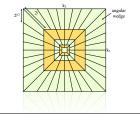


Motivation

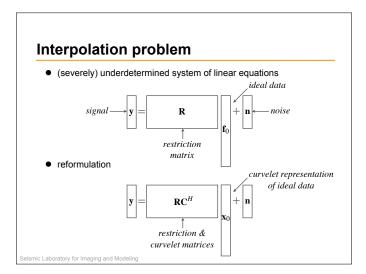
- field data are often spatially sparse and/or irregular
 - spatial aliasing degrades
 - stack
 - · multiple prediction & attenuation
 - acquisition irregularities
 - · not well handled by most commonly-used multi-trace algorithms
 - · turn into image artifacts
- seismic data regularization
 - necessary for many applications
 - impacts
 - quality of 3D algorithms
 - · acquisition decision & survey costs

Seismic Laboratory for Imaging and Modeling

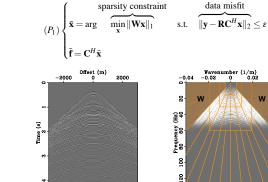
Approach


- view seismic data from a geometrical perspective
 - high dimensional (typ. 5-D for a 3-D survey)
 - strong geometrical structure (spatio-temporal sampling of reflected wavefield)

Seismic Laboratory for Imaging and Modeling

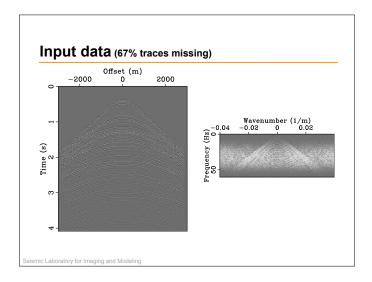

Representations for seismic data

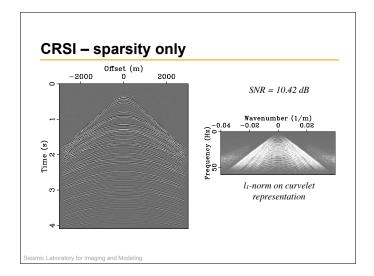
Transform	Underlying assumption
FK	plane waves
linear/parabolic Radon transform	linear/parabolic events
wavelet transform	point-like events (1D singularities)
curvelet transform	curve-like events (2D singularities)

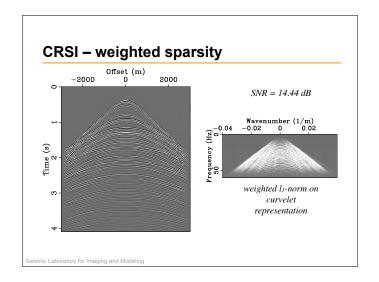

- curvelet transform
 - multi-scale: tiling of the FK domain into dyadic coronae
 - multi-directional: coronae subpartitioned into angular wedges, # of angle doubles every other scale
 - anisotropic: parabolic scaling principle
 - local

Seismic Laboratory for Imaging and Modelin

Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI)




Data

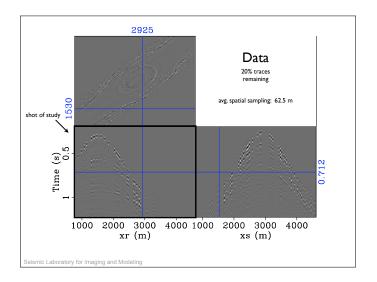

Successes

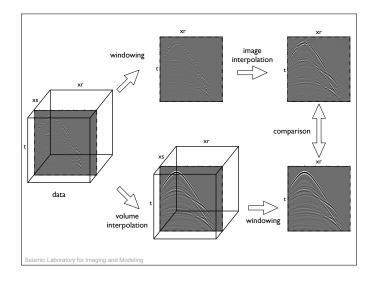
- going from I₁-norm to weighted I₁-norm to impose maximum dip constraint in the curvelet domain
 - equivalent to a minimum velocity constraint

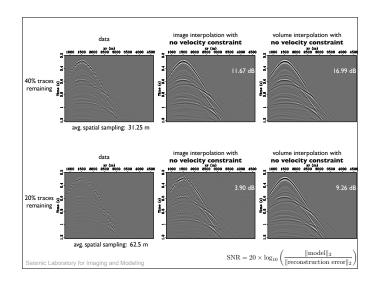
Seismic Laboratory for Imaging and Modeling

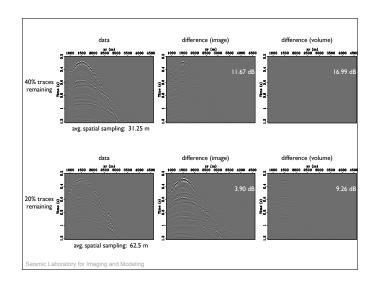
Successes

- going from I₁-norm to weighted I₁-norm to impose maximum dip constraint in the curvelet domain
 - equivalent to a minimum velocity constraint
- increasing dimensionality of the problem
 - higher-dimensional structure exploited
 - significant uplift from image to volume interpolation

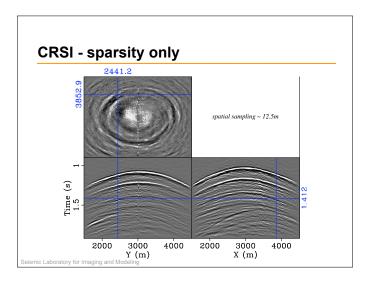

2925


Model


spatial sampling: 12.5 m


Selismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling



Successes

- going from I₁-norm to weighted I₁-norm to impose maximum dip constraint in the curvelet domain
 - equivalent to a minimum velocity constraint
- increasing dimensionality of the problem
 - higher-dimensional structure exploited
 - significant uplift from image to volume interpolation
- interpolating irregularly sub-sampled data
 - Wednesday, June 13th
 - Seismic Signal Processing and Regularisation (Lecture room 2, 13:30)

Seismic Laboratory for Imaging and Modeling

Challenges

- interpolating regularly sub-sampled data
 - Wednesday, June 13th
 - Seismic Signal Processing and Regularisation (Lecture room 2, 13:30)

mic Laboratory for Imaging and Modeling

Challenges

- interpolating regularly sub-sampled data
 - Wednesday, June 13th
 - Seismic Signal Processing and Regularisation (Lecture room 2, 13:30)
- efficiently solving large-scale sparsity-promoting optimization
 - opportunistic/greedy solvers
 - (Stagewise) Orthogonal Matching Pursuit (St)OMP
 - Heavy Hitters on Steroid HHS
 - etc.
 - general solvers
 - Primal-Dual Barrier Method for Convex Objectives PDCO
 - Gradient Projection for Sparse Reconstruction GPSR
 - Conjugate Gradient on the Normal Equation + Iterative Re-weighted Least-
 - Iterative Thresholding + Cooling ITC

Conclusions

- CRSI
 - uses curvelets to exploit the very strong geometrical structure of seismic data
 - performs best for
 - · high dimensional data
 - · irregularly sub-sampled data
- main challenge when using sparsity as a prior is the solver

Acknowledgments

- SLIM team members
- E. Candès, L. Demanet, and L. Ying for CurveLab
- S. Fomel and the developers of Madagascar

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).