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Summary  

Sparse promoting oriented problems are never new in seismic applications. Back in 1970s, 
geophysicists had well exploited the robustness of sparse solutions. Moreover, with the emerging 
usage of compressed sensing in recent years, sparse recovery have been favored in dealing with 
‘curse of dimensionality’ in various seismic field acquisition, data processing, and imaging applications. 
Although sparsity has provided a promising approach, solving for it presents a big challenge. How to 
work efficiently with the extremely large-scale seismic problem, and how to improve the convergence 
rate reducing computation time are most frequently asked questions in this content. In this abstract, 
the author proposed a new algorithm -- PQNℓ1, trying to address those questions. One example on 
seismic data processing is included. 
 

Introduction 

"When a traveler reaches a fork in the road, the ℓ1 norm tells him to take either one way or the 
other, but the ℓ2 norm instructs him to head off into the bushes. " -- John F. Claerbout and Francis 
Muir, 1973. The road ℓ1 norm succeed telling is one sparse solution, and seeking for a minimum ℓ1 
norm solution is a typical way how sparse promoting seismic applications are formulated. The 
minimum ℓ1 norm formulation has offered quite fruitful results over the years. 
 
Currently, there are tons of algorithms claiming being able to solve ℓ1 norm problem, some of which 
are listed at http://dsp.rice.edu/cs. One sparse solver -- SPGℓ1 developed by Michael P. Friedlander in 
2008(van den Berg and Friedlander) has been proved efficient in various seismic applications 
(Herrmann, Friedlander and Yilmaz 2012), provided the running feature for SPGℓ is its suitability in 
solving large-scale problems.  
 
Given the existent efficiency of SPGℓ1, the author wants to push it even further. As in most of our 
seismic applications, iteratively evaluating the objective function (e.g. data residual) is very 
computational involving, weeks can be taken for evaluating one objective function in one iteration. The 
proposed algorithm tries to accelerate the recovery by introducing a second order direction into SPGℓ1, 
and resulting an improvement in the algorithm convergence behavior. 
 

Theory and/or Method 
Logic of SPGℓ1 
 
There are different flavors for sparse promoting seismic application, one of which is called BPDN 
(minimize ||x||1 subject to ||Ax – b||2 ≤ δ), seeking a minimum one-norm solution of an undetermined 
least-squares problem. Trying to probe the optimum trade-off curve (Pareto curve) between the least 
squares fit and the one-norm of the solution, SPGℓ1 is able to decompose the BPDN problem into 
several LASSO problem (minimize ||Ax - b||2 subject to ||x||1 ≤ τ), for each LASSO problem a spectral 
gradient projection method approximately minimizes a least squares problem with an explicit one norm 
constrain. In figure 1, the black line shows an example of the Pareto curve, and the black dashed line 
show the true solution, where each point stands for one true iteration in spectral projected gradient 
(PSG) subroutine.  

 



 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

Figure 1: Trade off between data residual and solution sparsity 
 
Our contribution 
 
The contribution of this work is considering solving the individual Lasso problems with a projected 
quasi newton (PQN) algorithm. With some extra pay on memory constructing an approximate Hessian 
matrix, resulting in a superlinear convergence rate compared to the linear convergence rate for SPG 
method. In order to see the difference, pseudo code for SPG and PQN are listed in figure 2. Apart 
from the difference marked as red we can also see that since there is no closed form solution for 
finding the PQN direction, a SPG method is used to solve for PQN iteration. It seems to be not worthy 
at the first glance of doing so since the iterative solving for quasi newton direction could be expensive. 
However if we look carefully we can find out some extra work on computing a good searching direction 
makes sense in expensive applications. It is simply because there is no need to evaluate objective 
function in this subroutine. A better searching direction will bring decrease in the total iteration we 
need to run for a certain objective data residual, which corresponds to a decrease in computing 
objective function, a decrease in total computation time. We can also predict this method would benefit 
more if we have an ill conditioned problem because with a second order correction, gradient direction 
would suffer less from the problem’s ill-posedness.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: SPG and PQN algorithms 

 



 

 

Examples 
In this section, we’re going to show one very simple example, to show acceleration is achieved with 
proposed PQNℓ1 algorithm. (More examples on data acquisition and inversion are also available) In 
this example, we have a series of spike reflectors, and convolving it with a low pass filter. In order to 
recover the reflectors, we run SPGℓ1 and PQNℓ1 to perform a spike de-convolution to the same data 
residual, the different behaviors are listed in figure 3. a is the original spike reflector, b is the source 
wavelet, c shows the recovery from SPGℓ1 and PQNℓ1 in the middle and bottom, d shows a variation 
within PQNℓ1 algorithm, i.e. with 5 10 20 30 gradient updates to form the approximate Hessian matrix. 
As we can see, acceleration is achieved with the proposed algorithm with the same data residual 
compared to SPGℓ1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: SPG and PQN comparison in one spike de-convolution example 
Conclusions 
The proposed algorithm PQNℓ1 is being able to accelerate on sparse promoting seismic applications, the 
advantage is most obvious when the objective function is prohibitive to evaluate, and when the 
problem is ill conditioned. 
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