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Model

spatial sampling:  12.5 m
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avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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Interpolated result
using CRSI*

spatial sampling:  12.5 m

SNR = 16.92 dB

* CRSI: Curvelet Reconstruction with Sparsity-promoting Inversion
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Difference

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 16.92 dB
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Model

spatial sampling:  12.5 m
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avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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spatial sampling:  12.5 m

SNR = 9.26 dB

Interpolated result
using CRSI
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Difference

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 9.26 dB
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Motivation

! observations

1. missing traces at irregular locations along source and receiver coordinates

• reconstruction using CRSI: 16.92 dB

2. missing receiver at irregular locations along receiver coordinate

• reconstruction using CRSI: 9.26 dB

! questions

– what makes (1) more favorable for reconstruction using CRSI (and possibly other 

methods) than (2)?

– from the acquisition geometry, can we predict the success of CRSI (and possibly 

other methods)?

– can we design CRSI- (and possibly other methods) friendly acquisition 

geometries if we know we need to interpolate before further processing?
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Experiment

! setting

– x0 is of length N

– x0 has k<<N nonzero entries

– ideal data f0 = FHx0

– R sub-samples f0 either regularly or irregularly

– signal y is a length n<<N

signal =y

Fourier 

coefficients

x0

withA

restriction

Fourier

transform

A := RF
H

signal ideal data
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Sparsity-promoting reconstruction

! regular sub-sampling below 
Nyquist rate

! irregular sub-sampling below 
Nyquist rate

min
x

‖x‖1 s.t. Ax = y

sub-sampling

factor

2

3
4

5
6

2

3
4

5

6



Seismic Laboratory for Imaging and Modeling

Explanation

! sub-sampling below Nyquist rate introduces error due to

– indeterminacy

– AHA ! I

! indeterminacy noise: AHAx0-ßx0 = AHy-ßx0

– noise characteristics depends upon R

– noise level depends upon under-determinacy of the system, i.e. shape of A

! sparsity-promoting methods

– assume

• solution sparse

• indeterminacy noise non-sparse
not true for regular 

sub-sampling!!!

Seismic Laboratory for Imaging and Modeling

! dense sampling (R = I)

! regular sub-sampling

! irregular sub-sampling

Indeterminacy noise

no indeterminacy noise 

(AHA = I)

indeterminacy noise strong & 

coherent (aliases)

sparsity argument fails to 

separate signal from noise

indeterminacy noise weak & 

broadband

sparsity argument succeed to 

separate signal from noise

|AHy|

|AHy|

|AHy|
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How irregular is irregular enough?

! fine sampling

! coarse sampling

! jittered coarse sampling

Jitter sampling

Gilles Hennenfent1

ABSTRACT

xxx

FINE GRID

Suppose we define a regular N -point grid over the interval [0, 1], then the grid point
locations are

xn = n · δx for n ∈ [[0, N − 1]] (1)

with δx = 1/N .

s(x) =
N−1∑

n=0

δ(x− xn) = s (2)

ŝk =
N−1∑

n=0

e−2πiknδx for k ∈ [[0, N − 1]] (3)

ŝk =

{
N, k = 0
0, otherwise

(4)

|ŝk|2 =

{
N2, k = 0
0, otherwise

(5)

COARSE GRID

Denote subsampling factor γ ≥ 1 and suppose N is a multiple of γ.

xn = n · ∆x for n ∈ [[0, N/γ − 1]] (6)

with ∆x = γδx.

s(x) =
N/γ−1∑

n=0

δ(x− xn) = s (7)

ŝk =
N/γ−1∑

n=0

e−2πiknγδx for k ∈ [[0, N − 1]] (8)
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ŝk =

{
N/γ, k = 0, . . . , (γ−1)N

γ

0, otherwise
(9)

|ŝk|2 =

{
(N/γ)2, k = 0, . . . , (γ−1)N

γ

0, otherwise
(10)

COARSE GRID JITTERED

xn = n · ∆x + εnδx for n ∈ [[0, N/γ − 1]] (11)

εn is a discrete random variable with probability mass function (pmf) p on [[−ξ, ξ]].

s(x) =
N/γ−1∑

n=0

δ(x− xn) = s (12)

ŝk =
N/γ−1∑

n=0

e−2πiknγδx

︸ ︷︷ ︸
deterministic

· e−2πikεnδx

︸ ︷︷ ︸
random

for k ∈ [[0, N − 1]] (13)

E[ŝk] =
N/γ−1∑

n=0

e−2πiknγδx · E[e−2πikεnδx ] (14)

E[e−2πikεnδx ] =
ξ∑

l=−ξ

pl · e−2πiklδx = p̂k (15)

E[ŝk] = p̂k ·
N/γ−1∑

n=0

e−2πiknγδx (16)

E[ŝk] =






N/γ · p̂k, k = 0, . . . , (γ−1)N
γ

0, otherwise
(17)

|ŝk|2 =




N/γ−1∑

n=0

e−2πiknγδx · e−2πikεnδx








N/γ−1∑

n=0

e2πiknγδx · e2πikεnδx



 (18)

|ŝk|2 =
N/γ−1∑

n=0

N/γ−1∑

m=0

e−2πik(n−m)γδx · e−2πik(εn−εm)δx (19)

E[|ŝk|2] =
N/γ−1∑

n=0

N/γ−1∑

m=0

e−2πik(n−m)γδx · E[e−2πik(εn−εm)δx ] (20)

E[|ŝk|2] =
N

γ
+

N/γ−1∑

n=0
n"=m

N/γ−1∑

m=0

e−2πik(n−m)γδx · E[e−2πik(εn−εm)δx ] (21)

2

ŝk =

{
N/γ, k = 0, . . . , (γ−1)N

γ

0, otherwise
(9)

|ŝk|2 =

{
(N/γ)2, k = 0, . . . , (γ−1)N

γ

0, otherwise
(10)

COARSE GRID JITTERED

xn = n · ∆x + εnδx for n ∈ [[0, N/γ − 1]] (11)

εn is a discrete random variable with probability mass function (pmf) p on [[−ξ, ξ]].

s(x) =
N/γ−1∑

n=0

δ(x− xn) = s (12)
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Discrete random variables are independent

E[e−2πik(εn−εm)δx ] =
ξ∑

l=−ξ

ξ∑

q=−ξ

pl · pq · e−2πikδx(l−q) (22)

E[e−2πik(εn−εm)δx ] =

(
ξ∑

l=−ξ

ple
−2πikδxl

)(
ξ∑

q=−ξ

pqe
2πikδxq

)
(23)

E[e−2πik(εn−εm)δx ] = |p̂k|2 (24)

E[|ŝk|2] =
N

γ
+ |p̂k|2 ·

N/γ−1∑

n=0
n"=m

N/γ−1∑

m=0

e−2πik(n−m)γδx (25)

E[|ŝk|2] =
N

γ
+ |p̂k|2



−N

γ
+

N/γ−1∑

n=0

N/γ−1∑

m=0

e−2πik(n−m)γδx



 (26)

E[|ŝk|2] =
N

γ

(
1− |p̂k|2

)
+ |p̂k|2 ·

N/γ−1∑

n=0

N/γ−1∑

m=0

e−2πik(n−m)γδx (27)

E[|ŝk|2] =
N

γ

(
1− |p̂k|2

)
+ |p̂k|2 ·

∣∣∣∣∣∣

N/γ−1∑

n=0

e−2πiknγδx

∣∣∣∣∣∣

2

(28)

E[|ŝk|2] =






(1− |p̂k|2) · N/γ + |p̂k|2 · (N/γ)2, k = 0, . . . , (γ−1)N
γ

(1− |p̂k|2) · N/γ, otherwise
(29)
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How irregular is irregular enough?

receiver

positions

receiver

positions

PMF

receiver

positions

PMF

receiver

positions

PMF
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Sparsity-promoting reconstruction

! regular sub-sampling below 
Nyquist rate

! irregular sub-sampling below 
Nyquist rate

min
x

‖x‖1 s.t. Ax = y

sub-sampling

factor

2

3
4

5
6

2

3
4

5

6
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Sparsity-promoting reconstruction

! regular sub-sampling below 
Nyquist rate

! optimal jittered sub-sampling 
below Nyquist rate

min
x

‖x‖1 s.t. Ax = y

sub-sampling

factor

2

3
4

5
6

2

3
4

5

6
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CRSI overview

! transform-based method

– uses curvelets to exploit strong geometrical structure of seismic data volume

! sparsity-promoting algorithm (see also FRSI, ALFT, etc.)

– linear forward model

– define f0 = CHx0

signal =

restriction

matrix

y

f0

ideal data

R

(P1)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖Wx‖1 s.t.

data misfit
︷ ︸︸ ︷

‖y−RCHx‖2 ≤ !

f̃= CH x̃

+ n noise
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Model
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Regular sub-sampling

Seismic Laboratory for Imaging and Modeling

CRSI from regular sub-sampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 6.92 dB
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Optimal jittered sub-sampling

Seismic Laboratory for Imaging and Modeling

CRSI from optimal jittered sub-sampling

SNR = 10.42 dB
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Data

nominal spatial sampling ~ 112.5m
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CRSI

spatial sampling ~ 12.5m
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Conclusions

! sparsity is a powerful property that offers striking benefits for signal 
reconstruction BUT it is not enough

! in the sparse domain, interpolation is a denoising problem

– remove indeterminacy noise

– noise level & characteristics depends upon sub-sampling

! irregular & jittered sub-samplings turn aliasing into easy-to-remove 
noise

– aliases look like signal => sparsity-promoting methods fail
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