
ABSTRACT

Incomplete data, unknown source-receiver signatures and free-surface reflectivity rep-
resent challenges for a successful prediction and subsequent removal of multiples. In
this paper, a new method will be represented that tackles these challenges by combining
what we know about wavefield (de-)focussing, by weighted convolutions/correlations,
and recently developed curvelet-based recovery by sparsity-promoting inversion (CRSI).
With this combination, we are able to leverage recent insights from wave physics to-
wards a nonlinear formulation for the multiple-prediction problem that works for in-
complete data and without detailed knowledge on the surface effects.
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Surface-related multiple prediction and seismic interferometry are examples where
weighted multi-dimensional cross-convolutions and cross-correlations of seismic data
volumes provide information on Green’s functions that describe the Earth response at
the surface. For instance, surface-related multiples can approximately be predicted
through a weighted multidimensional convolution of the data with itself, while ’daylight
imaging’ techniques extract the Green’s function by cross-correlation of wavefields (see
e.g. Wapenaar et al., 2006, which contains a collection of the most recent papers on this
topic). Recently, new approaches have been proposed, where the Green’s functions are
extracted through inversion or deconvolution (See the contributions of Snieder et.al,
Schuster et.al. and Berkhout and Verschuur in Wapenaar et al., 2006). We follow a
similar approach, where we are interested in finding an alternative formulation for the
following two operations:

• wavefield defocusing, where the wavefield is convolved with the ’primary’ wave-
field. This convolution maps the primaries into first-order multiples and first-
order multiples into second-order multiples etc., i.e., we have the mapping

p(m)(x, t) 7→ p(m+1)(x, t) =
(
G

[
p̃0, A

]
pm

)
(x, t) (1)

with G
[
p̃0, ψ

]
· := A† ∗x,t p̃

0 ∗x,t ·, the symbol ∗x,t denoting multi-dimensional
cross-convolution and A† the weighting;

• wavefield focusing, where the wavefield is correlated with the ’primary’ wave-
field. This correlation maps the primaries into first order multiples and first-order
multiples into second-order multiples etc., i.e., we have the mapping

p(m+1)(x, t) 7→ p(m)(x, t) =
(
F

[
p̃0,B

]
pm+1

)
(x, t) (2)

with P
[
p̃0,B

]
· := p̃0 ⊗x,t B† ∗x,t ·, the symbol ⊗x,t denoting multi-dimensional

cross-correlation and B† another weighting.

In these expressions, pm refers to the (m)th-order multiple in the data (p0 represents the
primary wavefield) and p̃0 represents an estimate for the ’primaries’ that is assumed to
be given (we used ” to indicate that in practice we only have approximate knowledge
of the primaries since the sole purpose of this work is to estimate these primaries). G
and F are the defocusing and focussing operators that map the mth-order component to
the (m+ 1)th-order component and back. The defocusing operator consists of a multi-
dimensional weighted cross-convolution between the ’primaries’, p̃0, and the wavefield,
followed by a deconvolution by A† that contains the surface reflectivity and the pseudo
inverse (denoted by the †) of the source and receiver directivity and time signatures.
After cross-convolution, the wavefield has a tendency to spread out, i.e., we added a
’travel path’, hence the name defocusing. The wavefield focusing operator, on the other
hand, constitutes a weighted cross-correlation of the wavefield with the ’primaries’,
removing a ’travel path’. This weighting by B† is defined by the damped pseudo inverse
of the ’autocorrelation’ of the ’primary’ operator.

In this paper, we seek an alternative formulation, where (i) no information is re-
quired on A; (ii) that is stable w.r.t. incomplete data and (iii) where focusing is accom-
plished by sparsity-promoting inversion (replacing B†). Fig. 1 illustrates the effect of
missing data on the prediction of multiples. To accomplish these goals, we combine
the focusing property and the sparsity of curvelets. After discretization (lower- and
upper-case bold symbols refer to discretized vectors and matrices), define the following
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Figure 1: SRME multiple prediction (b) from incomplete data (a) with 80 % of the traces missing.
Notice the artifacts due to the missing data leading to a deterioration of the multiple prediction.

incomplete data representation

y = Ax with A := RPCT (3)

with R the restriction operator; P := p̃0∗x,t the ’primary’ operator; CT the trans-
pose (inverse) of the curvelet transform (see e.g. Hennenfent and Herrmann, 2006b, and
the references therein), x the curvelet coefficient vector and y = Rd the incomplete
data. This signal representation differs from standard-CRSI (Hennenfent and Herr-
mann, 2006a; Herrmann and Hennenfent, 2007) by including the ’primary’ operator P.

CRSI with focusing: By inverting the defocusing, seismic data is focused, bootstrap-
ping the sparsity obtained by the curvelet transform. Using this property, the recovery
from incomplete data can be written as follows

F :


x̃ = arg minx ‖x‖1 subject to Ax = y

d̃(m−1) = CT x̃

d̃ = PCT x̃.

(4)

In words, the solution of F involves finding the sparsest set of curvelet coefficients that
matches the incomplete data when convolved with the primaries. The data, d, in this
case includes primaries and multiples (see Fig. 1). As such, the estimated coefficients
represent an estimate for the focused data since they are converted back into data by
the ’primary’ operator during the optimization. Eq. 4 corresponds to a curvelet-sparsity
regularized inverse of Berkhout’s focusing matrix and of the convolution operator in
interferometric imaging (Vasconcelos and Snieder, 2006). The symbol d(m−1) refers to
focused data with primaries mapped to the focal point and mth-order multiples mapped
to (m − 1)th-order. The result of the sparse recovery from the incomplete data using
standard-CRSI (Herrmann and Hennenfent, 2007) and CRSI + focusing are summa-
rized in Fig 2. Expectedly, the curvelet transform compounded with the primary opera-
tor improves the recovery.

Defocusing with CRSI: After successful recovery of the incomplete data, multi-
ples can be predicted using the nonlinear mapping defined in Eq. 1. This mapping
through multi-dimensional convolution, however, has the disadvantage that an estimate
is needed for A. By defining A := P∗CT with P∗ = p̃0⊗x,t the adjoint of the primary
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Figure 2: Comparison between CSRI (a) and CSRI + focusing (b) for data with 80 % of the traces
missing. Notice the significant uplift from compounding the inverse curvelet transform with the focusing
’primary’ operator.

operator, multiples can be predicted by solving

G :

{
x̃ = arg minx ‖x‖1 subject to Ax = y

d̃(m+1) = CT x̃
(5)

with y = d̃ (estimated above). In words, the solution of G corresponds to finding the
sparsest set of curvelet coefficients that matches the data when cross-correlated with the
primaries. As such the estimated coefficients represent an estimate for the multiples,
since this estimate for the multiples is converted to the primaries after applying the
correlation during the optimization. More precisely, this formulation corresponds to a
sparse inversion of the operator that maps multiples to primaries. The advantage of this
formulation is that it does not require information on A as can be observed from Fig. 3.

Examples: Without loss of generality, we considered the acoustice reflection response
of a 1-D medium consisting of three layers and a free surface. For this type of medium,
the multi-dimensional cross-convolutions and correlations become simple convolutions
and correlations that are diagonal in the f − k domain. In practice, the primaries are
not known and the data itself is used instead, as part of an iterative procedure. In this
case, spurious non-physical events may occur an observation reported in the literature
(Snieder et.al. in Wapenaar et al., 2006).

Discussion
The methodology presented in this paper banks on two complementary aspects of wave
phenomena, namely, (i) the focusing and defocusing by multidimensional cross-con-
volutions/correlations, reflecting certain physical relations, and (ii) the existence of a
multiscale and multi-directional curvelet transform that sparsely represents high-frequen-
cy solutions of wave equations. Pairing these two aspects leads to a new formulation
for the prediction of multiples from incomplete data, without knowledge on the sur-
face effects. The focusing is found to improve the recovery because the data becomes
sparser in the curvelet domain after focusing and this explains the improvement over
curvelet-only CRSI. We also observed that F corresponds to the focal transform and
interferometric imaging by deconvolution formalisms, opening the interesting new per-
spective of adding more robustness. The prediction for the multiples after the recovery
also benefited from the sparsity promotion. Again the sparsity of curvelets, that is
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SMRE predicted multiples
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Figure 3: Comparison between convolution-based multiple prediction (a) and sparsity-based multiple
prediction (b). Aside from the acausal artifact, the sparsity-promoting multiple prediction according to
Eq.5 improves the frequency content and makes it closer to the spectrum of the true multiples. Trace-
wise comparisons in (c-d) between the true (including internal) mutiples (blue), the multiples predicted
with conventional (green) and sparsity promoted predicted multiples (red) confirm this observation. The
difference in the spectrum are partially due to the fact that we only predicted the surface-related multiples.

related to the invariance of curvelets under wave propagation, leads to an improved pre-
diction. This improvement can be understood because the method inverts the adjoint of
the primary operator that contains the surface effects. The improved predictions will in
turn improve curvelet-based primary-multiple separation (Herrmann et al., 2006). Inter-
ferometric prediction of ground roll will be discussed elsewhere in these proceedings.
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