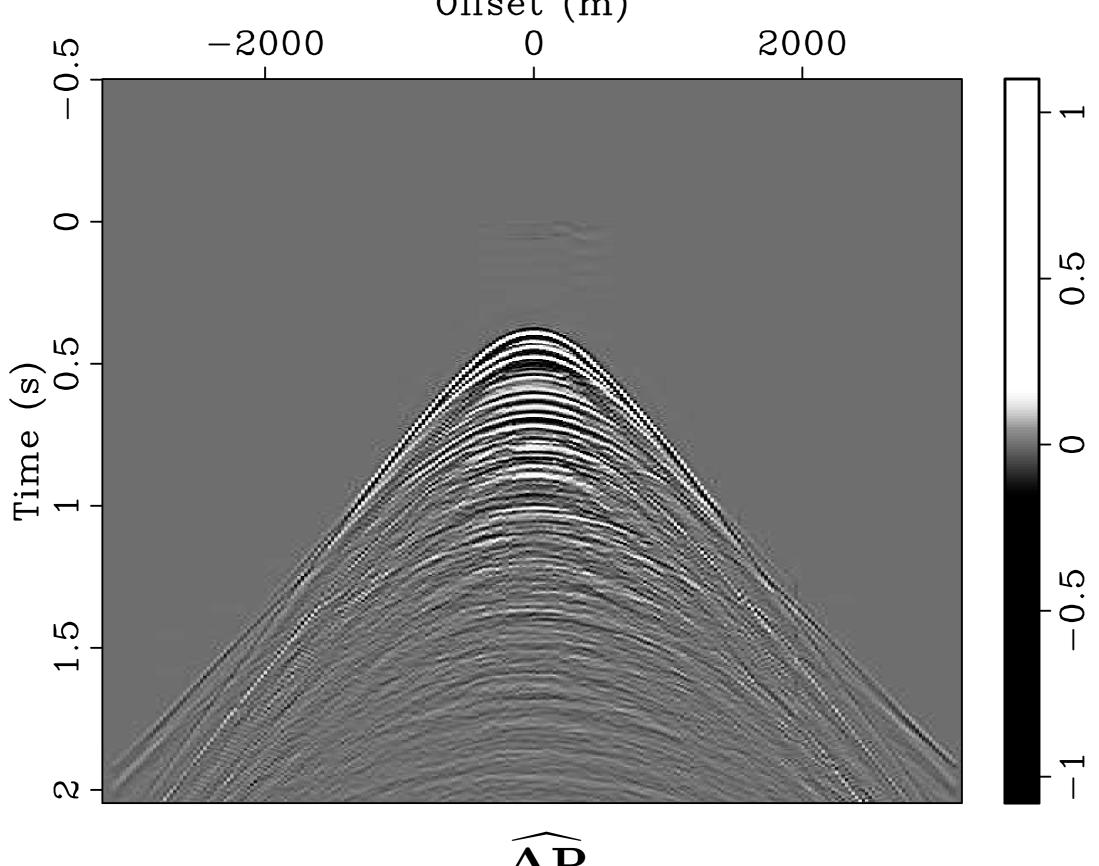
$$\mathbf{P}$$
 = total data

$$\tilde{\mathbf{f}}$$
 = focused data.

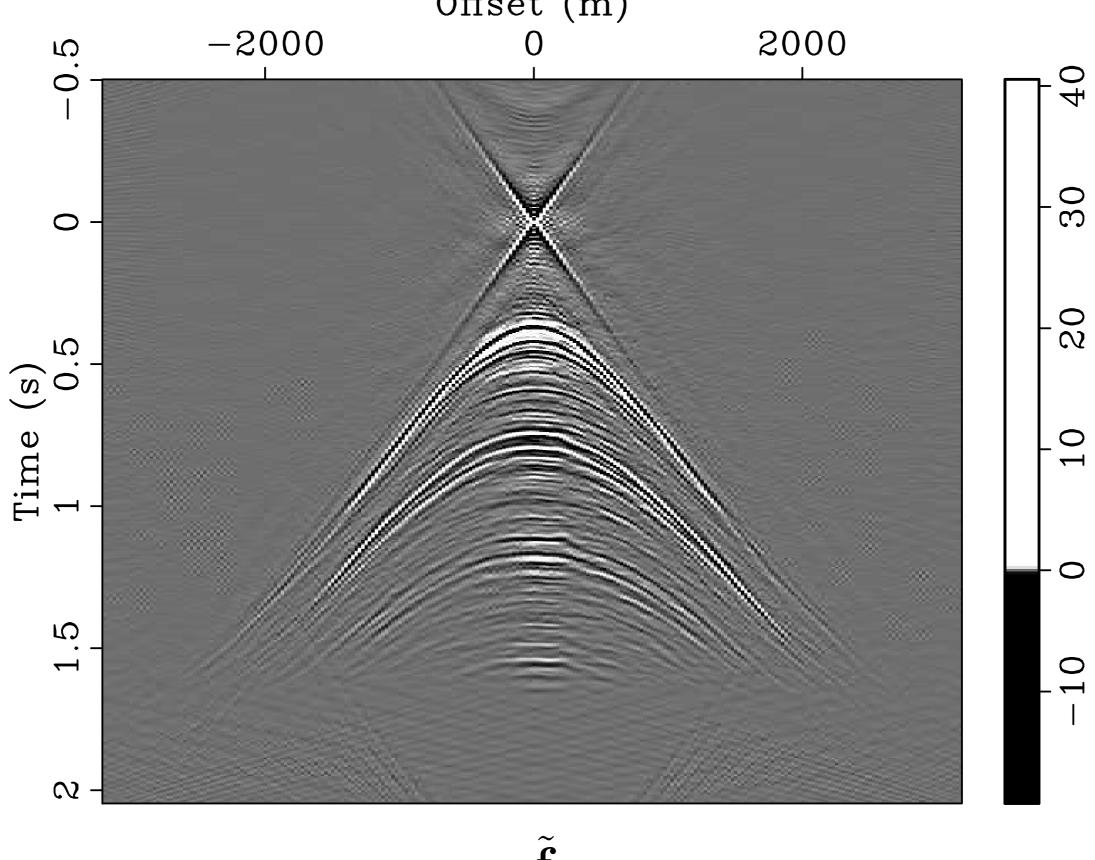
Total data Offset (m)



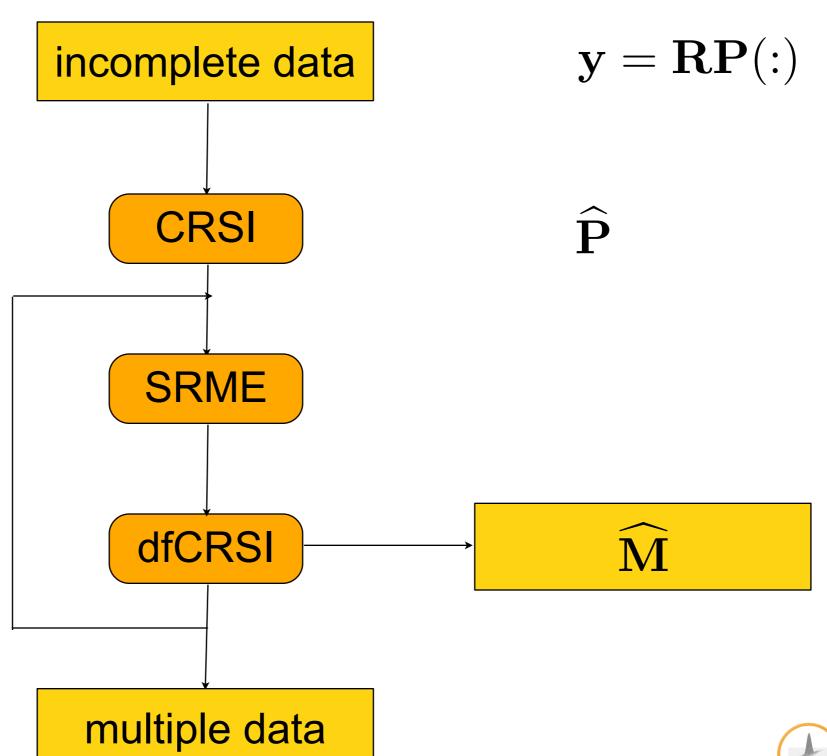
Estimate for the primaries



Focused with the primaries Offset (m)



Multiple prediction with dfCRSI



Curvelet-based deFocal transform

Solve

$$\mathbf{P}_{\epsilon}: \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} \quad \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T}\widetilde{\mathbf{x}} \end{cases}$$

with

$$\mathbf{A} := \mathbf{\Delta} \mathbf{P}^T \mathbf{C}^T \text{ and } \mathbf{\Delta} \mathbf{P} := \mathbf{F}^H \text{block diag}\{\text{conj}(\mathbf{\Delta} \mathbf{p})\}\mathbf{F}$$

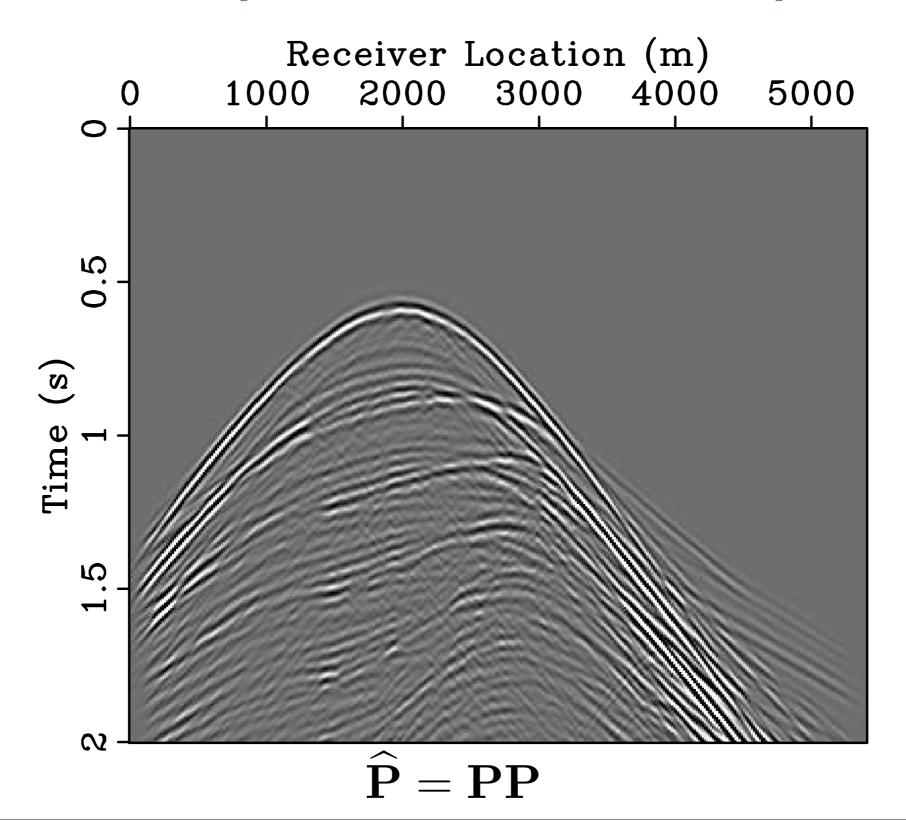
$$S := C$$

$$\mathbf{y} = \mathbf{P}(:)$$

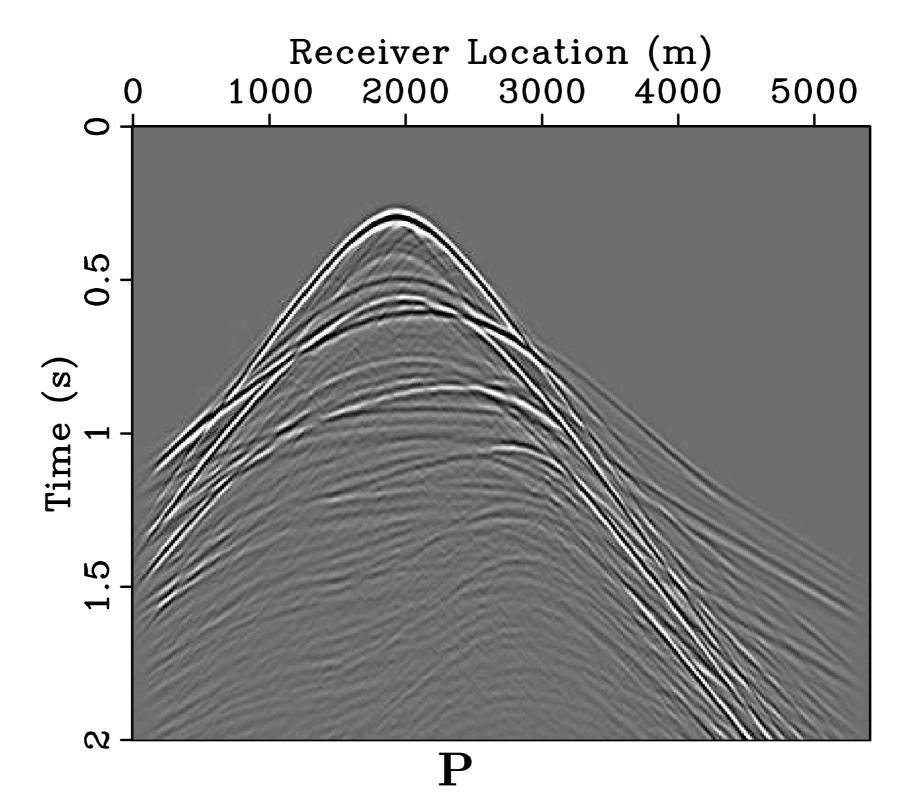
$$\mathbf{P}$$
 = total data

$$\tilde{\mathbf{f}}$$
 = defocussed data.

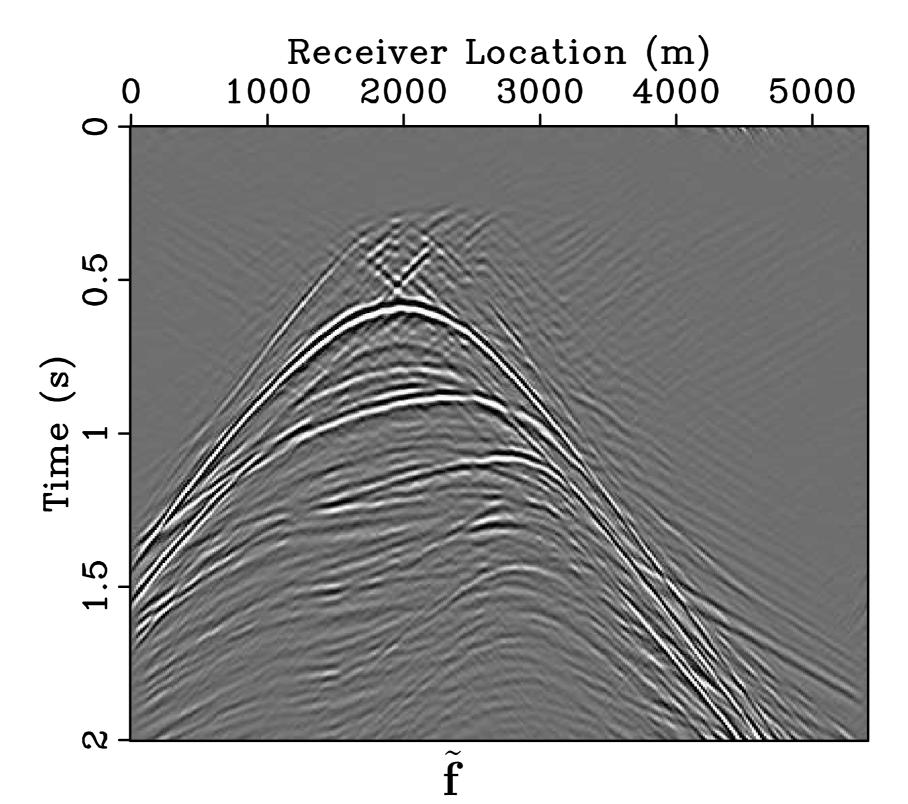
SRME predicted multiples



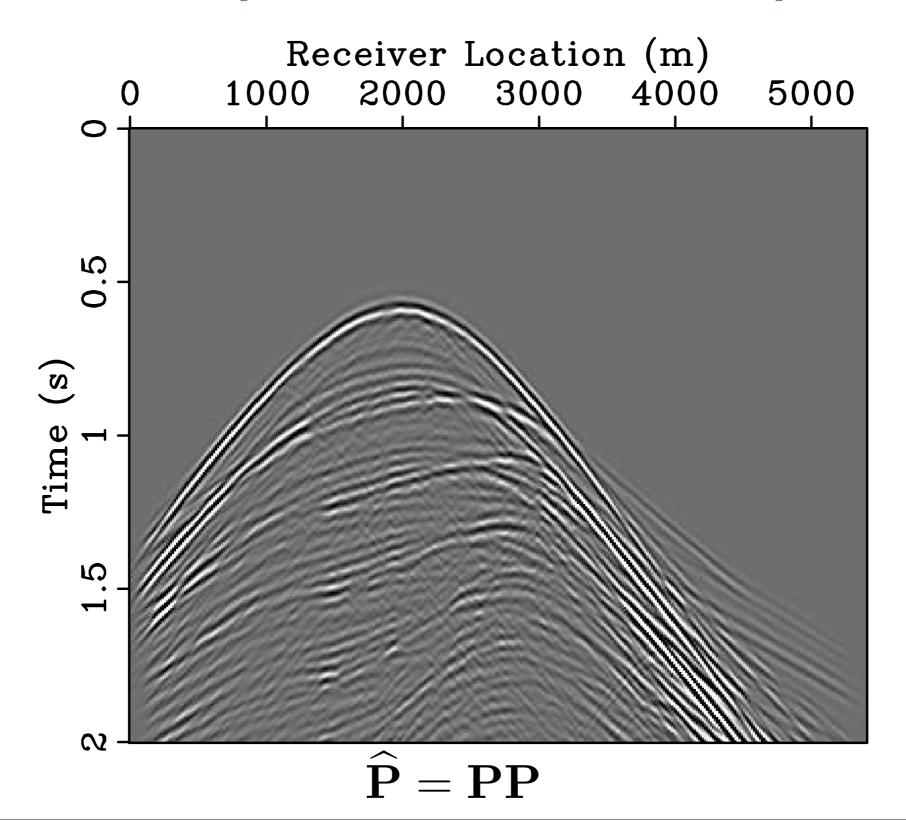
Original data



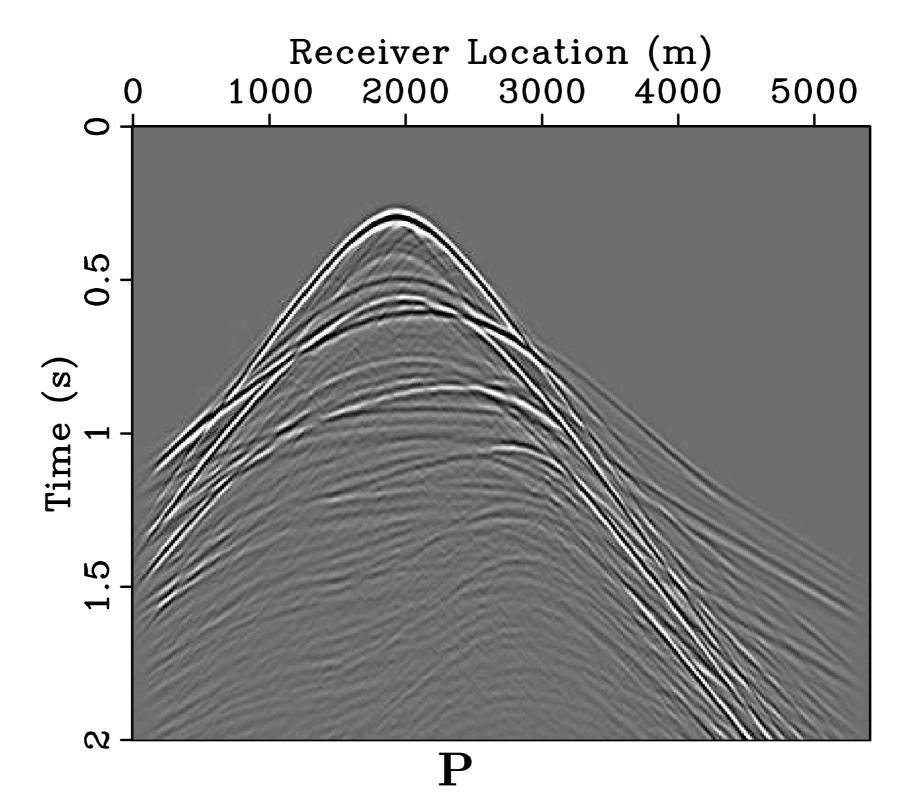
Multiple estimate by dfCRSI



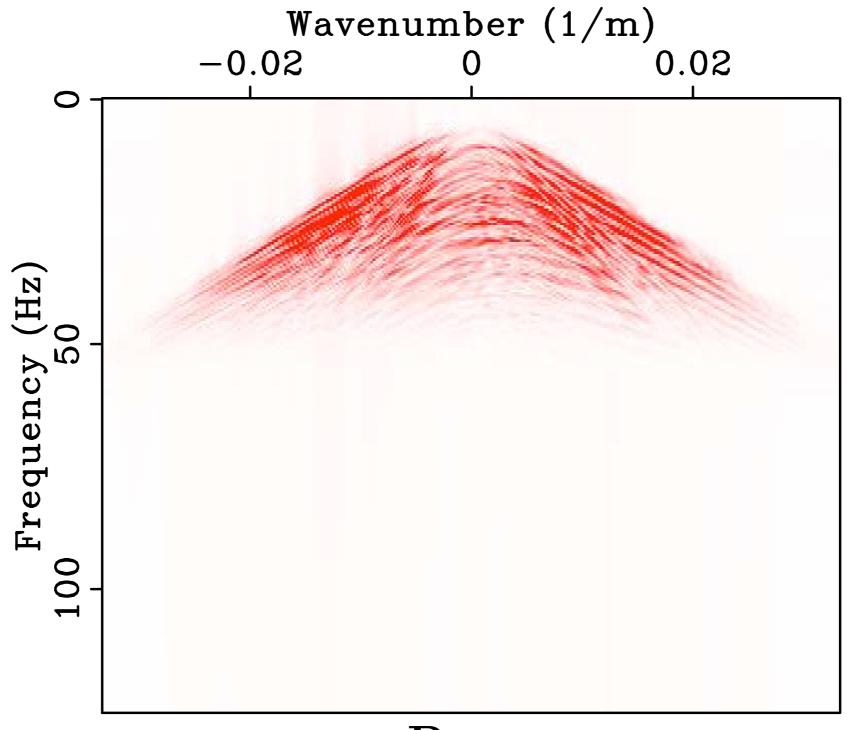
SRME predicted multiples



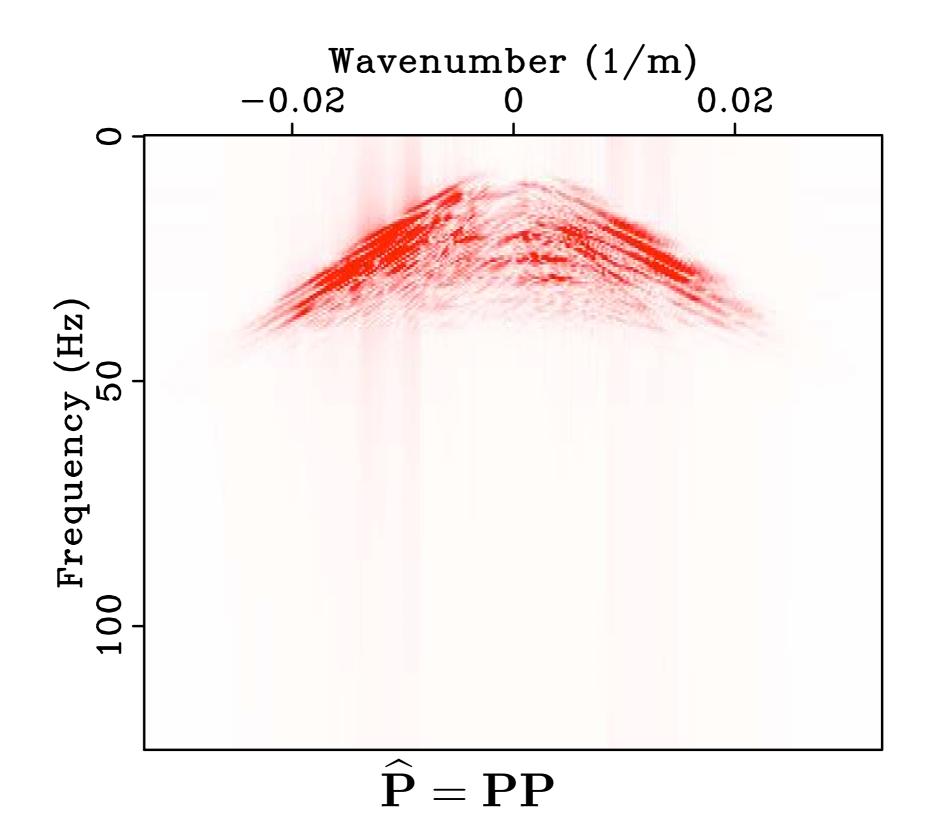
Original data



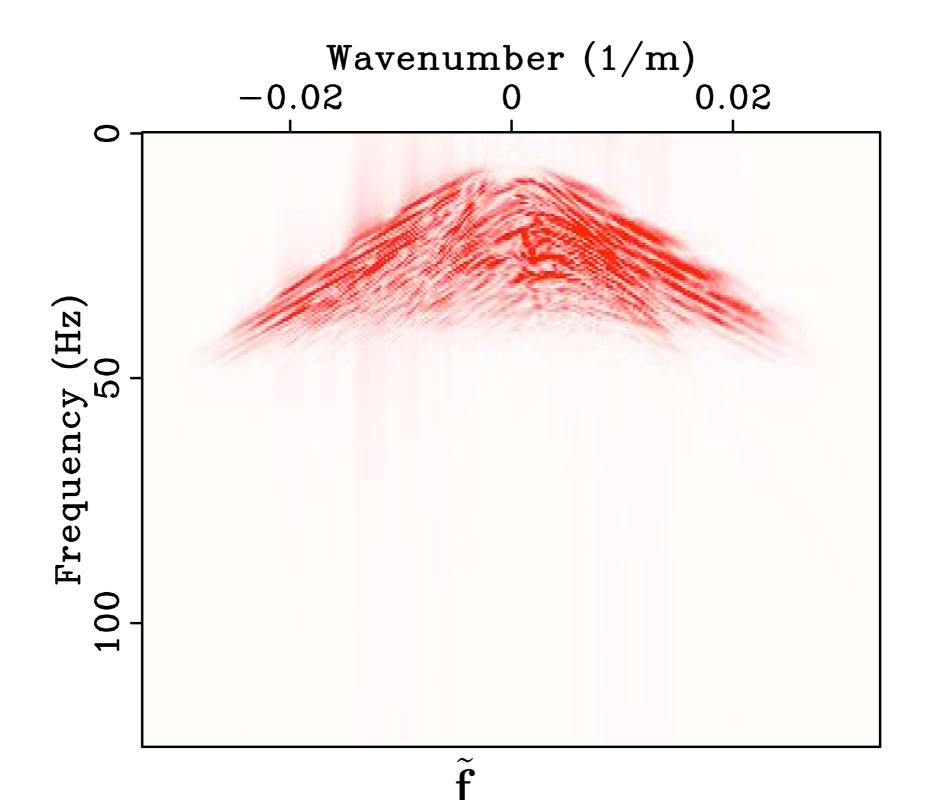
Original data



SRME predicted multiples



Multiple estimate by dfCRSI



Conclusions

Focused CRSI

- improves the recovery and hence predicted multiples
- precursor of migration-based CRSI
- primary estimates have higher bandwidth (deconvolution of the source)

deFocused CRSI

- improves the band width
- contains artifacts due to remnant multiple energy & X-terms

Curvelet-based approach improves the primary-multiple prediction.

Acknowledgments

The authors of CurveLab (Demanet, Ying, Candes, Donoho)

Dr. Verschuur for his synthetic data and the estimates for the primaries.

These results were created with Madagascar developed by Dr. Fomel.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of F.J.H. This research was carried out as part of the SINBAD project with support, secured through ITF (the Industry Technology Facilitator), from the following organizations: BG Group, BP, Chevron, ExxonMobil and Shell.