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General trend

(Seismic) data sets are becoming larger and larger

Demand for more information to be inferred from data

Data collection is expensive

Distilling information is time consuming

Industry ripe for recent developments in applied
harmonic analysis and information theory




Today’s topics

Problems in seismic imaging
® acquisition, processing & imaging costs

Compressive sampling in exploration seismology

= wavefield recovery from jittered sampling
= compressive wavefield extrapolation
= road ahead: compressive computations

DNOISE: an academic-industry-NSERC partnership
= truly interdisciplinary academic collaboration
= knowledge dissemination




Seismic data acquisition
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Exploration seismology

(~ (®

create images of the subsurface

need for higher resolution/deeper

clutter and data incompleteness

image repeatability <=> monitoring




Today’s challenges

Seismic data volumes are
= extremely large (5-D, tera-peta bytes)
= incomplete and noisy
= operators expensive to apply
Physics & mathematics not fully understood
= |inearization
= PDE constrained optimization is remote
Infusion of math has been a bumpy road
= inward looking
= after “the fact” proofs
® really understand problems that can not be tailored
= industry wants results not proofs ...




IMA,IPAM
BIRS,AIM

Michael
Friedlander
CS

Ozgur Yilmaz Felix J. Herrmann
Math SLIM

DNOISE

Industry

VAVESA SO .

Seismic Laboratory for
Imaging and Modeling



My research program

Successfully leverage recent developments in
applied computational harmonic analysis and
information theory

= multi-directional transforms such as curvelets
new construction that did not exist in seismology

= theory of compressive sampling
existed before BUT without proof & (fundamental) understanding

= theory of pseudodifferential operators
“invented” independently without proofs

Combining these developments underlies the
success of my research program




Joint WOrk wi lHies Aennenren

“Curvelet-based seismic data processing: a multiscale and nonlinear approach” to
appear in Geophysics, "Non-parametric seismic data recovery with curvelet frames” &
“Simply denoise: wavefield reconstruction via

jittered undersampling”



Model

spatial sampling: 12.5 m
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Data

20% traces
remaining

avg. spatial sampling: 62.5 m
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* CRSI: Curvelet Reconstruction with Sparsity-promoting Inversion

29O

Interpolated result
using CRSI*

SNR = 16.92 dB
spatial sampling: 12.5 m
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Difference
SNR = 16.92 dB

spatial sampling: 12.5 m
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Problem statement

Consider the following (severely) underdetermined system of linear
equations

observations)

data
(measurements/ ~—> =
y

X0

%

_ _ unknown
Is it possible to recover xo accurately from y?




Perfect recovery

y A
® conditions

— A obeys a type of uncertainty principle
— Xo is sufficiently sparse

® procedure

min ||x||;  s.t. Ax =y
X N——
perfect reconstruction

\ .

sparsit
® performance Y

— S-sparse vectors recovered from roughly on the order of S measurements (to within constant and
log factors)

Candes, E., J. RomBerg, and T. Tao, 2006b, Stable signal recovery from in-
complete and inaccurate measurements: Communications On Pure and
Applied Mathematics, 59, 1207-1223.




Nonlinear wavefield sampling

® sparsifying transform

— typically localized in the time-space domain to handle the complexity of seismic data
— preserves edges/wavefronts

® advantageous coarse sampling
— generates incoherent random undersampling “noise” in the sparsifying domain
— does not create large gaps

» because of the limited spatiotemporal extend of transform elements used for the
reconstruction

® sparsity-promoting solver
- requires few matrix-vector multiplications
- scales to number of unknowns exceeding 230 (“small”)




Representations for seismic data

Transform

Underlying assumption

FK

plane waves

linear/parabolic Radon transform

linear/parabolic events

wavelet transform

point-like events (1D singularities)

curvelet transform

curve-like events (2D singularities)

® curvelet transform

— multi-scale: tiling of the FK domain into

dyadic coronae

multi-directional: coronae sub-partitioned
into angular wedges, # of angle doubles

every other scale

anisotropic: parabolic scaling principle

local

2j/2I

angular

L wedge
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CRSIn

® reformulation of the problem

signal — y

curvelet representation of
ideal data

® Curvelet Reconstruction with Sparsity-promoting Inversion

— look for the sparsest/most compressible,
physical solution *KEY POINT OF THE RECOVERY

k

sparsity constraint data misfit \ /

X = argminy |[Wx||; st |[y—PC"x|; <e




Nonlinear wavefield sampling

® sparsifying transform

— typically localized in the time-space domain to handle the complexity of seismic data
— preserves edges/wavefronts

® advantageous coarse sampling

— generates incoherent random undersampling “noise” in the sparsifying domain
— does not create large gaps

» because of the limited spatiotemporal extend of transform elements used for the
reconstruction

® sparsity-promoting solver
- requires few matrix-vector multiplications
- scales to number of unknowns exceeding 230 (“small”)

Lustig et. al 2007
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Sampling
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Undersampling “noise”

® “noise”
— due to A7A #1
— defined by AHAxo-axo = APy-axo

D.L. Donoho et.al. ‘06

1 out of 2 1 out of 4 1 out of 6 1 out of 8

less acquired data
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Discrete random jittered undersampling

Typical spatial Averaged spatial
Sampling scheme convolution kernel convolution kernel
(amplitudes) (amplitudes)
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Regular 3-fold undersampling

Offset (m) Offset (m)
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SNR = 12.98 dB
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Regular 3-fold undersampling
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Optimally-jittered 3-fold undersampling
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Optimally-jittered 3-fold undersampling

Offset (m) Offset (m)
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SNR = 15.22 dB
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nominal spatial sampling ~ 112.5m
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2441.2

spatial sampling ~ 12.5m
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Observations

® sparsity is a powerful property that offers striking benefits for signal
reconstruction BUT it is not enough

in the sparsifying domain, interpolation is a denoising problem

— regular undersampling:
. 1.e., aliases

— random & jittered undersamplings:

nonlinear wavefield sampling
— sparsifying transform: curvelet transform
— coarse sampling scheme: jittered undersampling
— sparsity-promoting solver: iterative soft thresholding with cooling

open problem: optimal (non-random) sampling schemes, large-
scale solvers & hard CS results for frames




observations continued

® CS ideas already existed in exploration seismology (Sacchi ‘98)

® New insights give solid proofs that
— (hopefully) help convince management
— engineers will do their implementations => innovation

Results for seismic wavefield reconstruction
— very encouraging
— industry calls for commercialization/industrialization
— looking into a startup

Real-life implementation requires substantial investment
— understanding the real problem & QC
— infrastrcuture
— solution that scales

Real-life implementations require
— parallelization of algorithms
— massive IO
— runon 10.000 CPU plus clusters ...




“"Compressed wavefield extrapolation” in Geophysics




Problem statement

Goal: employ the 1-Way wavefield extrapolation based
on factorization of the Helmholtz operator

Grimbergen, J., F. Dessing, and C. Wapenaar, 1998, Modal expansion of one-
way operator on laterally varying media: Geophysics, 63, 995-1005.

. — eTiAzH: H>, = H H,

Problem: computation & storage complexity
= creating and storing Hs is trivial
= however H, is not trivial to compute and store

\ v Seismic Laboratory for
Imaging and Modeling




Modal domain

In this case . is computed by eigenvalue
decomposition

H; = LAL" = IJT”” N —

LT

Sl (/13N

e J \/_Aazg LT

® requires, per frequency.
1 eigenvalue problem (O(n%))
2 full matrix-vector for eigenspace transform (O(n?))




Our approach

Computation requires similar approach to .

D = LAL"' = I]W”J N

= [N E

LT

However, for D, L = DFT, so computation trivial with
FFT




Our approach

Consider a related, but simpler problem: shifting (or
translating) signal

AT D

operatoris S = e /2x
D is differential operator




ime domain
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Straightforward Computation

il I

signal in space domain shifted signal in Fourier
domain

shifted signal in space domain

Compressed Processing

signal in space domain incomplete and shifted signal in

) ) shifted signal in space domain
Fourier domain ft 8 P




Compressed Senstrg “Computation”

In a nutshell:

®" Trades the cost of L1 solvers for a compressed
operator that is cheaper to compute, store, and
synthesize

L1 solver research is currently a hot topic in applied
mathematics

Tibshirani, R., 1996, Least absolute shrinkage and selection operator, Soft-
ware: http://www-stat.stanford.edu/~tibs/lasso.html.

Candes, E. J., and J. Romberg, 2005, €,-magic. Software: http://www.acm.
caltech.edu/limagic/.

Donoho, D. L., I. Drori, V. Stodden, and Y. Tsaig, 2005, SparseLab, Soft-
ware: http://sparselab.stanford.edu/.

Figueifedo, M., R. D. Nowak, and S. J. Wright, 2007, Gradient projection for
sparse reconstruction, Software: http://www.1x.it.pt/~mtf/GPSR/.

Koh, K., S. J. Kim, and S. Boyd, 2007, Simple matlab solver for 11-regular-

ized least squares problems, Software: http://www-stat.stanford.edu/ SLIM
~tibs/lasso.html. \U
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Straightforward 1-Way inverse Wavefield Extrapolation
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wavefield in space-time back-extrapolated wavefield in
domain H2 domain

|

Compressed 1-Way Wavefield Extrapolation
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wavefield in space-time

_ incomplete back-extrapolated
domain

wavefield in H2 domain

Offset (km)

back-extrapolated to impulse
source in space-time domain

back-extrapolated to impulse
source in space-time domain
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Compressed wavetield extrapolation

y = RL"”u
A :RejAl/zAmLH

X =argminy ||x||1 st. Ax =Yy

~

VvV =X

Randomly subsample & phase rotation in Modal domain
Recover by norm-one minimization

Capitalize on

®= the incoherence modal functions and point scatterers
® reduced explicit matrix size

= constant velocity <=> Fourier recovery




Compressed wavetield extrapolation

simple 1-D space/time propagation example with point scatters

0

0.1

0.2r

0.3f

0.4r

0.5f

0.6

0.71

0.8f

> 4 6 8
propagated 1.5km down recovered though L1 inverson

Restricted L transform to ~0.01 of original coefficients




Observations

Compressed wavefield extrapolation

® reduction in synthesis cost

= mutual coherence curvelets and eigenmodes
= performance of norm-one solver

= keep the constants under control ...

Open problems
= fast “random” eigensolver
®= incoherence eigenfunctions and sparsity transform

Double-role CS matrix is cool ... upscaling to “real-life”
is a challenge ....

| \SLIM
 J / Seismic Laboratory for
“«.__~ Imaging and Modeling
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Industry consortia

Since early 80’s in exploration seismology
Consortia work on common set of problems
No secret research

Hurdles
= data access
L] QC
= IT infrastructure
= University Liaison offices
" being interdisciplinary sounds easier than it is ..\USle

Seismic Laboratory for




DNOISE

DNOISE: Dynamic nonlinear optimization for
imaging in seismic exploration
= NSERC Collaborative Research & Development Grant

= Matches SINBAD Consortium supported by industry
organized by ITF (non-profit technology broker in the UK)
supported by BG, BP, Chevron, ExxonMobil and Shell
$70 k annually per company
total budget $500-600 k annually

= Involves
Dr. Michael Friedlander (CS) and Ozgur Yilmaz (Math) as co-PI’s
2-3 postdocs
8 graduate students
2 undergraduate students
2 programmers
1 part-time admin person “\USLIM

Seismic Laboratory for
Imaging and Modeling




Challenges

Development of common language amongst
= Geophysics
= Computer Science
= Math

Difference in mentality/approach

= Geophysicist throws everything at a problem and if
it works ... it works

= Mathematicians/computer scientists
narrow problem to proof theorems

may not be relevant
do not necessary understand what “deliverables” are
do not speak the same language

Knowledge dissemination




Dissemination

SPARCO: a test suite for norm-one problems
= framework for setting up small-size CS problems
= first step towards performance benchmarks
= www.cs.ubc.ca/labs/scl/sparco
SLIMPy: “compiler” for abstract numerical algorithms
= operator overloading in Python
" integration with scalable seismic processing packages
Madagascar: public-domain seismic processing package
= reproducible research
" slim.eos.ubc.ca/
= rsf.sourceforge.nethyperlink



http://www.cs.ubc.ca/labs/scl/sparco
http://www.cs.ubc.ca/labs/scl/sparco
http://slim.eos.ubc.ca/Publications/Private/Journals/hennenfent07jitter/paper_html
http://slim.eos.ubc.ca/Publications/Private/Journals/hennenfent07jitter/paper_html
http://rsf.sourceforge.net%0D
http://rsf.sourceforge.net%0D
http://slim.eos.ubc.ca/
http://slim.eos.ubc.ca/

Nonlinear wavefield sampling

® sparsifying transform

— typically localized in the time-space domain to handle the complexity of seismic data
— preserves edges/wavefronts

® advantageous coarse sampling
— generates incoherent random undersampling “noise” in the sparsifying domain
— does not create large gaps

» because of the limited spatiotemporal extend of transform elements used for the
reconstruction

® sparsity-promoting solver
- requires few matrix-vector multiplications
- scales to number of unknowns exceeding 230 (“small”)




SPARCO: Sparse Reconstruction Test Suite

http://www.cs.ubc.ca/labs/scl/sparco
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Optimization paths
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Madagascar
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Madagascar
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Abstraction

Let data be a vector y € R".
Let Ay := C! € C"*M pe the inverse curvelet transform
and A, := F ¢ C™"*" the inverse Fourier transform.

Define A := [Al Ag} and x = [XlT Xg]T

Solve

x = argmin ||x||1 s.t. [[Ax—y|2 <€
X

y = vector(‘data.rsf’)

A1 = fdct2(domain=y.space).adj()

A2 = fft2(domain=y.space).adj()

A = aug_oper([A1, A2])

solver = GenThreshLandweber(10,5,thresh=None)

x=solver.solve(A,y)




Conclusions

Math institutes have been instrumental

= exposure to the latest of the latest

= establish a research network
Success research program depends on

®= understanding the problems

® engineering & software development

= disseminate results (reproducible research)
Science:Extension CS towards

= more general (nonlinear) problems

® compressive computations ....

For the future: Redirection of emphasis away from
“Let’s gather as much data as we can and let’s
analyze it all” to "What are we looking for and how
can we best sample....”
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