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Oz25 Data Set from Yilmaz’s Seismic Data Processing

The Problem
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What We Can Do
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• Represented as a 
Rayleigh wave.

• Dispersive, Low 
Frequency

• Highly dependent on 
near surface 
properties

• Reduces SNR

• Generated in the 
frequency slope 
domain in the slant 
stack transform 

Ground Roll Properties
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Two Problems to Solve

How Do We Identify What to Remove?

How Do We Remove It?

- Modeled Ground Roll
- Noise Prediction From Other Methods

- Incorporate Prior Predictions
- Use Adaptive Subtraction



• Identifies hyperbolic reflectors from the signal

• May produce artifacts with conventional 
subtraction

• We can use the predicted noise with adaptive 
subtraction

Our Use Of Hyperbolic Radon Filtering

Adaptive
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Predicted
Noise
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Data Result



• Wavelets:

• Represent time and frequency

• Multi-Scale 

• Curvelets:

• Local in position and angle

• Strongly anisotropic at fine 
scales (parabolic scaling 
principle: length² ~ width)

Wavelets and Curvelets
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Summary

Seismic facies analysis and seismic texture analysis can
be seen as nearly equivalent operations, implying that
if we are able to solve the texture analysis problem,
corresponding seismic facies labels may subsequently
be assigned. In this paper we consider the use of
a directional multiresolution transform, the curvelet
transform, for seismic texture analysis. This transform
is optimal for curves in 2D as it obeys the inherent curve
scaling relation. Preliminary results on seismic texture
classification are very promising.

Introduction

Seismic facies analysis (7) is based on considerations
of three primary ingredients, internal texture (parallel,
subparallel, chaotic, etc.), external shape (sheet, drape,
mound, etc) and boundary conditions (onlap, toplap,
downlap, etc.). The two latter parts, boundary and
shape, are to a large extent given as a function of the
internal texture’s extent. Hence, the focus in this paper
will be on texture analysis.

Fundamental to the formation of the structures seen in
seismic images is the process of deposition. On its own,
deposition creates uniform, parallel layers of rock. How-
ever, the dynamics of the earth’s crust deforms this basic
structure in a variety of ways producing other composite
structures. If we were to break seismic images down to
their smallest elements of parallel structures, or line/curve
segments, these small elements could be used as a ba-
sis for seismic facies analysis/classification. Towards this
end, we will consider a new member of the family of mul-
tiresolution transforms, the curvelet transform.

Multiresolution transforms have proven to be very suc-
cessful in texture processing applications, be it for anal-
ysis or synthesis purposes (8). Their success can be at-
tributed to the fact that textures often exhibit details dis-
tributed over a wide range of scales, and that the trans-
forms often have manageable computational costs. In this
family the wavelet transform has received a lot of atten-
tion due to its ability to sparsely represent signals and
images producing impressive results in the area of com-
pression (9) and denoising (6).

The wavelet transform can in general be seen as a mul-
tiscale edge detector, be it for 1-D, 2-D or higher di-
mensional signals. For 1-D piecewise smooth signals the
transform is easily seen to be sparse. Consequently, non-
linear approximation of such signals using wavelets are
very powerful.

However, for 2-D piecewise smooth signals a sparse rep-

(a)

(b)

Fig. 1: Using the wavelet and curvelet bases for representing
edges in 2-D images results in very different approximation
performances (5). (a) Approximation using a wavelet basis,
and (b) a curvelet basis.

resentations is not implied. The primary reason for this
lack of sparsity stems from the fact that a separable imple-
mentation of the 2-D wavelet transform is typically being
used. Using 1-D transforms in the two directions, where
each transform sparsely approximates edges, results in a
2-D transform that is good at representing isolated dis-
continuities in the images. However, since discontinu-
ities in natural images, and seismic images, tend to occur
along lines/contours, thus, exhibiting high local geometri-
cal correlation, the separable wavelet transform becomes a
redundant representation. That is, the wavelet transform
is no longer optimal since we now could use basis func-
tions having wider support along the direction of highest
geometrical correlation. This is best explained visually
(5) if we try to approximate a curved discontinuity in 2-
D space by “painting” with wavelets having square sup-
port. Using dyadic scaling, the best set of brush strokes
is seen in Figure 1(a). Suppose now that we have an-
other basis/“brush” that has rectangular support along a
number of different orientations. Using the second basis,
the curvelet basis (5), we are able to better approximate
the curve, as seen in Figure 1(b). This transform is truly
2-D, not a construction from 1-D transforms. The result-
ing basis functions can detect small segments of the curve
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localized in just a few coefficients. This can be
quantified. Simply put, there is no basis in which
coefficients of an object with an arbitrary singu-
larity curve would decay faster than in a curvelet
frame. This rate of decay is much faster than that
of any other known system, including wavelets.
Improved coefficient decay gives optimally sparse
representations that are interesting in image-
processing applications, where sparsity allows for
better image reconstructions or coding algorithms.

Beyond Scale-Space?
A beautiful thing about mathematical transforms
is that they may be applied to a wide variety of prob-
lems as long as they have a useful architecture. The
Fourier transform, for example, is much more than
a convenient tool for studying the heat equation
(which motivated its development) and, by exten-
sion, constant-coefficient partial differential equa-
tions. The Fourier transform indeed suggests a
fundamentally new way of organizing information
as a superposition of frequency contributions, a
concept which is now part of our standard reper-
toire. In a different direction, we mentioned before
that wavelets have flourished because of their 
ability to describe transient features more accu-
rately than classical expansions. Underlying this
phenomenon is a significant mathematical archi-
tecture that proposes to decompose an object 
into a sum of contributions at different scales and
locations. This organization principle, sometimes
referred to as scale-space, has proved to be very
fruitful—at least as measured by the profound 
influence it bears on contemporary science.

Curvelets also exhibit an interesting architecture
that sets them apart from classical multiscale rep-
resentations. Curvelets partition the frequency
plane into dyadic coronae and (unlike wavelets) 
subpartition those into angular wedges which 
again display the parabolic aspect ratio. Hence,
the curvelet transform refines the scale-space view-
point by adding an extra element, orientation, and
operates by measuring information about an 
object at specified scales and locations but only
along specified orientations. The specialist will rec-
ognize the connection with ideas from microlocal
analysis. The joint localization in both space and
frequency allows us to think about curvelets as 
living inside “Heisenberg boxes” in phase-space,
while the scale/location/orientation discretization
suggests an associated tiling (or sampling) of
phase-space with those boxes. Because of this 
organization, curvelets can do things that other sys-
tems cannot do. For example, they accurately model
the geometry of wave propagation and, more gen-
erally, the action of large classes of differential
equations: on the one hand they have enough 
frequency localization so that they approximately
behave like waves, but on the other hand they have

enough spatial localization so that the flow will 
essentially preserve their shape.

Research in computational harmonic analysis 
involves the development of (1) innovative and
fundamental mathematical tools, (2) fast compu-
tational algorithms, and (3) their deployment in 
various scientific applications. This article essen-
tially focused on the mathematical aspects of the
curvelet transform. Equally important is the sig-
nificance of these ideas for practical applications.

Multiscale Geometric Analysis?
Curvelets are new multiscale ideas for data repre-
sentation, analysis, and synthesis which, from a
broader viewpoint, suggest a new form of multiscale
analysis combining ideas of geometry and multi-
scale analysis. Of course, curvelets are by no means
the only instances of this vision which perceives
those promising links between geometry and mul-
tiscale thinking. There is an emerging community
of mathematicians and scientists committed to 
the development of this field. In January 2003, for 
example, the Institute for Pure and Applied Mathe-
matics at UCLA, newly funded by the National Science
Foundation, held the first international workshop
on this topic. The title of this conference: Multiscale
Geometric Analysis.
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• Global & linear

• Similar to F-K Filtering
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Contourlet Band Filtering
Synthetic Example
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Steep Parabolic Curves and Dispersive Ground Roll 



Contourlet Coefficient Sectors

Each band represents a group of coefficients that represents and 
individual part of the signal



• Steep 
events 
removed

• Artifact 
located at 
apex

Reconstructed Contourlet 
Denoised Signal

Problems:
Data Denoised by Contourlet Transform
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• Smart

• Local in Position and Dip

• Allows Incorporation of Prior 
Predictions

• Flexible

• Relatively Phase Insensitive

Curvelet Adaptive Subtraction



Curvelet Adaptive Subtraction
(Non-Linear Thresholding)
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Diagonal of the CovarianceCovariance

Curvelet Adaptive Subtraction
noisy data︷︸︸︷

d = m︸︷︷︸
noise-free

+
pred. noise︷︸︸︷

n

m̂ : minm
1
2
‖C−1/2

n (d−m) ‖2
2

ˆ̃m : min
m̃

1
2
‖Γ−1

(
d̃− m̃

)
‖2
2 + λ2‖m̃‖p

Cn = Γ2 =



Curvelet Adaptive Subtraction

m̂ = BT ΘλΓ (Bd)

Γ = |Bnp|

Control Parameter
Hard or Soft ThresholdΘλΓ =

λ =



Curvelet Adaptive Subtraction 
Synthetic Example

denoised
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Predicted Noise
Predicted Noise
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Ground Roll Difference:
Shown is the difference between the estimated ground 

roll and the actual ground roll

Difference Between Modeled Ground Roll and Ground Roll Used in Synthetic
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Curvelet 
Adaptive 

Subtraction: 
Real Data 
Example
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Radon 
Predicted 

Noise:
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Two Choices:

1.  Subtract predicted 
noise from data

2.  Use predicted 
noise to define 
threshold for curvelet 
adaptive subtraction



Low Quality 
Radon 

Denoised 
Data

Subtraction of the 
Radon predicted noise 

from the data
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• Increased 
Smoothing

• Some removal 
of top 
reflectors and 
right side of 
mid reflectors

Curvelet Denoised 
Data From Soft 

Non-Linear 
Threshold
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• Better reflector 
preservation

• Less 
smoothing

Curvelet Denoised 
Data From Hard 

Non-Linear 
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Curvelet Predicted Noise
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• Direct subtraction will no longer be 
useful as the result will only amplify the 
differences.

• Curvelet adaptive subtraction works 
without a problem.

Phase Preservation
Give the predicted ground roll a 90 degrees phase 
shift.  What would happen?



Phase Shifted Model Results
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Phase Shifted Model Results

Results Without Phase Shift Results With Phase Shift
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The Difference
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Iterative Process

Curvelet Adaptive
Subtraction

Data
1

Data
2

Result
1

Result
2

Difference

Normal
Difference

Phase Shifted
Difference

Curvelet Adaptive
Subtraction



Iterative Result
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Iterative Result
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Iterative Effects
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High Quality Radon Comparison
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High Quality Radon Comparison
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• Curvelet Adaptive Subtraction can 
effectively remove Ground Roll and 
preserve reflectors

• Adaptive Subtraction works even with 
less than optimal noise modeling

• Curvelet flexibility allows for robust 
adaptive subtraction which is relatively 
phase independent

• Iterative process can further improve 
signal to noise ratio

Conclusions



Acknowledgments
We would like to thank:

• Emmanuel Candes and David Donoho 
for the use of their codes.

• This work was in part financially 
supported by a NSERC Discovery 
Grant.

• Tadeusz Ulrych and the sponsors of the 
Consortium for the Development of 
Specialized Seismic Techniques 
(CDSST).


