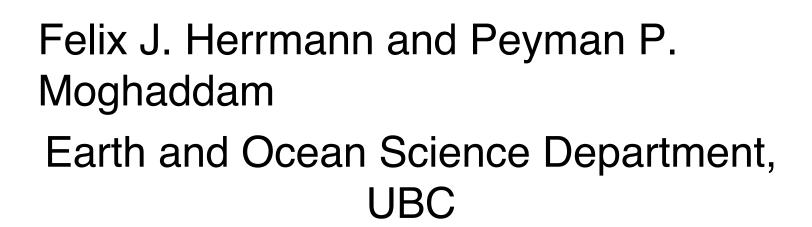


Curvelet-domain least-squares migration with sparseness constraints



Outline

- 1) Objectives
- 2) Related Works
- 3) Problem Formulations
- 4) Results and comparisons
- 5) Conclusion

Objectives

- To introduce the Curvelet transform as a powerful tool in seismology
- To enhance the seismic images resulted from the migration process
- To introduce a new framework for migration as a geophysical inverse problem
- To find a significantly enhanced solution in presence of large amount of noise.

Related Works

- Candes (2002), Edge preserving image reconstruction using Curvelet transform.
- Candes (2003), Curvelet and Fourier Integral Operators.
- Rickett (2003), Illumination-based migration
- Trad (2003), Sparse Radon Transform
- Claerbout (1994), Spectral Preconditioning

Problem Formulation

The linear system of equation needs to be solved is:

$$d = Km + n$$

- Conventionally there are two approaches for solving above equation:
- 1) Iterative solver (GMRES, PCG,...)
- 2) Approximating the normal operator:

$$\hat{m} = (approx.(K^*K))^{-1}K^*d$$

Inversion

A conventional form of inversion is:

$$\hat{m}$$
: $\min_{m} \frac{1}{2} ||d - Km||_{2}^{2} + \lambda J(m)$

This can be solved using following iterative solver:

$$\delta m = (K^*K + A)^{-1}(K^*d + B)$$

Where:

$$A = \nabla^2 \lambda J(m)$$
 and $B = \nabla \lambda J(m)$

Basic Questions

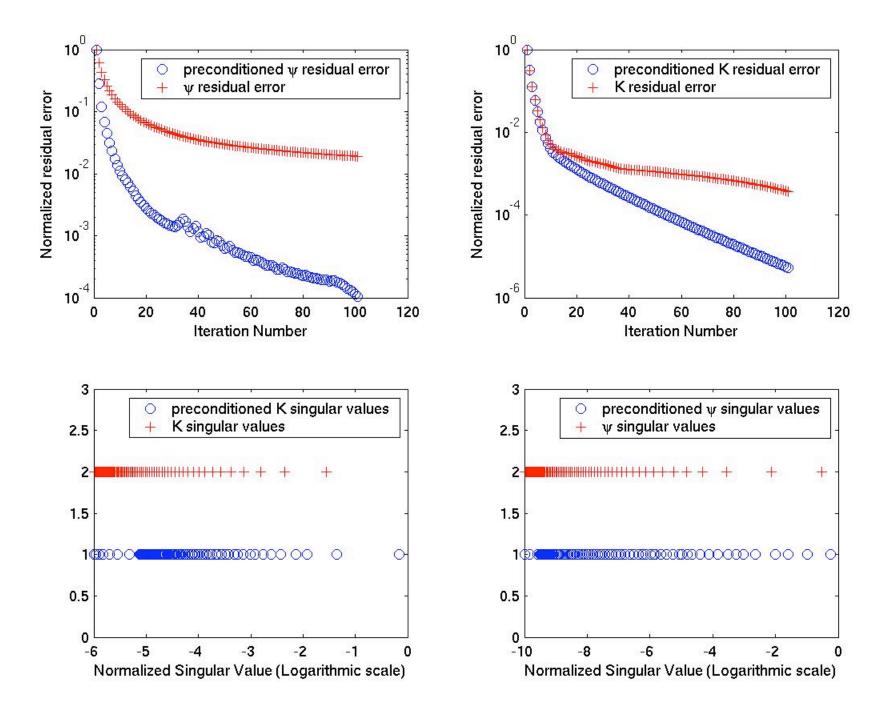
- How can we improve the structure of K?
- Which type of norm is better to use?
- How can we incorporate the noise information in solution as a typical inverse problem?
- Which solver is better to be used and how can we guarantee its convergence?

Preconditioning using Curvelet Transform

We precondition migration and normal operator as:

$$K^* \Rightarrow \tilde{K}^* = CK^*C^* \qquad \psi = K^*K \Rightarrow \tilde{\psi} = CK^*KC^*$$

- The sparsity of both migration and normal operator increase after preconditioning.
- For preconditioned operator the singular values shifted away from zero and have tendency to concentrate in a point in spite of operator itself.
- The convergence rate for preconditioned normal operator faster than normal operator itself.



Preconditioned System

We map the original system of equations to preconditioned as:

$$CK^*d = CK^*KC^*Cm + CK^*n$$

Or:

$$\tilde{u} = \tilde{\psi}\tilde{m} + \tilde{n}$$

Maximum Likelihood Solution:

$$\tilde{\psi}\tilde{m}_{ML}=\tilde{u}$$

- In ML solution priori knowledge about the model is ignored
- We are looking for a solution which contains priori information about model

First Guess!

Hard-Thresholding of migrated noisy data in Curvelet domain:

$$\hat{\tilde{u}} = \theta_T(\tilde{u}) = \theta_T(CK^*d)$$

Where: $T = \lambda \Gamma$ and $\Gamma = \sqrt{diag(\tilde{\psi})}$

- Curvelet domain Hard-Thresholding is a minimax denoising approach
- This process keeps only the events which are lying on the curves as a priori information

Constrained Optimization

Optimization Problem (A Setting):

$$\hat{m}: \min_{m} J(m) \ s.t. \left| \tilde{\psi} \tilde{m} - \hat{\tilde{u}} \right|_{u} \le e_{\mu}$$

 \hat{m} : min J(m) s.t. $\left| \tilde{\psi} \tilde{m} - \hat{\tilde{u}} \right|_{\mu} \le e_{\mu}$ Or approximately (B Setting):

$$\hat{m}$$
: $\min_{m} J(m)$ s.t. $\left| diag(\tilde{\psi})\tilde{m} - \hat{\tilde{u}} \right|_{\mu} \le e_{\mu}$

and tolerance defined by:

$$e_{\mu} = \begin{cases} \Gamma_{\mu} & \tilde{u}_{\mu} \ge \lambda \Gamma_{\mu} \\ \lambda \Gamma_{\mu} & \tilde{u}_{\mu} \le \lambda \Gamma_{\mu} \end{cases}$$

- with e_{μ} threshold and noise-dependent tolerance on Curvelet coefficients
- with λ define the control parameter

Solution of Constrained Optimization

- An augmented Lagrangian method is implemented to solve optimization problem
- L1 norm is employed for J(m)
- For each subproblem a Steepest Decent method is employed
- Initial value for model is the solution of all-constraints-zero, which is the minimax denoising solution

Algorithm

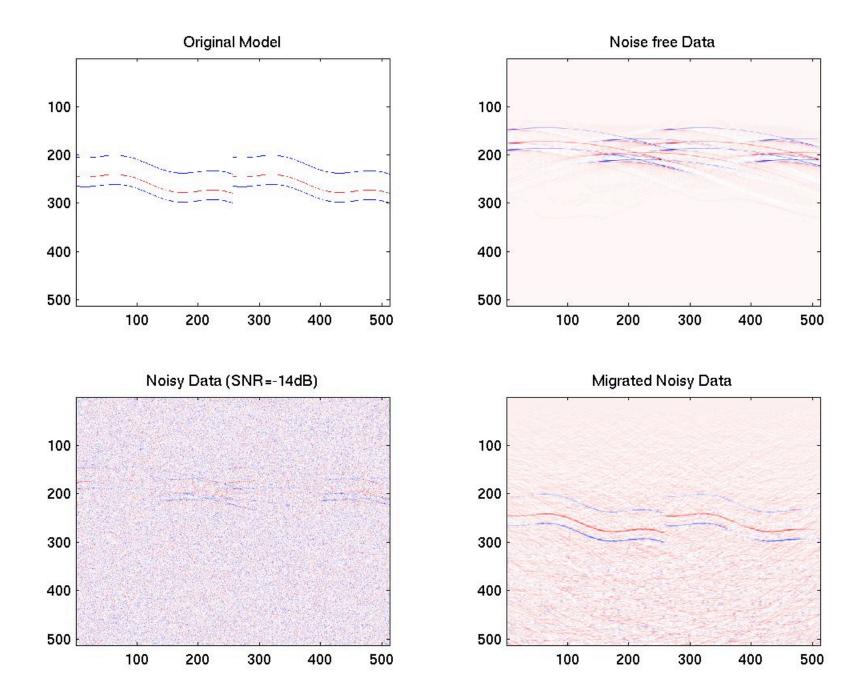
$$k = 0$$

 $m_0, \Lambda_0^{\pm}, \mu_0$ % Initial Values

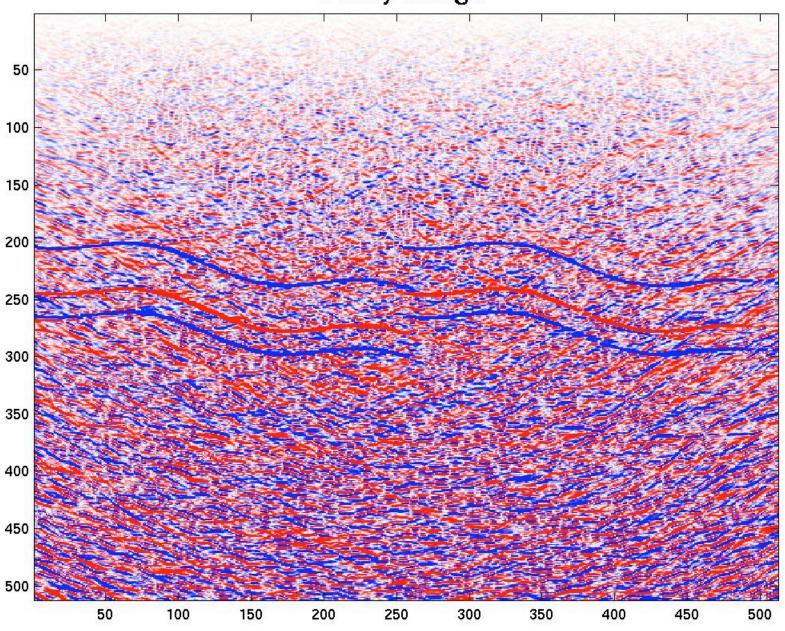
% Sub Optimum Loop

$$g_k = \nabla_m \ell_A(m_k, \Lambda_k^{\pm}; \mu_k)$$
 % Gradient
$$\tau_k = \arg \left[\min_{\tau > 0} \ \ell_A(m_k - \tau g_k, \Lambda_k^{\pm}; \mu_k) \right]$$
 % Line Search
$$m_{k+1} = m_k - \tau_k g_k$$
 % Update m

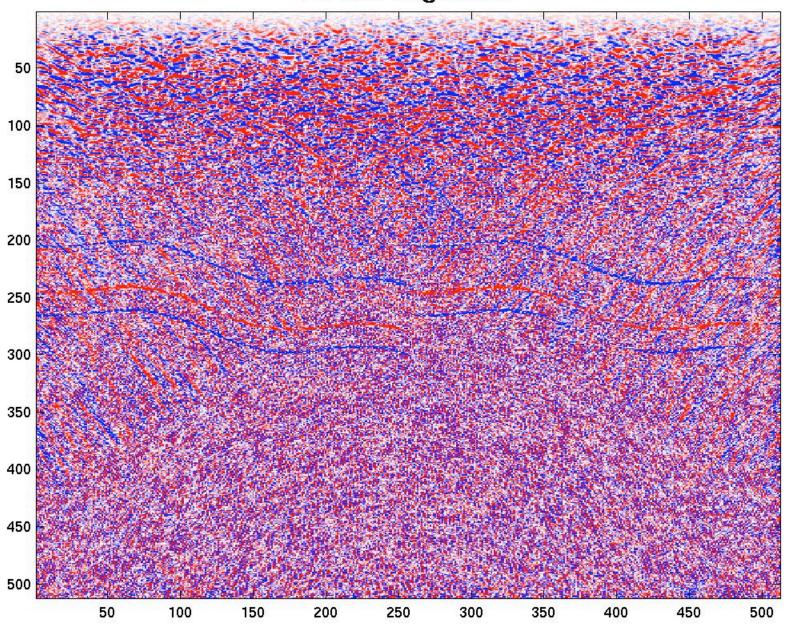
% Update Λ and μ



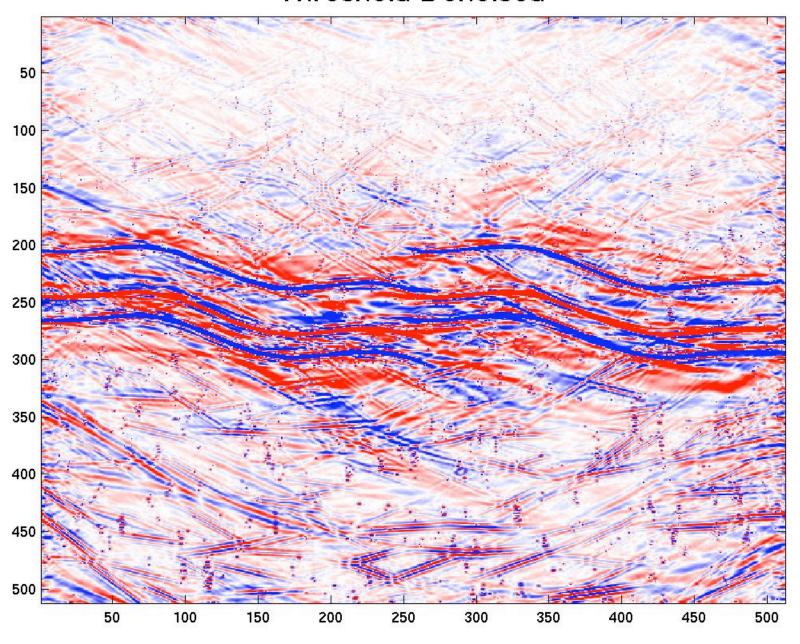
Noisy Image



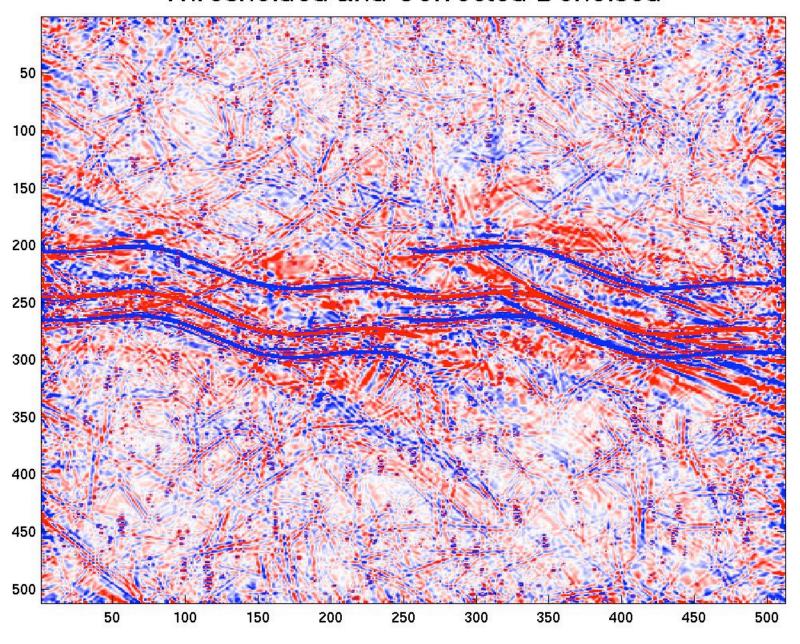
LSQR Migration



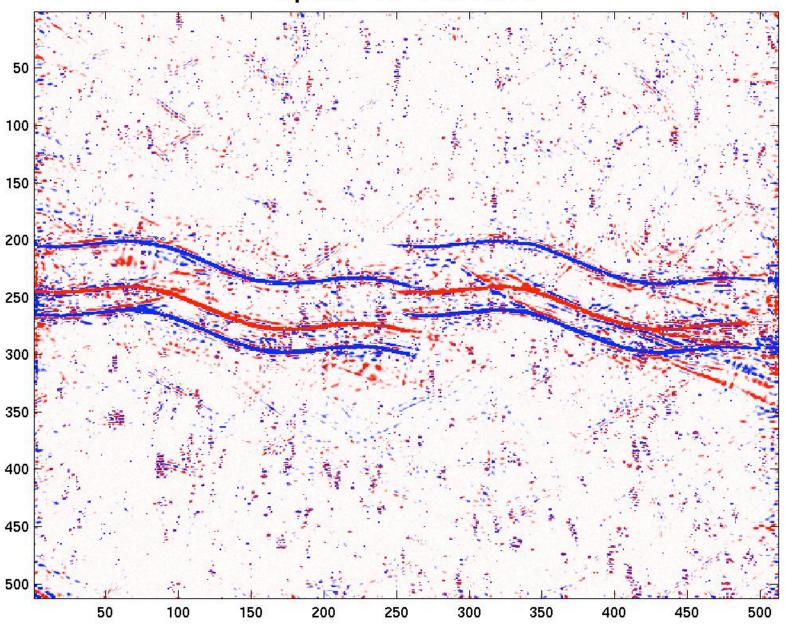
Threshold Denoised



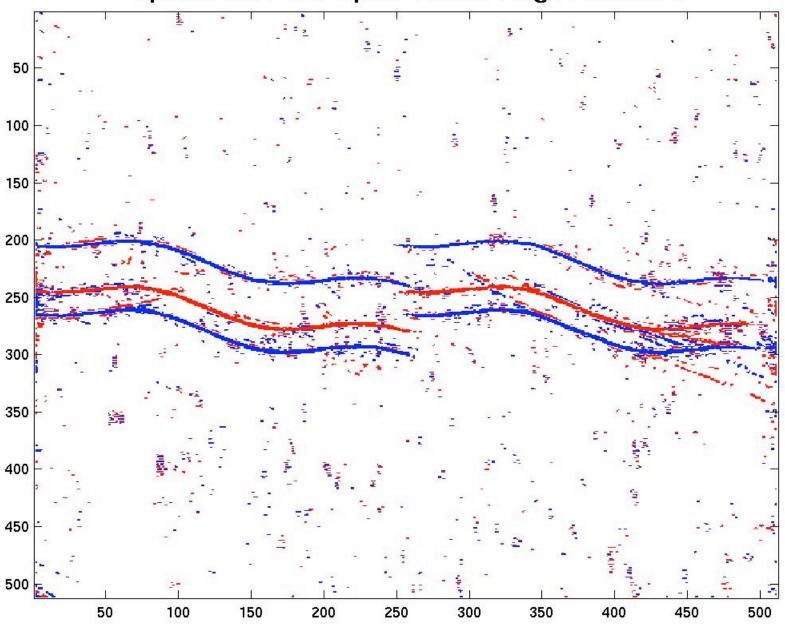
Thresholded and Corrected Denoised



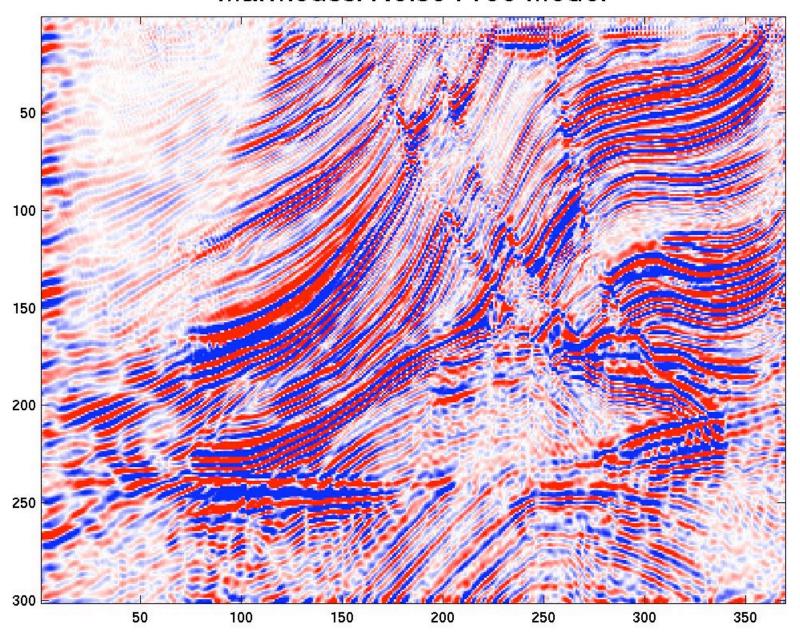
Optimized Denoised



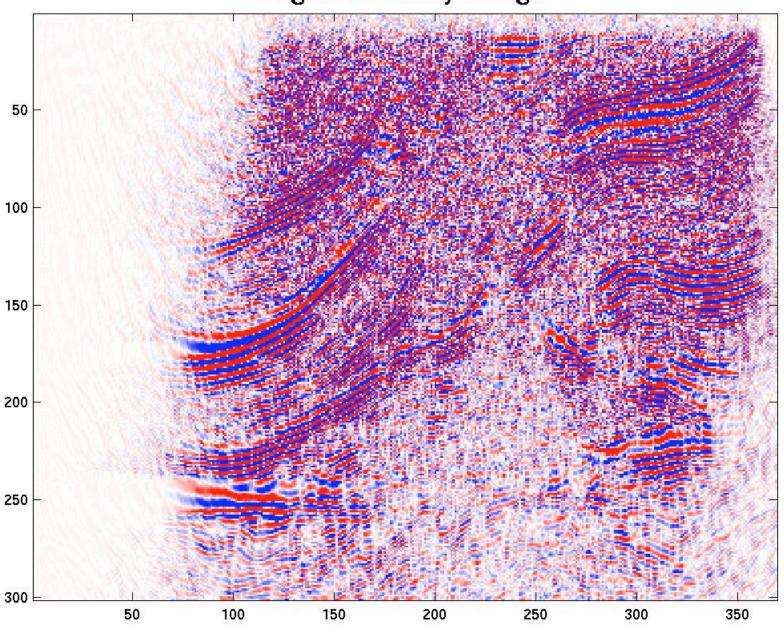
Optimized Plus Spike Removing Denoised



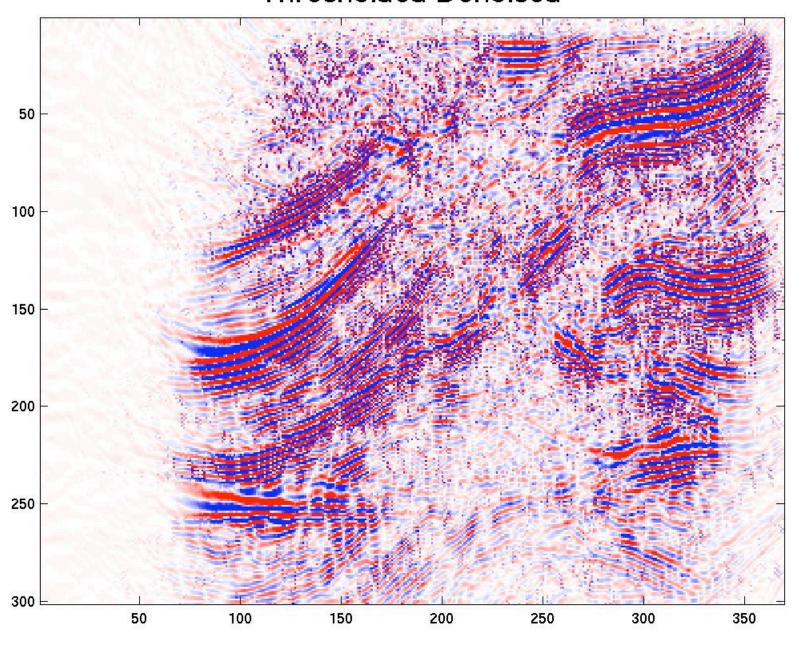
Marmoussi Noise Free Model



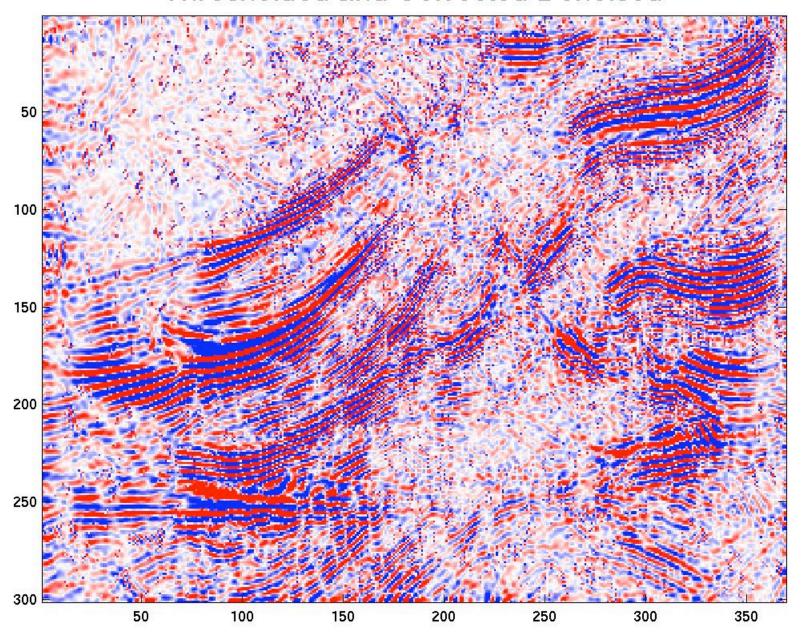
Migrated Noisy Image



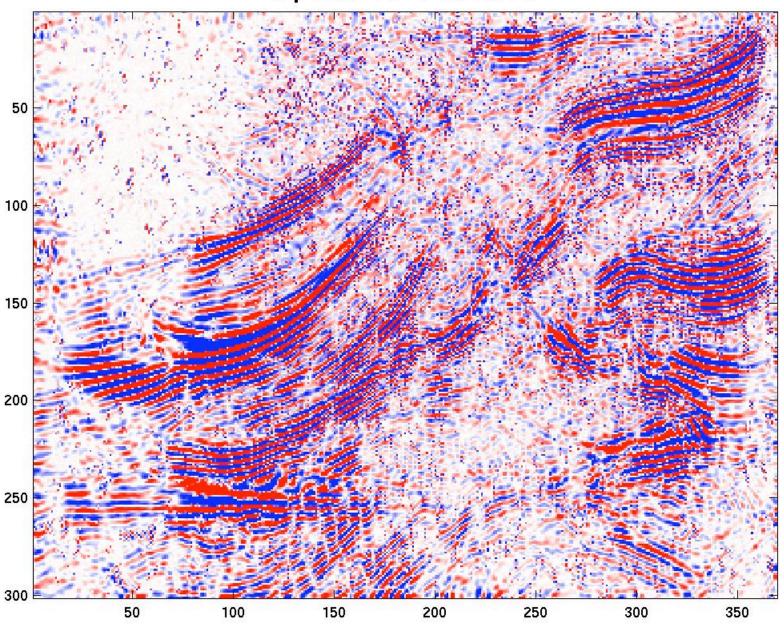
Thresholded Denoised

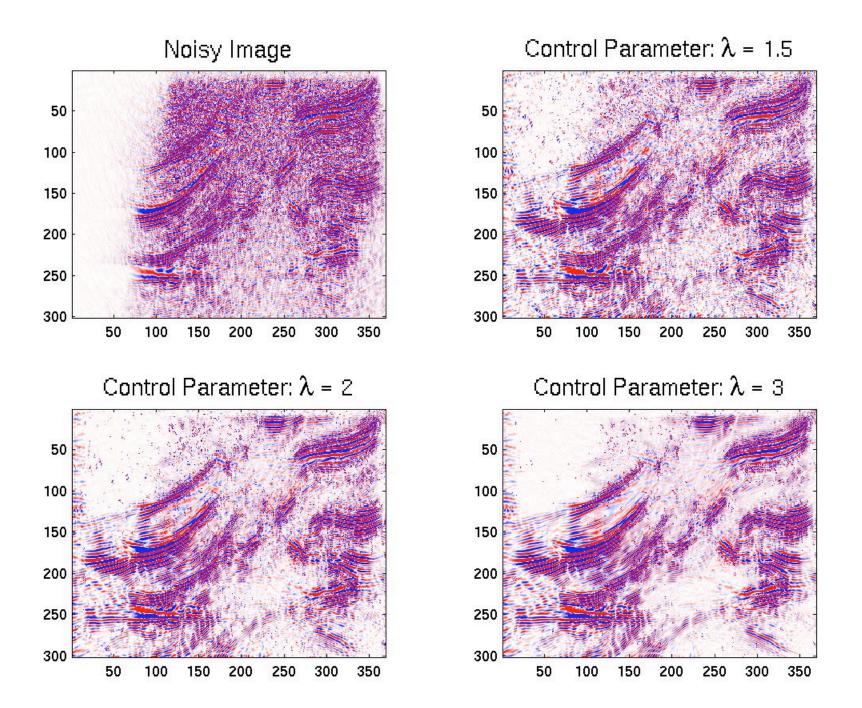


Thresholded and Corrected Denoised



Optimized Denoised





Conclusion

- Preconditioning using Curvelet Transform introduced and it shows enhancement in the characteristics of migration and normal operators.
- A new constrained optimization is constructed by imposing sparsity on the model subject to bounded constraints defined by noise level
- An augmented-Lagrangian method to solve the optimization problem is implemented
- Results show Significant improvement rather than Least Square migration