Curvelet imaging & processing: an overview

Felix J. Herrmann (EOS-UBC) felix@eos.ubc.ca www.eos.ubc.ca/~felix

thanks to: Gilles, Peyman and Candes, Sacchi

Earth and Ocean Sciences

Research program

How to improve seismic images?

What is in the image?

Why is it in the image?

Curvelet imaging & processing series is devoted to the 'How'.

Goals

- **Processing & imaging scheme**
 - increases resolution & SNR
 - preserves edges = freq. content
 - works with and extends existing
 - noise removal approaches
 - imaging schemes

Develop the right *language* to deal with SNR ≤ 0

Wish list

Seek a transform domain that is

- relative insensitive to local phase
- * sparse & local (position/dip)
- x optimal for curved reflectors
- well-behaved under operators (e.g imaging)

Aim to bring out those high frequencies with *low* SNR!

Basic idea

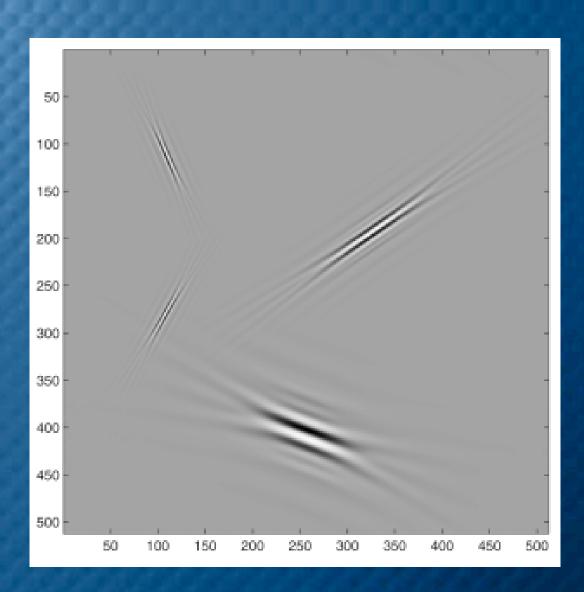
Build on the premise that you stand a much better chance of solving a problem when the model is represented optimally ...

- **local**
- sparse
- multi-scale and multi-directional

Well behaved under operators (e.g migration)!

Why curvelets

- Nonseparable
- Local in 2-D space
- Local in 2-D Fourier
- Anisotropic
- Multiscale
- Almost orthogonal
- Tight frame
- Optimal



Curvelets

Curvelets/Contourlets:

Anisotropic scaling law:

width
$$\equiv 2^{-2j}$$
 length² $\equiv 2^{-j}$

• Directional selective:

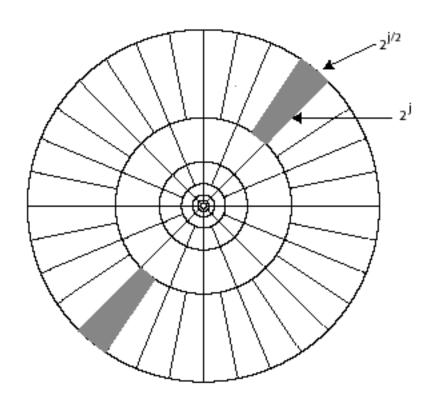
#orientations =
$$1/\sqrt{\text{scale}}$$

• Close to optimal for functions with singularities on C²-curves:

$$||m - \tilde{m}_m^{\text{improved wavelet}}||_2 \quad C \cdot m^{-2} (\log m)^3$$

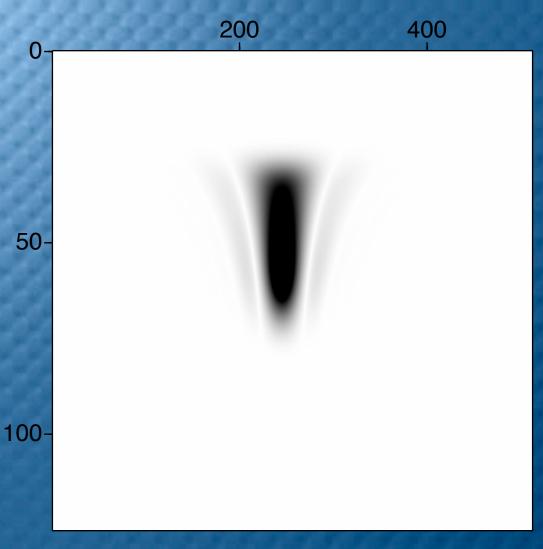
Why curvelets

$$\mathbf{W}_j = \{ \zeta, \quad 2^j \le |\zeta| \le 2^{j+1}, \, |\theta - \theta_J| \le \pi \cdot 2^{\lfloor j/2 \rfloor} \}$$



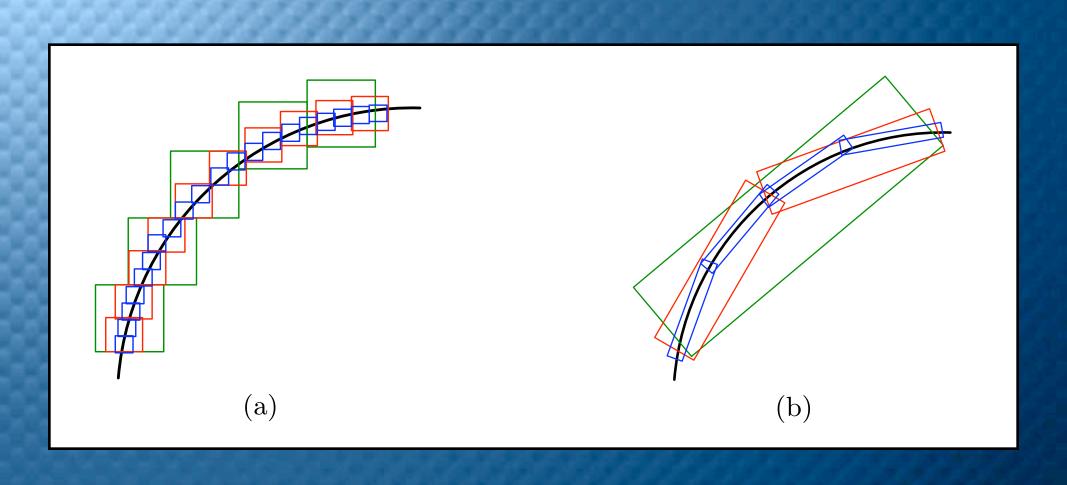
second dyadic partitioning

Why curvelets



Curvelet in FK-dom☐
n

Approximation rates



Other domains

Most techniques are global:

Non-adaptive:

- FFT
- Radon

Adaptive:

- Principle & Independent components
- SVD & KL

Approximation rates

Fourier/SVD/KL

$$||f - \tilde{f}_m^F|| \propto m^{-1/2}, \ m \to \infty$$

Wavelet

$$||f - \tilde{f}_m^W|| \propto m^{-1}, \ m \to \infty$$

Optimal data adaptive

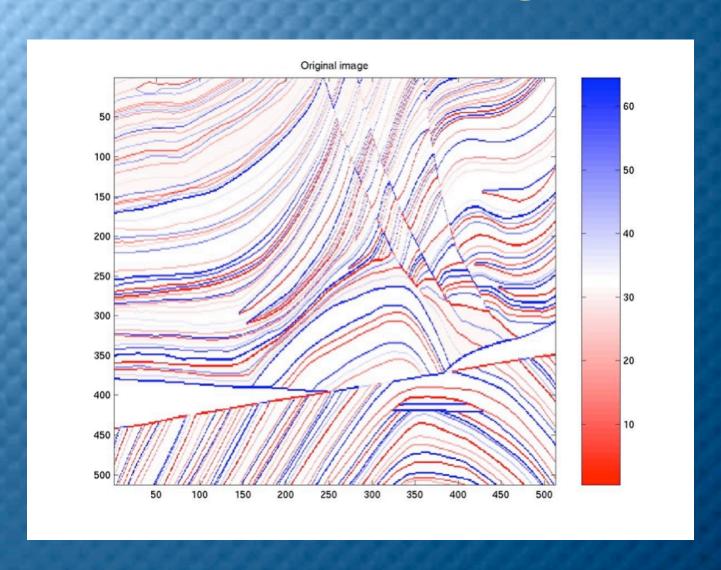
$$||f - \tilde{f}_m^A|| \propto m^{-2}, \ m \to \infty$$

Close to optimal Curvelet

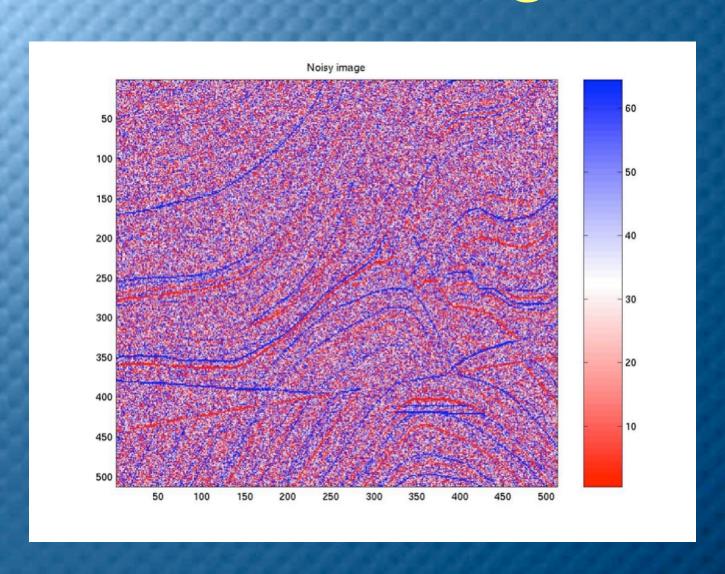
$$||f - \tilde{f}_m^C|| \le C \cdot m^{-2} (\log m)^3, \ m \to \infty$$

Gain orders of magnitude ... that's ruler of the game

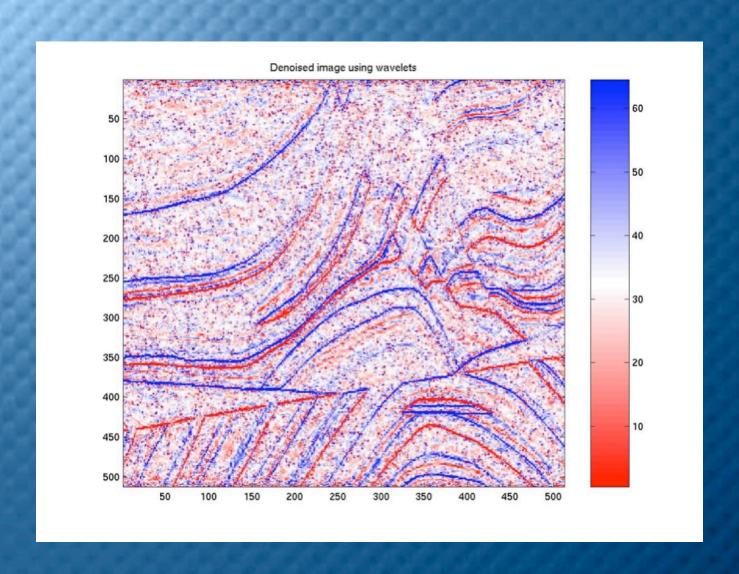
Denoising



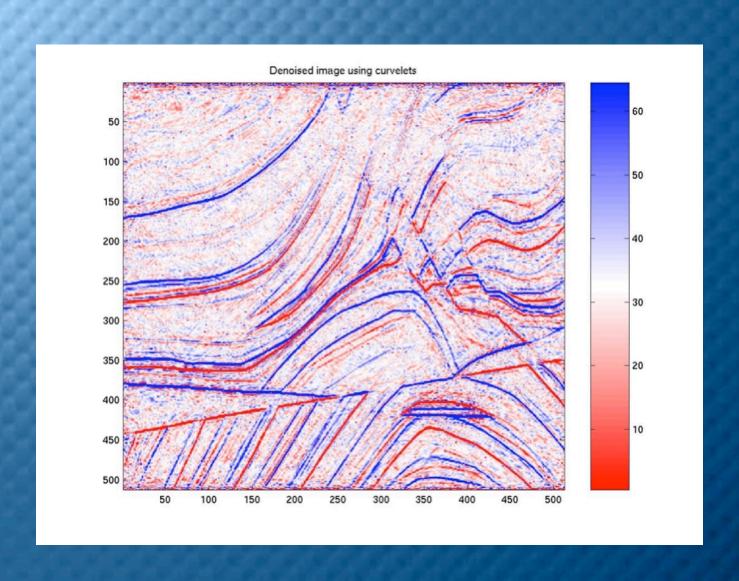
Denoising



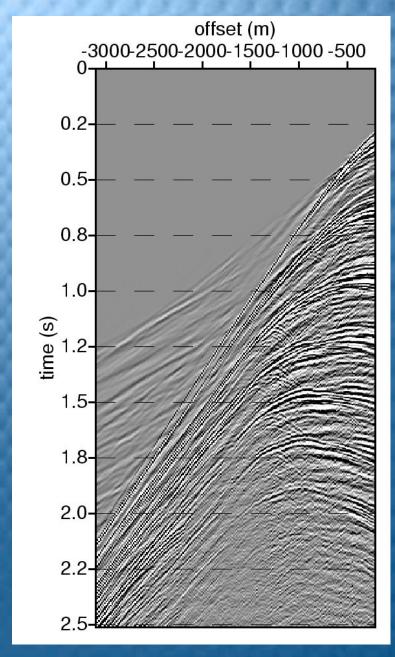
Wavelets



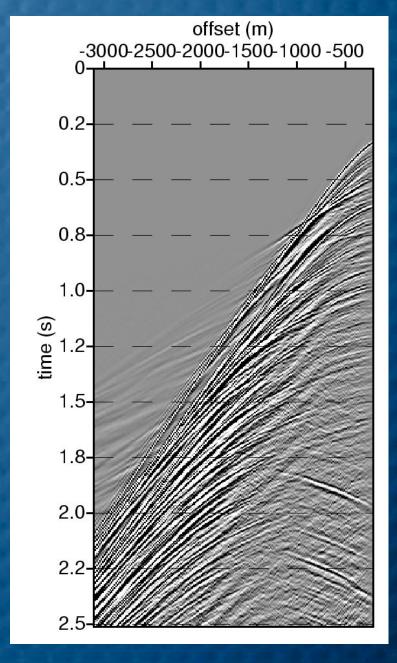
Curvelets



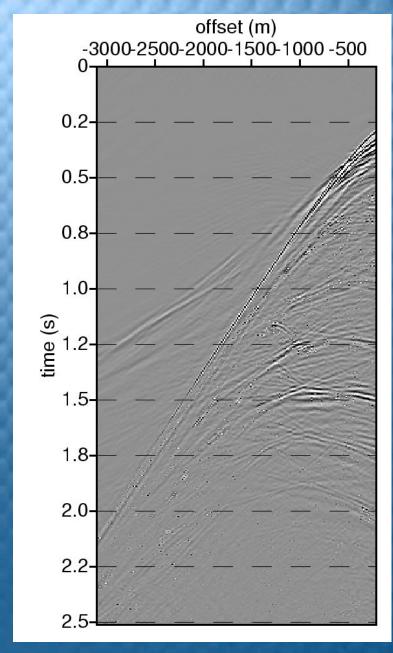
Multiple suppression with curvelets



Input with multiples

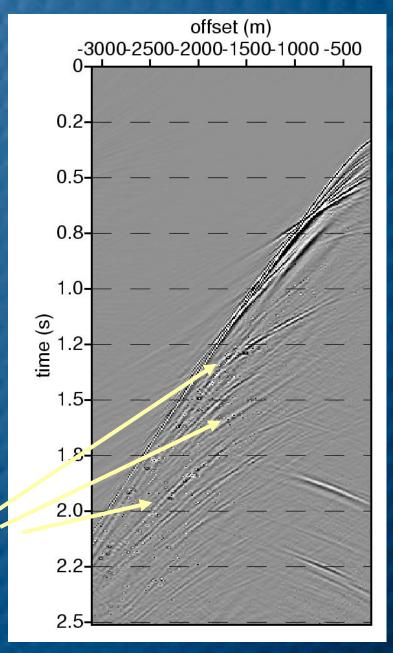


Multiple suppression with curvelets



Output curvelet filtering with stronger threshold

Preserved primaries



What did we do?

Used

$$\hat{\mathbf{m}} = \mathbf{B}^{\dagger} \mathbf{\Theta}_{\lambda \Gamma} \left(\mathbf{B} \mathbf{d} \right) \text{ with } \Gamma = \left| \mathbf{B} \mathbf{n} \right|$$

to denoise

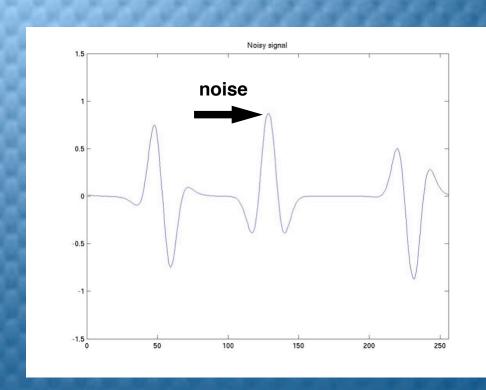
$$\frac{1}{d} = m + \frac{\text{col. noise}}{n}$$

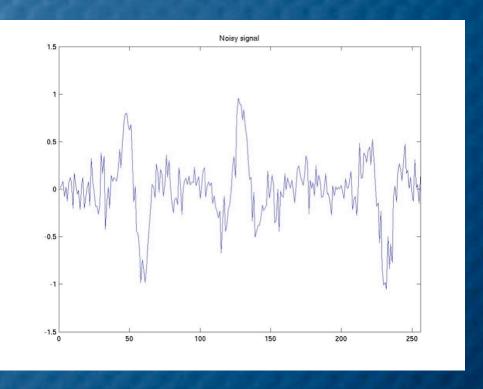
with a simple *mute* with λ control parameter.

Some theory

- **☆** Unconditional bases:
 - norm always shrinks when shrinking coef.
- ★ Denoising by minimax estimation:
 - diagonal thresholding (non-linear)
- **Extension** to colored noise:
 - almost diagonalizes Covariance

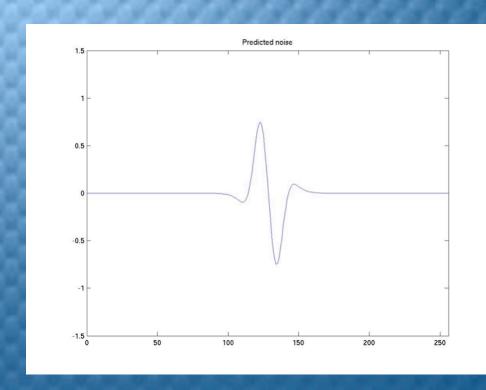
Ideal edge-preserving tool for seismic processing.

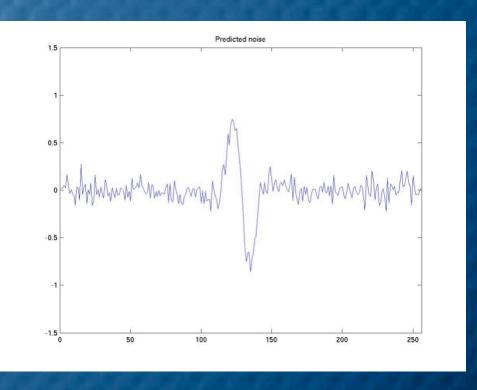




signal + coherent noise

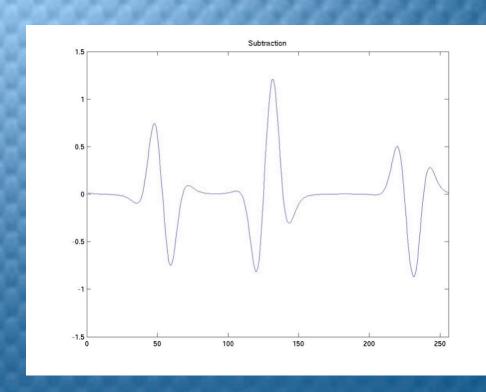
signal + coherent & incoherent noise

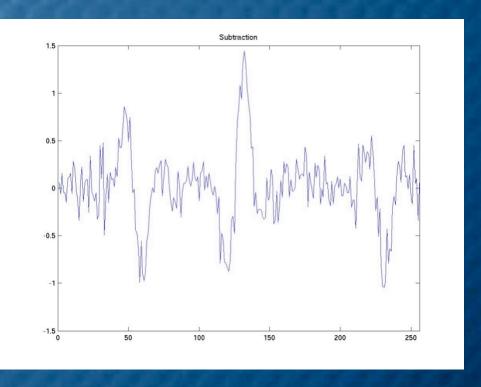




'wrongly' predicted noise

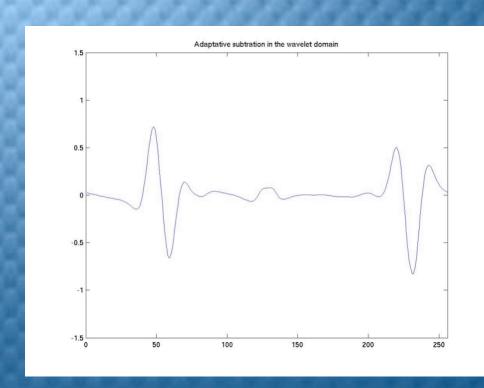
'wrongly' noisy predicted noise

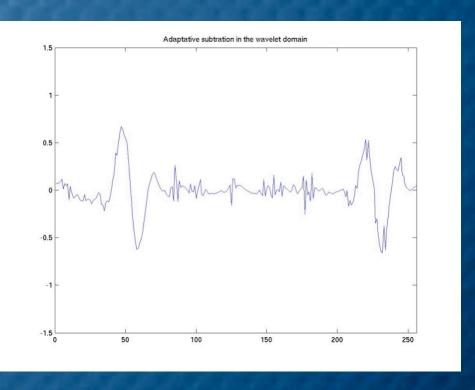




noise-free subtraction

noisy subtraction





noise-free adaptive subtraction

noisy adaptive subtraction

Works because wavelets are

- - accounts for bulk of the phase
- local in frequency
 - adapts to amplitude spectrum

Adds robustness to the equation ...

Minimax estimation

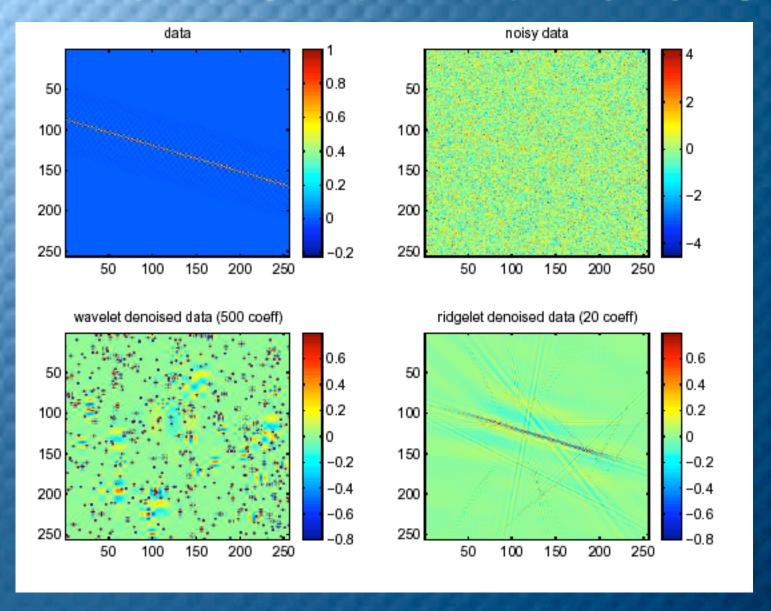
$$\hat{\mathbf{m}} = \mathbf{B}^{\dagger} \Theta_t \left(\mathbf{Bd} \right)$$

- approximates minimax, minimizes max. risk without prior info
- Bayes for 'least favorable' prior
- preserves edges
- optimal/unconditional basis functions

Wavelets

- Represent **piece-wise smooth** functions at "**no**" additional cost.
- Do not have to know where the singularities are.
- Only good for point-scatterers or horizon/vertically-aligned reflectors.

Directional wavelets



Non-linear estimation

Reformulate

$$\mathbf{\hat{m}} : \min_{\mathbf{m}} \frac{1}{2} \|\mathbf{d} - \mathbf{m}\|_2^2$$

into

$$\hat{\tilde{\mathbf{m}}} : \min_{\tilde{\mathbf{m}}} \frac{1}{2} \|\tilde{\mathbf{d}} - \tilde{\mathbf{m}}\|_2^2 + \lambda^2 \|\tilde{\mathbf{m}}\|_p$$

with

$$\tilde{\mathbf{m}} \triangleq \mathbf{Bm} \text{ and } \tilde{\mathbf{d}} \triangleq \mathbf{Bd}$$

Non-linear estimation

Hard thresholding for p=0:

$$\mathbf{\Theta}_{\lambda}^{h}\left(\tilde{\mathbf{d}}\right) \triangleq \begin{cases} \tilde{\mathbf{d}} & \text{if } |\tilde{\mathbf{d}}| > \lambda \\ 0 & \text{if } |\tilde{\mathbf{d}}| \leq \lambda \end{cases}$$

Soft thresholding for p=1:

$$\mathbf{\Theta}_{\lambda}^{s} \left(\tilde{\mathbf{d}} \right) \triangleq \begin{cases} \operatorname{sign}(\tilde{\mathbf{d}})(|\tilde{\mathbf{d}}| - \lambda)_{+} & \text{if } |\tilde{\mathbf{d}}| > \lambda \\ 0 & \text{if } |\tilde{\mathbf{d}}| \le \lambda \end{cases}$$

Adaptive subtraction

Adaptive subtraction by matched filter:

 ${
m denoised}$

$$\begin{array}{c|c} : \min = \| \underbrace{\mathbf{d}}_{\text{noisy data}} - \\ \end{array}$$

- residue is the denoised data
- risk of over fitting

May loose primary reflection events ...

Non-linear adaptive subtraction

Extend to colored noise:

$$d$$
 = m + n

noise-free

Solve

$$\hat{\mathbf{m}} : \min_{\mathbf{m}} \frac{1}{2} \| \mathbf{C}_n^{-1/2} (\mathbf{d} - \mathbf{m}) \|_2^2$$

with

$$\mathbf{C}_n \triangleq \mathbf{E}\{\mathbf{n}\mathbf{n}^T\}$$

Non-linear adaptive subtraction

Recast in Curvelet domain:

$$\hat{\tilde{\mathbf{m}}} : \min_{\tilde{\mathbf{m}}} \frac{1}{2} \| \mathbf{C}_{\tilde{n}}^{-1/2} \left(\tilde{\mathbf{d}} - \tilde{\mathbf{m}} \right) \|_{2}^{2} + \lambda^{2} \| \tilde{\mathbf{m}} \|_{p}$$

Use unconditional-basis property:

$$\mathbf{C}_{\tilde{n}} \triangleq \mathbf{E}\{\tilde{\mathbf{n}}\tilde{\mathbf{n}}^T\} \approx \operatorname{diag}\left(\operatorname{diag}\left(\mathbf{C}_{\tilde{n}}\right)\right) \triangleq \Gamma^2$$

'Challenge' to find the Γ's

Non-linear adaptive subtraction

Solve

$$\hat{\tilde{\mathbf{m}}} : \min_{\tilde{\mathbf{m}}} \frac{1}{2} \|\mathbf{\Gamma}^{-1} \left(\tilde{\mathbf{d}} - \tilde{\mathbf{m}} \right) \|_{2}^{2} + \lambda^{2} \|\tilde{\mathbf{m}}\|_{p}$$

can be written as

$$\hat{\mathbf{m}} = \mathbf{B}^\dagger \mathbf{\Gamma} \Theta_\lambda \left(\mathbf{\Gamma}^{-1} \mathbf{B} \mathbf{d}
ight) = \mathbf{B}^\dagger \Theta_{oldsymbol{\lambda} \mathbf{\Gamma}} \left(\mathbf{ ilde{d}}
ight).$$

No matched filter required!

Noise prediction

Model or predict noise and set

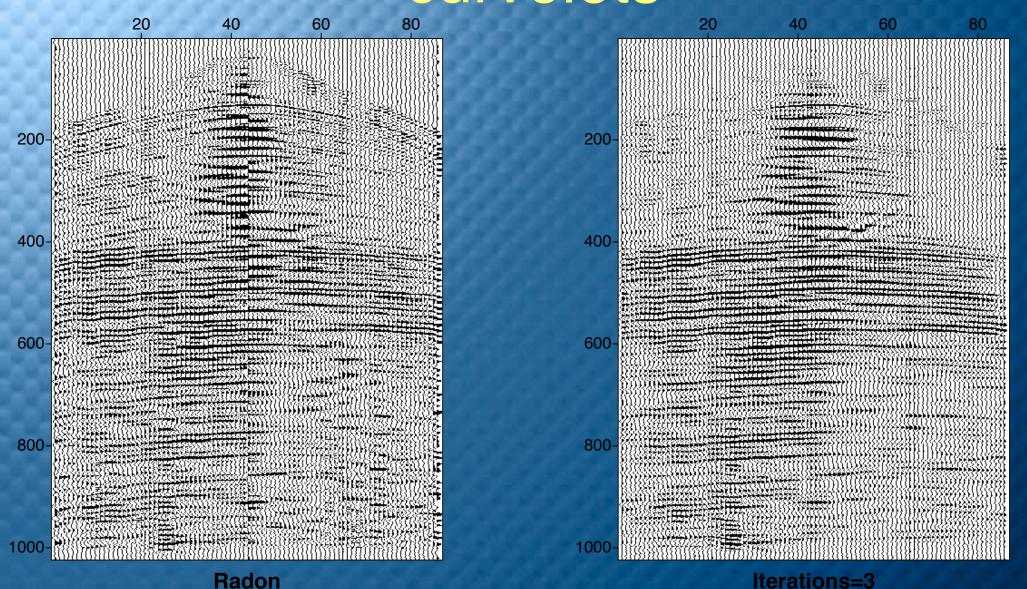
 $\Gamma = |\mathrm{Bn}|$ with n predicted noise

- ground roll, multiples, 4-D vintages
- conventional techniques (e.g. Radon)

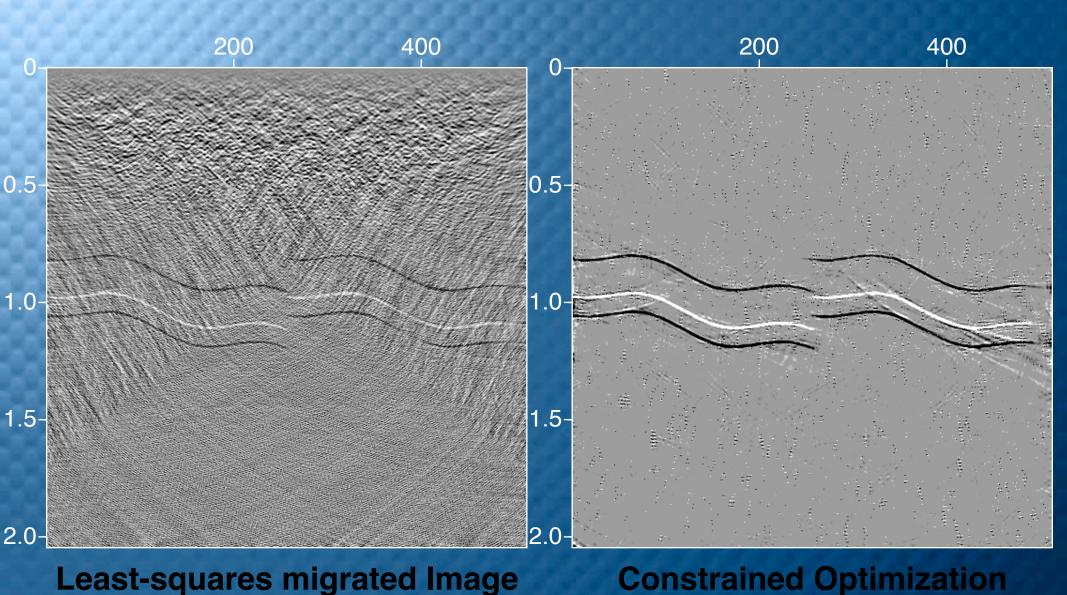
Monte-Carlo sample diag. covariance

migration

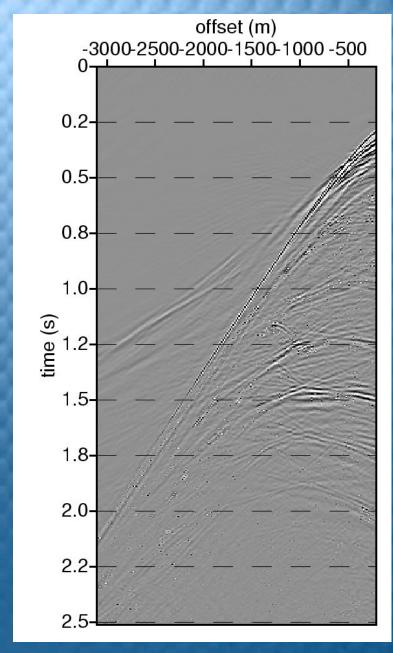
Ground-roll removal with curvelets



Imaging with Curvelets

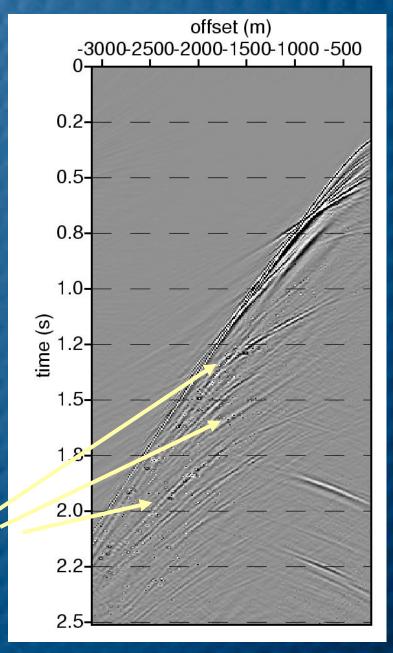


Multiple suppression with curvelets



Output curvelet filtering with stronger threshold

Preserved primaries



After thresholding

- remove artifacts & 'miss fires'
- normal operator (inversion)

Impose additional penalty functional

- prior information
- sparseness & continuity

Defining the right norm is crucial ...

Formulate constrained optimization:

$$\hat{\mathbf{m}}: \min_{m} J(\mathbf{m}) \quad \text{s.t.} \quad |\tilde{\mathbf{m}} - \hat{\tilde{\mathbf{m}}}_{0}|_{\mu} \leq \mathbf{e}_{\mu}, \quad \forall \mu$$

with

$$\hat{\mathbf{m}}_0 = \mathbf{B}^\dagger \Theta_{oldsymbol{\lambda}oldsymbol{\Gamma}} \left(ilde{\mathbf{d}}
ight)$$

and with e_{μ} threshold and noisedependent *tolerance* on curvelet coeff.

Set tolerances

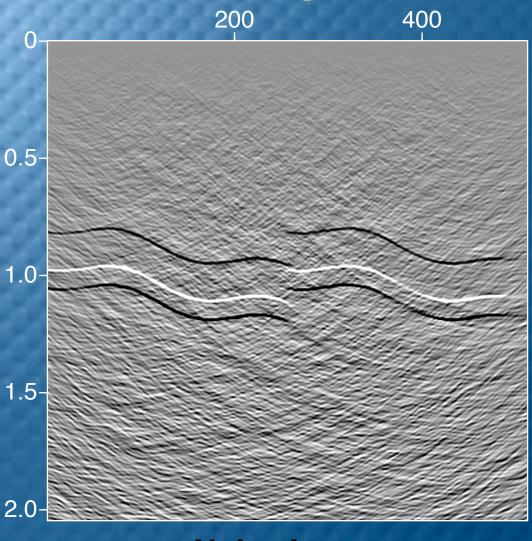
$$\mathbf{e}_{\mu} = egin{cases} \Gamma_{\mu} & ext{if} & |\mathbf{\hat{\tilde{m}}}_{0}|_{\mu} & \geq & |\lambda\Gamma|_{\mu} \ oldsymbol{\lambda}\Gamma_{\mu} & ext{if} & |\mathbf{\hat{\tilde{m}}}_{0}|_{\mu} & < & |\lambda\Gamma|_{\mu} \end{cases}$$

with \Box defining the confidence interval, e.g $\Box = 3$ corresponds to 95 %.

Constrained optimization problem:

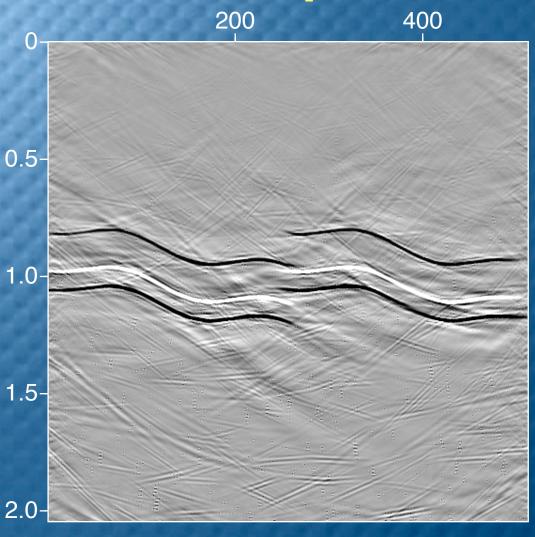
- Uses augmented Lagrangian (Nocedal and Wright 2001)
- ★ L1-penalty function
- ightharpoonup Initial Lagrangian multipliers given by gradient of \hat{m}_0
- ★ Uses Steepest Decent and line search

Examples 200 400



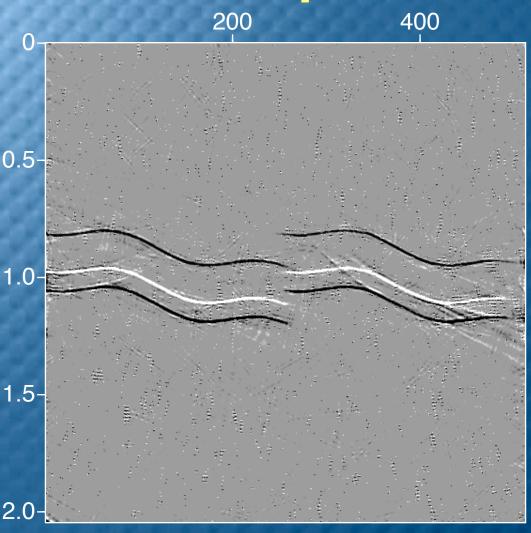
Noisy Image

Examples 200 400



Denoised after Thresholding

Examples 200 400



Constrained Optimization

Applications

Presented a framework that

- removes (coherent) noise via adaptive subtraction:
 - Ground-roll & Multiple removal (Thursday)
 - Compute 4-D difference Cubes (Wednesday)
- improves imaging & inversion:
 - sparseness constrained imaging (next & Thursday)
- * ample opportunity to expand!

Conclusions

- Succeeded in partly full filling our "dream".
- Devised a robust estimation method relatively insensitive to local phase.
- Right norm is an important & open problem.
 - exploit redundancy seismic data
 - function spaces & learning functionals
- So far focussed on 'simple denoising' let's include an operator

Acknowledgements

Candes & Donoho for making their Curvelet code available.

Partially supported by a NSERC Grant.

