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General trend
(Seismic) data sets are becoming larger and larger

Demand for more information to be inferred from data

Data collection is expensive

Distilling information is time consuming

Industry ripe for recent developments in applied 
harmonic analysis and information theory



Today’s topics
Problems in seismic imaging

 acquisition, processing & imaging costs

Compressive sampling in exploration seismology
 wavefield recovery from jittered sampling
 compressive wavefield extrapolation
 road ahead: compressive computations

DNOISE: an academic-industry-NSERC partnership
 truly interdisciplinary academic collaboration
 knowledge dissemination
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Seismic data acquisition



Exploration seismology

• create images of the subsurface

• need for higher resolution/deeper

• clutter and data incompleteness

• image repeatability <=> monitoring
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Today’s challenges
Seismic data volumes are 

 extremely large (5-D, tera-peta bytes)
 incomplete and noisy
 operators expensive to apply

Physics & mathematics not fully understood
 linearization
 PDE constrained optimization is remote

Infusion of math has been a bumpy road
 inward looking
 after “the fact” proofs
 really understand problems that can not be tailored
 industry wants results not proofs ...
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My research program
Successfully leverage recent developments in 
applied computational harmonic analysis and 
information theory

 multi-directional transforms such as curvelets
 new construction that did not exist in seismology

 theory of compressive sampling
 existed before BUT without proof & (fundamental) understanding 

 theory of pseudodifferential operators
 “invented” independently without proofs

Combining these developments underlies the 
success of my research program



Seismic wavefield 
reconstruction

joint work with Gilles Hennenfent

“Curvelet-based seismic data processing: a multiscale and nonlinear approach”  to 
appear in Geophysics, “Non-parametric seismic data recovery with curvelet frames” & 

“Simply denoise: wavefield reconstruction via 

jittered undersampling”
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Model

spatial sampling:  12.5 m
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avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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Interpolated result
using CRSI*

spatial sampling:  12.5 m

SNR = 16.92 dB

* CRSI: Curvelet Reconstruction with Sparsity-promoting Inversion



Seismic Laboratory for Imaging and Modeling

Difference

spatial sampling:  12.5 m

SNR = 16.92 dB
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Problem statement

Consider the following (severely) underdetermined system of linear 
equations

Is it possible to recover x0 accurately from y?
unknown

data
(measurements/
observations)

x0

Ay

=
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Perfect recovery

 conditions
– A obeys a type of uncertainty principle
– x0 is sufficiently sparse

 procedure

 performance
– S-sparse vectors recovered from roughly on the order of S measurements (to within constant and 

log factors)

min
x

‖x‖1

︸ ︷︷ ︸

sparsity

s.t. Ax = y
︸ ︷︷ ︸

perfect reconstruction

x0

Ay

=
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Nonlinear wavefield sampling

 sparsifying transform
– typically localized in the time-space domain to handle the complexity of seismic data
– preserves edges/wavefronts

 advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying domain
– does not create large gaps

• because of the limited spatiotemporal extend of transform elements used for the 
reconstruction

 sparsity-promoting solver
– requires few matrix-vector multiplications
– scales to number of unknowns exceeding 230 (“small”)
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Representations for seismic data

 curvelet transform
– multi-scale: tiling of the FK domain into 

dyadic coronae
– multi-directional: coronae sub-partitioned 

into angular wedges, # of angle doubles 
every other scale

– anisotropic: parabolic scaling principle
– local

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

k1

k2
angular

wedge
2j

2j/2
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3D curvelets
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Figure 3. 3D frequency tilings. (a) Schematic plot for the frequency tiling of continuous 3D curvelets. (b) Discrete

frequency tiling. ω1, ω2 and ω3 are three axes of the frequency cube. Smooth frequency window eUj,! extracts the
frequency content near the shaded wedge which has center slope (1, α!, β!).

This frame of discrete curvelets has all the required properties of the continuous curvelet transform in Section
2. Figure 2(b) shows one typical curvelet in the spatial domain. To summarize, the algorithm of the 2D discrete
curvelet transform is as follows:

1. Apply the 2D FFT and obtain Fourier samples f̂(ω1,ω2), −n/2 ≤ ω1,ω2 < n/2.

2. For each scale j and angle ", form the product Ũj,!(ω1,ω2)f̂(ω1,ω2).

3. Wrap this product around the origin and obtain W(Ũj,!f̂)(ω1,ω2), where the range for ω1 and ω2 is now
−L1,j,!/2 ≤ ω1 < L1,j,!/2 and −L2,j,!/2 ≤ ω2 < L2,j,!/2. For j = j0 and je, no wrapping is required.

4. Apply a L1,j,!×L2,j,! inverse 2D FFT to each W(Ũj,!f̂), hence collecting the discrete coefficients cD(j, ", k).

4. 3D DISCRETE CURVELET TRANSFORM
The 3D curvelet transform is expected to preserve the properties of the 2D transform. Most importantly, the
frequency support of a 3D curvelet shall be localized near a wedge which follows the parabolic scaling property.
One can prove that this implies that the 3D curvelet frame is a sparse basis for representing functions with surface-
like singularities (which is of codimension one in 3D) but otherwise smooth. For the continuous transform, we
window the frequency content as follows. The radial window smoothly extracts the frequency near the dyadic
corona {2j−1 ≤ r ≤ 2j+1}, this is the same as the radial windowing used in 2D. For each scale j, the unit sphere
S2 which represents all the directions in R3 is partitioned into O(2j/2 · 2j/2) = O(2j) smooth angular windows,
each of which has a disk-like support with radius O(2−j/2), and the squares of which form a partition of unity
on S2 (see Figure 3(a)).

Like the 2D discrete transform, the 3D discrete curvelet transform takes as input a 3D Cartesian grid of the
form f(n1, n2, n3), 0 ≤ n1, n2, n3 < n, and outputs a collection of coefficients cD(j, l, k) defined by

cD(j, ", k) :=
∑

n1,n2,n3

f(n1, n2, n3) ϕD
j,!,k(n1, n2, n3)

where j, " ∈ Z and k = (k1, k2, k3).
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CRSIn

 reformulation of the problem

 Curvelet Reconstruction with Sparsity-promoting Inversion
– look for the sparsest/most compressible,

physical solution

signal =y + n noise

curvelet representation of 
ideal data

PCH

x0

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P1)











x̃= argminx ‖Wx‖1 s.t. ‖y−PCHx‖2 ≤ ε

f̃= CH x̃

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃

k1

k2

W2W2 f

k
KEY POINT OF THE RECOVERY
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Nonlinear wavefield sampling

 sparsifying transform
– typically localized in the time-space domain to handle the complexity of seismic data
– preserves edges/wavefronts

 advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying domain
– does not create large gaps

• because of the limited spatiotemporal extend of transform elements used for the 
reconstruction

 sparsity-promoting solver
– requires few matrix-vector multiplications
– scales to number of unknowns exceeding 230 (“small”)

Lustig et. al 2007
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Localized transform elements & gap size

v v

✓ ✗

x̃ = arg min
x

||x||1 s.t. y = Ax



Seismic Laboratory for Imaging and Modeling

Sampling

Fourier
transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier
transform

Fourier
transform
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 “noise”
– due to AHA ≠ I
– defined by AHAx0-αx0 = AHy-αx0

Undersampling “noise”

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

1 out of 2 1 out of 4 1 out of 6 1 out of 8

D.L. Donoho et.al. ‘06
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Discrete random jittered undersampling

receiver
positions

receiver
positions

PDF

receiver
positions

PDF

receiver
positions

PDF

[Hennenfent and Herrmann ‘07]

Typical spatial 
convolution kernel

(amplitudes)

Averaged spatial 
convolution kernel

(amplitudes)
Sampling schemeType
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Model
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Regular 3-fold undersampling

SNR = 12.98 dB
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SNR = 12.98 dB

Regular 3-fold undersampling
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Optimally-jittered 3-fold undersampling

SNR = 15.22 dB
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Optimally-jittered 3-fold undersampling

SNR = 15.22 dB
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Data

nominal spatial sampling ~ 112.5m
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CRSI

spatial sampling ~ 12.5m
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Observations

 sparsity is a powerful property that offers striking benefits for signal 
reconstruction BUT it is not enough

 in the sparsifying domain, interpolation is a denoising problem
– regular undersampling:

harmful coherent undersampling “noise”, i.e., aliases
– random & jittered undersamplings:

harmless incoherent random undersampling “noise”

 nonlinear wavefield sampling
– sparsifying transform: curvelet transform
– coarse sampling scheme: jittered undersampling
– sparsity-promoting solver: iterative soft thresholding with cooling

 open problem: optimal (non-random) sampling schemes, large-
scale solvers & hard CS results for frames
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observations continued

 CS ideas already existed in exploration seismology (Sacchi ‘98)

 New insights give solid proofs that
– (hopefully) help convince management
– engineers will do their implementations => innovation

 Results for seismic wavefield reconstruction
– very encouraging
– industry calls for commercialization/industrialization
– looking into a startup

 Real-life implementation requires substantial investment
– understanding the real problem & QC
– infrastrcuture
– solution that scales 

 Real-life implementations require
– parallelization of algorithms
– massive IO
– run on 10.000 CPU plus clusters ...



Compressed wavefield 
extrapolation
joint work with Tim Lin

“Compressed wavefield extrapolation” in Geophysics



Problem statement
 Goal: employ the 1-Way wavefield extrapolation based 

on factorization of the Helmholtz operator

 Problem: computation & storage complexity
 creating and storing      is trivial
 however        is not trivial to compute and store 

= e∓j∆xH1W±

H1

H1 =H2 =

H2

H2 = H1H1
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Modal domain
 In this case        is computed by eigenvalue 

decomposition

 requires, per frequency:
 1 eigenvalue problem (O(n4))
 2 full matrix-vector for eigenspace transform (O(n2))
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Our approach
 Computation requires similar approach to

 However, for    ,               , so computation trivial with 
FFT
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e−j ∆x
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Our approach
 Consider a related, but simpler problem: shifting (or 

translating) signal

 operator is 
     is differential operator
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signal in space domain

signal in space domain
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L1

shifted signal in Fourier 
domain

incomplete and shifted signal in 
Fourier domain

shifted signal in space domain

Straightforward Computation

Compressed Processing

F

shifted signal in space domain

e−j ∆x
2π Λ

e−j ∆x
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Compressed Sensing “Computation”
 In a nutshell:

 Trades the cost of L1 solvers for a compressed 
operator that is cheaper to compute, store, and 
synthesize

 L1 solver research is currently a hot topic in applied 
mathematics
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Compressed wavefield extrapolation

 Randomly subsample & phase rotation in Modal domain
 Recover by norm-one minimization
 Capitalize on 

 the incoherence modal functions and point scatterers
 reduced explicit matrix size
 constant velocity <=> Fourier recovery






y = RLHu

A = RejΛ1/2
∆x3LH

x̃ = arg minx ‖x‖1 s.t. Ax = y
ṽ = x̃
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Observations
 Compressed wavefield extrapolation

 reduction in synthesis cost
 mutual coherence curvelets and eigenmodes
 performance of norm-one solver
 keep the constants under control ...

 Open problems
 fast “random” eigensolver
 incoherence eigenfunctions and sparsity transform

 Double-role CS matrix is cool ... upscaling to “real-life” 
is a challenge ....
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partnership
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Industry consortia 
Since early 80’s in exploration seismology 

Consortia work on common set of problems

No secret research

Hurdles
 data access
 QC
 IT infrastructure
 University Liaison offices
 being interdisciplinary sounds easier than it is ..



DNOISE
DNOISE: Dynamic nonlinear optimization for 
imaging in seismic exploration

 NSERC Collaborative Research & Development Grant
 Matches SINBAD Consortium supported by industry

 organized by ITF (non-profit technology broker in the UK)
 supported by BG, BP, Chevron, ExxonMobil and Shell
 $70 k annually per company
 total budget $500-600 k annually 

 Involves
 Dr. Michael Friedlander (CS) and Ozgur Yilmaz (Math) as co-PI’s
 2-3 postdocs
 8 graduate students
 2 undergraduate students
 2 programmers
 1 part-time admin person



Challenges
Development of common language amongst

 Geophysics
 Computer Science
 Math

Difference in mentality/approach
 Geophysicist throws everything at a problem and if 

it works ... it works
 Mathematicians/computer scientists

 narrow problem to proof theorems
 may not be relevant
 do not necessary understand what “deliverables” are
 do not speak the same language

Knowledge dissemination



Dissemination
SPARCO: a test suite for norm-one problems

 framework for setting up small-size CS problems
 first step towards performance benchmarks
 www.cs.ubc.ca/labs/scl/sparco

SLIMPy: “compiler” for abstract numerical algorithms
 operator overloading in Python
 integration with scalable seismic processing packages

Madagascar: public-domain seismic processing package 
 reproducible research
 slim.eos.ubc.ca/
 rsf.sourceforge.nethyperlink

http://www.cs.ubc.ca/labs/scl/sparco
http://www.cs.ubc.ca/labs/scl/sparco
http://slim.eos.ubc.ca/Publications/Private/Journals/hennenfent07jitter/paper_html
http://slim.eos.ubc.ca/Publications/Private/Journals/hennenfent07jitter/paper_html
http://rsf.sourceforge.net%0D
http://rsf.sourceforge.net%0D
http://slim.eos.ubc.ca/
http://slim.eos.ubc.ca/
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Nonlinear wavefield sampling

 sparsifying transform
– typically localized in the time-space domain to handle the complexity of seismic data
– preserves edges/wavefronts

 advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying domain
– does not create large gaps

• because of the limited spatiotemporal extend of transform elements used for the 
reconstruction

 sparsity-promoting solver
– requires few matrix-vector multiplications
– scales to number of unknowns exceeding 230 (“small”)



SPARCO: Sparse Reconstruction Test Suite

http://www.cs.ubc.ca/labs/scl/sparco



Gaussian ensemble, spikes signal

A = Gaussian b =
1200×5120

Candés, Romberg,
& Tao ’05
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Optimization paths
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Madagascar
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y = vector(‘data.rsf’)

A1 = fdct2(domain=y.space).adj()

A2 = fft2(domain=y.space).adj()

A = aug_oper([A1, A2])

solver = GenThreshLandweber(10,5,thresh=None)

x=solver.solve(A,y)

Abstraction
Let data be a vector y ∈ Rn.
Let A1 := CT ∈ Cn×M be the inverse curvelet transform
and A2 := FH ∈ Cn×n the inverse Fourier transform.

Define A :=
[
A1 A2

]
and x =

[
xT

1 xT
2

]T

Solve
x̃ = arg min

x
‖x‖1 s.t. ‖Ax− y‖2 ≤ ε



Conclusions
Math institutes have been instrumental

 exposure to the latest of the latest
 establish a research network

Success research program depends on
 understanding the problems
 engineering & software development
 disseminate results (reproducible research)

Science:Extension CS towards 
 more general (nonlinear) problems
 compressive computations ....

For the future: Redirection of emphasis away from 
“Let’s gather as much data as we can and let’s 
analyze it all” to “What are we looking for and how 
can we best sample....”
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