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Motivation
 Seismic data processing, modeling & inversion:

– firmly rooted in Nyquist’s sampling paradigm for (modeled) wavefields 
– too pessimistic for signals with structure
– existence of sparsifying transforms (e.g. curvelets)

 Major impediment: “curse of dimensionality”
– acquisition >> processing & inversion >> modeling  costs are proportional to the size of 

data and image space

 Solution strategy:
– leverage new paradigm of compressive sensing (CS) 

• identify simultaneous acquisition as CS
• reduce acquisition, simulation, and inversion costs by randomization and 

deliberate subsampling
– recovery from sample rates ≈ computational cost proportional to transform-domain 

sparsity of data or model
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Today’s agenda
 Brief introduction to compressive sensing

– sparsifying transforms
– randomized = incoherent downsampling
– nonlinear recovery by sparsity promotion

 Sparsity-promoting recovery from randomized simultaneous 
measurements

– missing separated shots versus missing simultaneous shots
– recovery from simultaneous data with and without primary prediction (CSed EPSI)

 Joint sparsity-promoting recovery from randomized image volumes
– leverage focusing
– reduction of model-space wavefields
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Problem statement
Consider the following (severely) underdetermined system of linear 
equations

Is it possible to recover x0 accurately from y?

unknown

data
(measurements
/observations
/simulations)

x0

Ay
=
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Perfect recovery

 conditions
– A obeys the uniform uncertainty principle
– randomized A <=> mutual incoherence
– x0 is sufficiently sparse

 nonlinear recovery procedure:

 performance
– S-sparse vectors recovered from roughly on the order of S measurements (to within 

constant and log factors)

min
x

‖x‖1

︸ ︷︷ ︸

sparsity

s.t. Ax = y
︸ ︷︷ ︸

perfect reconstruction

x0

Ay
=

[Candès et al.‘06]
[Donoho‘06]
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NAIVE sparsity-promoting recovery

inverse
Fourier

transform

detection +
data-consistent

amplitude recovery

Fourier
transform
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=detection
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Extensions
 Use CS principles to select physically appropriate

– measurement basis M = random phase encoder
– randomized restriction matrix R = downsampler
– sparsifying transform S (e.g. curvelets)
– driven by signal type, physics, and type of acquisition (e.g. fMRI vs seismic)

 Sparse signal representation:

with

Selection is aimed at turning aliases/coherent subsampling artifacts 
into harmless noise ...

y = Ax0

A = RMSH

restriction
matrix

measurement
matrix

sparsity
matrix

}“blending”
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Recovery from randomized 
simultaneous measurements
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Relation to existing work
 Simultaneous & continuous acquisition:

– A new look at marine simultaneous sources by C. Beasley, ‘08
– Simultaneous Sourcing without Compromise by R. Neelamani & C.E. Krohn, ’08.
– Changing the mindset in seismic data acquisition by A. Berkout, ’08
– Independent simultaneous sweeping - A method to increase the productivity of land 

seismic crews by D. Howe, M. Foster, T. Allen, B. Taylor, and I. Jack, ‘08

 Primary prediction through wavefield inversion:
– Elimination of free-surface related multiples without need of the source wavelet by L. 

Amundsen, ‘01
– Primary estimation by sparse inversion and its application to near offset 

reconstruction by G. van Groenenstijn and D. Verschuur, ’09
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Two questions
 Question I: What is better? Having missing single-source or 

missing randomized simultaneous experiments?

 Comparison between different undersampling strategies for source 
experiments:

– Deterministic missing shot positions
– Randomized jittered shot positions
– Randomized simultaneous shots

 Question II: What is better? First recover and then process or 
process directly in the compressed domain?

 Example: randomized primary prediction with EPSI
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Model
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Interpolate

 
50% subsampled shot
from regularly missing

shot positions
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Interpolate

SNR = 8.9 dB
50% subsampled shot
from regularly missing

shot positions



Seismic Laboratory for Imaging and Modeling

Interpolate

 
50% subsampled shot

from randomized 
jittered shots
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Interpolate

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots



Simultaneous & continuous sources
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 Linearly ramping seismic sweep, 5 to 110 Hz
 Simultaneous source at all positions, each randomly phase encoded

Randomized simultaneous sweep signals
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Demultiplex

 
50% subsampled shots

from randomized
simultaneous shots
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Demultiplex

SNR = 16.1 dB
50% subsampled shot

from randomized
simultaneous shots
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total data
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Primary-prediction from 

randomized
compressive data
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Recovered total data 

from randomized
compressive data
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Predicted primaries from

recovered total data
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Observations
 Incoherent randomized sampling crucial for creating favorable 

recovery conditions for sparsity-promoting recovery from 
“incomplete” data

– depends on the choice of downsampled randomization RM
– simultaneous acquisition is better for reconstruction

 Recovery greatly improves when estimating primaries
– deconvolved primaries are sparser than multiples
– multiples are mapped to primaries
– example of randomized wavefield inversion with reduced sizes

 Push recovery down into processing flow, i.e., compressive 
processing & imaging

 Extend these ideas to imaging = model-space compressive sampling 



Felix J. Herrmann, Compressive imaging by wavefield 
inversion with group sparsity. Submitted abstract, SEG, 
2009, Houston. Technical Report TR-2009-01 
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Recovery from randomized 
image volumes
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Strategy
 Leverage CS towards solutions of wave simulation & imaging 

problems

 Subsample solution deliberately, followed by CS recovery

 Speedup if recovery costs < gain in reduced system size
– computation
– storage

 Examples:
– compressed imaging by CS sampling in the model space
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Relation to existing work
 Simultaneous & continuous acquisition:

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and 
Sparsity by N. Neelamani and C. Krohn and  J. Krebs and M. Deffenbaugh and J. 
Romberg, ‘08

 Simultaneous simulations & migration:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

 Imaging:
– How to choose a subset of frequencies in frequency-domain finite-difference 

migration by Mulder & Plessix, ’04.
– Efficient waveform inversion and imaging: A strategy for selecting temporal 

frequencies by Sirque and Pratt, ’04.

 Full-waveform inversion:
– 3D prestack plane-wave, full-waveform inversion by Vigh and Starr, ‘08

 Wavefield extrapolation:
– Compressed wavefield extrapolation by T. Lin and F.J.H, ’07
– Compressive wave computations by L. Demanet (SIA ’08 MS79 & Preprint)
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Essentials of seismic inversion

discretized PDE
(Helmholtz)

variables
(Earth)

solution
(seismic wavefield)

sources

adjoint solution
(seismic wavefield)

residue 
(data)

Simulation:

image
volume

multi-D 
‘cross-correlation’Imaging:

H[m]U = Q and H∗[m]V = ∆R

δ̂I(xs, xr,ω) = (U ◦ V∗)

δm(xs = xr, t = 0) =
∑

ω

ω2diag{δ̂I}
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Essentials of seismic inversion

– High-dimensional solutions are extremely expensive to compute
– Inversion (e.g. via Gauss-Newton) requires multiple solves
– Number of blocks in H and number of rhs determine simulation & acquisition costs

discretized PDE
(Helmholtz)

variables
(Earth)

solution
(seismic wavefield)

sources

adjoint solution
(seismic wavefield)

residue 
(data)

Simulation:

image
volume

multi-D 
‘cross-correlation’Imaging:

H[m]U = Q and H∗[m]V = ∆R

δ̂I(xs, xr,ω) = (U ◦ V∗)

δm(xs = xr, t = 0) =
∑

ω

ω2diag{δ̂I}
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Essentials of seismic inversion

– High-dimensional solutions are extremely expensive to compute
– Inversion (e.g. via Gauss-Newton) requires multiple solves
– Number of blocks in H and number of rhs determine simulation & acquisition costs

discretized PDE
(Helmholtz)

variables
(Earth)

solution
(seismic wavefield)

sources

adjoint solution
(seismic wavefield)

residue 
(data)

Simulation:

image
volume

multi-D 
‘cross-correlation’Imaging:

– Explicit matrix evaluations part of prestack migration are expensive, require lots of memory
– Improve recovery by formulating imaging as a CSed inversion problem where

– off diagonals  are penalized (impose focusing)
– image recovered by wavefield inversion by joint sparsity promotion

H[m]U = Q and H∗[m]V = ∆R

δ̂I(xs, xr,ω) = (U ◦ V∗)

δm(xs = xr, t = 0) =
∑

ω

ω2diag{δ̂I}
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Imaging by wavefield correlations
Creation of image volumes involves 

with

and

– Extremely large problem size
– Gradient updates do not account for the Hessian
– Recast imaging into a multi-D deconvolution problem supplemented by focussing
– Penalize off-diagonals as part of this focussing procedure

δI(xs, xr, t) = F∗
t

∑

ω

ω2 (U ◦ V∗)

(U ◦ V∗) =




Ū1

. . .
Ūnf








VT

1
...

VT
nf





Uf =
[
u1 · · · unf

]
and Vf =

[
v1 · · · vnf

]
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Wavefield focusing
Define linear mid-point/offset coordinate transformation

with

Penalize defocusing via minimizing [Symes, ‘09]

an annihilator that increasingly penalizes non-zero offsets.

Remark: conventional imaging principle

δI′(m,h, t) = T∆h
(xs,xr) "→(m,h)δI(xs, xr, t),

m =
1
2
(xs + xr) and h =

1
2
(xs − xr)

‖PhI′(·, h)‖2 with Ph· = h·

δm = δI′(·, h = 0, t = 0)
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Wavefield inversion with focusing 
Form augmented linear system

with the sparsifying transform (curvelets/wavelets along depth-midpoint 
slices)

and        source/receiver-midpoint offset mapping supplemented with 
the imaging condition for t=0.

Formulation by wavefield inversion is a two-edged sword:
• Correct for amplitudes by wavefield inversion
• Reduce system size by compressive sampling ...

focuses

T0

S · := vec−1 ((Id⊗C)T0) vec (·) ·

(U∗ ◦ S∗X) ≈ V∗

PhX ≈ 0
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System-size reduction by CS
For each angular frequency, randomly subsample with CS matrix

with 

Model-space CS subsampling along source, receiver, and depth 
coordinates.

RM :=

sub sampler︷ ︸︸ ︷



Rσ
1 ⊗Rρ

1 ⊗Rζ
1

...
Rσ

n′
f
⊗Rρ

n′
f
⊗Rζ

n′
f





random phase encoder︷ ︸︸ ︷(
F∗

3

(
eîθ

))
F3 ,

n′
f × n′

σ × n′
ρ × n′

ζ " nf × ns × nr × nz

θw = Uniform([0, 2π])
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Compressive wavefield inversion with focussing
Compressively sample augmented system

                                                                   or 

Recover focused solution by mixed (1,2)-norm minimization 

with 

and

AX ≈ B
RM (U∗ ◦ S∗X) ≈ RMVT

PhX ≈ 0

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

‖X‖1,2 :=
∑

i∈rows(X)

‖rowi(X)∗‖2

‖X‖2,2 :=




∑

i∈rows(X)

‖rowi(X)∗‖2
2





1
2

.
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Stylized example

background velocity model perturbation
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Stylized example
migrated CS image

20 40 60 80 100 120
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inverted CS image
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plain migration wavefield inversion
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Stylized example

Recovery from 64-fold subsampling ...

migrated CS image
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inverted CS image

20 40 60 80 100 120

20

40

60

80

100

120

plain migration wavefield inversion
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Stylized example
migrated CS cigs
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inverted CS cigs
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correlation based wavefield inversion
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Stylized example
migrated CS cigs
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inverted CS cigs
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correlation based wavefield inversion

Common-image gathers are focussed.
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Observations
 CS provides a new linear sampling paradigm based on randomization

– reduces data volumes and hence acquisition, processing & inversion costs
– linearity allows for compressive processing & inversion

 CS leads to 
– “acquisition” of smaller data volumes that carry the same information or
– to improved inferences from data using the same resources
– concrete implementations

 CS combined with physics improved recovery by using
– compressively-sampled multiples
– focusing in the image space 

 Bottom line: acquisition & processing & inversion costs are no 
longer determined by the size of the discretization but by transform-
domain sparsity of the solution ...
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