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* CRSI: Curvelet Reconstruction with Sparsity-promoting Inversion

Interpolated result
using CRSI*
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Experiment

Interpolated result
using CRSI
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® setting signal ideal data
— Xois of length N
— Xo has k<<N nonzero entries \ /\ A\

— ideal data fo= FHxo
— R sub-samples fo either regularly or irregularly
— signal y is a length n<<N

vV

Fourier
/ transform
signal —|y|= A with A :=RF"
restriction
Fourier
coefficients
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Motivation

® observations
1. missing traces at irregular locations along source and receiver coordinates
« reconstruction using CRSI: 16.92 dB
2. missing receiver at irregular locations along receiver coordinate
« reconstruction using CRSI: 9.26 dB

® questions

— what makes (1) more favorable for reconstruction using CRSI (and possibly other
methods) than (2)?

— from the acquisition geometry, can we predict the success of CRSI (and possibly
other methods)?

— can we design CRSI- (and possibly other methods) friendly acquisition
geometries if we know we need to interpolate before further processing?
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Sparsity-promoting reconstruction

min|x|; st. Ax=y
X
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Explanation

® sub-sampling below Nyquist rate introduces error due to
— indeterminacy
- AFA#]

® indeterminacy noise: A#Axo-Bxo = AHy-Rxo
— noise characteristics depends upon R
— noise level depends upon under-determinacy of the system, i.e. shape of A

® sparsity-promoting methods
— assume
« solution sparse

. . . not true for regular
« indeterminacy noise non-sparse «~— - ¢

sub-sampling!!!

How irregular is irregular enough?

® fine sampling
z, =n-6, for ne[0,N—1]
N-1

s(z) = Z 0z —x,) =s

n=0

o2 N2 k=0
[sk]* =

0, otherwise
® coarse sampling
a,=n-A, for nel0,N/y—1] with A, =4,

® jittered coarse sampling
Ty =n-Dp + 6,0, for nel0,N/y-1]

| (1= [Pel*) - N/y + [Bel* - (N/7)%,
Efls[*] =

(1= [Bxf*) - N/, otherwise

Sparsity-promoting reconstruction

min|[x|; st. Ax=y
X
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Indeterminacy noise

® dense sampling R=1)
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How irregular is irregular enough?
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Sparsity-promoting reconstruction

min|x|; st. Ax=y
X
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CRSI overview

® transform-based method

— uses curvelets to exploit strong geometrical structure of seismic data volume
® sparsity-promoting algorithm (see also FRSI, ALFT, etc.)

— linear forward model

signal y|= R + noise
f fo
restriction .
matrix «—ideal data
— define fo = Ctxo
sparsity constraint data misfit
H
X=arg min|Wx|; st. |ly—RCx|, <e¢
(P) X
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Regular sub-sampling
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Optimal jittered sub-sampling
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CRSI from regular sub-sampling
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CRSI from optimal jittered sub-sampling
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Data
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Conclusions

CRSI

spatial sampling ~ 12.5m

2000 3000 4000 2000 3000 4000

reconstruction BUT it is not enough

® in the sparse domain, interpolation is a denoising problem
— remove indeterminacy noise
— noise level & characteristics depends upon sub-sampling

noise
— aliases look like signal => sparsity-promoting methods fail
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® sparsity is a powerful property that offers striking benefits for signal

® jrregular & jittered sub-samplings turn aliasing into easy-to-remove
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