Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2004 SLIM group @ The University of British Columbia.

Curvelet Processing and Imaging: Adaptive Ground Roll Removal

Carson Yarham, Felix Herrmann, and Daniel Trad*

The University of British Columbia

Department of Earth and Ocean Sciences

*Veritas DGC Inc.

The Problem

Oz25 Data Set from Yilmaz's Seismic Data Processing

What We Can Do

Ground Roll Properties

- Represented as a Rayleigh wave.
- Dispersive, Low Frequency
- Highly dependent on near surface properties
- Reduces SNR
- Generated in the frequency slope domain in the slant stack transform

(A.G. McMechan and M.J. Yeldin, Geophysics, 1981)

Two Problems to Solve

How Do We Identify What to Remove?

- Modeled Ground Roll
- Noise Prediction From Other Methods

How Do We Remove It?

- Incorporate Prior Predictions
- Use Adaptive Subtraction

Our Use Of Hyperbolic Radon Filtering

- Identifies hyperbolic reflectors from the signal
- May produce artifacts with conventional subtraction
- We can use the predicted noise with adaptive subtraction

Wavelets and Curvelets

- Wavelets:
 - Represent time and frequency
 - Multi-Scale
- Curvelets:
 - Local in position and angle
 - Strongly anisotropic at fine scales (parabolic scaling principle: length² ~ width)

Candes 00, Donoho 95, Do 01

Curvelets

Candes 02, Do 02

Candes 02, Do 02

Contourlet Band Muting (Linear Filtering)

- Global & linear
- Similar to F-K Filtering

Contourlet Band Filtering Synthetic Example

Steep Parabolic Curves and Dispersive Ground Roll

Contourlet Coefficient Sectors

Each band represents a group of coefficients that represents and individual part of the signal

Reconstructed Contourlet Denoised Signal

Problems:

Steep events removed

Artifact located at apex

Curvelet Adaptive Subtraction

- Smart
 - Local in Position and Dip
 - Allows Incorporation of Prior Predictions
- Flexible
- Relatively Phase Insensitive

Curvelet Adaptive Subtraction (Non-Linear Thresholding)

Curvelet Adaptive Subtraction

$$\frac{1}{d} = m + n$$
 $\frac{1}{n}$
 $\frac{1}{n}$
 $\frac{1}{n}$
 $\frac{1}{n}$
 $\frac{1}{n}$
 $\frac{1}{n}$
 $\frac{1}{n}$

$$\hat{\mathbf{m}} : \min_{\mathbf{m}} \frac{1}{2} \| \mathbf{C}_n^{-1/2} \left(\mathbf{d} - \mathbf{m} \right) \|_2^2$$

$$\hat{\tilde{\mathbf{m}}} : \min_{\tilde{\mathbf{m}}} \frac{1}{2} \|\mathbf{\Gamma}^{-1} \left(\tilde{\mathbf{d}} - \tilde{\mathbf{m}} \right) \|_{2}^{2} + \lambda^{2} \|\tilde{\mathbf{m}}\|_{p}$$

$$\mathbf{C}_n = ext{Covariance} \quad \mathbf{\Gamma}^2 = ext{Diagonal of the Covariance}$$

Curvelet Adaptive Subtraction

$$|\Gamma = |{f Bn}_p|$$

$$\hat{\mathbf{m}} = \mathbf{B}^T \mathbf{\Theta}_{\lambda \Gamma} \left(\mathbf{B} \mathbf{d} \right)$$

 $\Theta_{\lambda\Gamma}$ = Hard or Soft Threshold

 $\lambda = \text{Control Parameter}$

Curvelet Adaptive Subtraction Synthetic Example

Predicted Noise

Ground Roll Difference:

Shown is the difference between the estimated ground roll

Difference is on the order of the ground roll

Oz25 Signal With Ground Roll

Curvelet Denoised
Data From Soft
Non-Linear
Threshold

- Increased Smoothing
- Some removal of top reflectors and right side of mid reflectors

Curvelet Denoised Data From Hard Non-Linear Threshold

- Better reflector preservation
- Less smoothing

Curvelet Predicted Noise

Soft Thresholding

Hard Thresholding

Phase Preservation

Give the predicted ground roll a 90 degrees phase shift. What would happen?

- Direct subtraction will no longer be useful as the result will only amplify the differences.
- Curvelet adaptive subtraction works without a problem.

Phase Shifted Model Results

Subtraction

Curvelet Adaptive Subtraction

Phase Shifted Model Results

Results Without Phase Shift

Results With Phase Shift

The Difference

Difference

Iterative Result

Result After 3 Iterations

Predicted Noise

Iterative Result

0 Iterations

3 Iterations

Iterative Effects

Difference Between Iterative Result and Initial Result

Improves overall signal by removing artifacts though phase scanning

High Quality Radon Comparison

High Quality Radon Comparison

Conclusions

- Curvelet Adaptive Subtraction can effectively remove Ground Roll and preserve reflectors
- Adaptive Subtraction works even with less than optimal noise modeling
- Curvelet flexibility allows for robust adaptive subtraction which is relatively phase independent
- Iterative process can further improve signal to noise ratio

Acknowledgments

We would like to thank:

- Emmanuel Candes and David Donoho for the use of their codes.
- This work was in part financially supported by a NSERC Discovery Grant.
- Tadeusz Ulrych and the sponsors of the Consortium for the Development of Specialized Seismic Techniques (CDSST).