CRMN Method for Solving Time-Harmonic Wave Equation

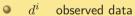
Rafael Lago, Art Petrenko, Zhilong Fang, Felix Herrmann

Copper Mountain, April 10, 2014

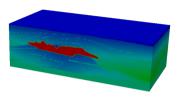
Frequency Domain Full Waveform Inversion Overview

Define Full Waveform Inversion as

$$\min_{m \in \mathcal{A}} \Phi(m) = \sum_{i=1}^{n_s} \left\| d^i - u^i \right\|_W.$$

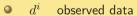


- ullet u^i (approximated) computed data
- m Earth parameters; what we are trying to invert!

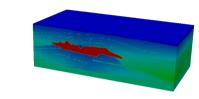


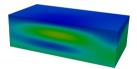
Define Full Waveform Inversion as

$$\min_{m \in \mathcal{A}} \Phi(m) = \sum_{i=1}^{n_s} \left\| d^i - u^i \right\|_W.$$



- ullet u^i (approximated) computed data
- m Earth parameters; what we are trying to invert!

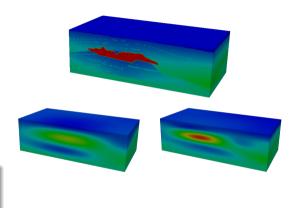




Define Full Waveform Inversion as

$$\min_{m \in \mathcal{A}} \Phi(m) = \sum_{i=1}^{n_s} \left\| d^i - u^i \right\|_W.$$

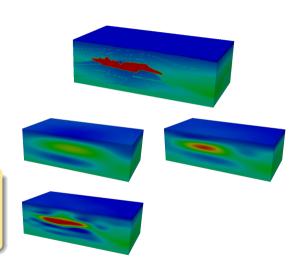
- ullet observed data
- \circ u^i (approximated) computed data
- m Earth parameters; what we are trying to invert!



Define Full Waveform Inversion as

$$\min_{m \in \mathcal{A}} \Phi(m) = \sum_{i=1}^{n_s} \left\| d^i - u^i \right\|_W.$$

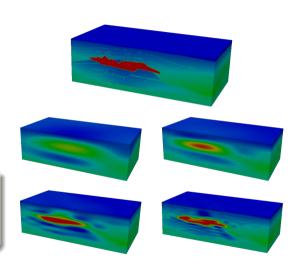
- ullet u^i (approximated) computed data
- m Earth parameters; what we are trying to invert!



Define Full Waveform Inversion as

$$\min_{m \in \mathcal{A}} \Phi(m) = \sum_{i=1}^{n_s} \left\| d^i - u^i \right\|_W.$$

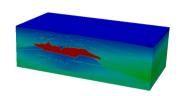
- ullet observed data
- ullet u^i (approximated) computed data
- m Earth parameters; what we are trying to invert!



Forward Modelling - Overview

Define forward problem as

$$u^i = P_r A^{-1}(m) q^i$$



- ullet A(m) operator governing the physics of Earth
- \circ q^i source
- ullet Earth parameters; what we are trying to invert!
- $lacktriangleq P_r$ restricts the computed data to the receivers

Backward Modelling - Overview

Define backward problem as

$$w^{i} = A^{-H}(m)P_{r}^{H}(d^{i} - u^{i}).$$

Then

$$\nabla \Phi(m) = \sum_{i}^{n_s} \mathcal{R} \left\{ (u^i)^T \left[\frac{\partial A}{\partial m} \right]^T w^i \right\}.$$

- ullet A(m) operator governing the physics of Earth
 - d^i observed data
- ullet simulated data
- ullet Earth parameters; what we are trying to invert!

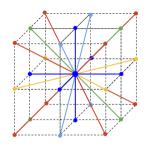
Frequency Domain Modelling - Overview

Isotropic acoustic wave progation is described by the Helmholtz Equation:

$$\Delta u - \left(\frac{2\pi f}{v}\right)^2 u = q.$$

We need absorbing boundary conditions to simulate infinite domain!!

- v(x, y, z) velocity of propagation of the waves
- Yelds very large sparse matrices when discretized
- Unsymmetric, non-Hermitian no special property!



27-points second-order stencil [Operto et al., 2007]

Frugal FWI Overview

Gradient-Descent with Errors

Let

$$\nabla \tilde{\Phi}(m_k) = \nabla \Phi(m_k) + e_k$$

for some **error** e_k . Then, for **strongly convex** problems:

$$\Phi(m_k) - \Phi(m_*) < a_k(\Phi(m_0) - \Phi(m_*))$$

$$a_k = max \left\{ c^k, ||e_k||_2^2 \right\}, \qquad 0 \le c \le 1$$

where c is the condition number of the problem.

[Friedlander and Schmidt, 2012]

Frugal FWI - Source Subsampling

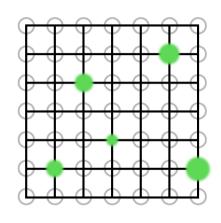
$$\tilde{\Phi}(m) = \sum_{i \in \mathcal{I}_k}^{b_k} \left\| d^i - u^i \right\|_W$$

$$\mathcal{I}_k \subset \left\{1, 2, ..., n_s\right\}, \mathcal{I}_k^\# = b_k$$

 \mathcal{I}_k is chosen at random without replacement. The expected error is given by

$$\|e_k\|_2 \propto \sqrt{\frac{1}{b_k} - \frac{1}{n_s}}$$

$$b_k \sim \min\left\{ \left(\epsilon^k + \frac{1}{n_s} \right)^{-1}, n_s \right\}.$$



[Friedlander and Schmidt, 2012] and [Herrmann et al., 2013]

Frugal FWI - Approximating u^i and w^i

Approximate cost function as

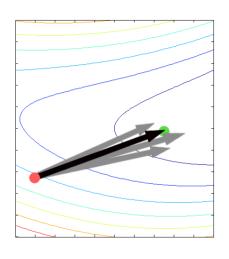
$$\left| \Phi(m, \alpha^k \epsilon) - \Phi(m, \alpha^{k+1} \epsilon) \right| \le \eta \Phi(m, \alpha^{k+1} \epsilon)$$

by approximating the forward problem as $u_{\varepsilon}^{i}\approx P_{r}A^{-1}(m)q^{i}$

(analogously for gradient computation)

Chosen Parameters

- $\eta = 5 \times 10^{-2}$



[Herrmann et al., 2013]

CGMN, CRMN & Kaczmarz Sweep

Kaczmarz (Double) Sweep - Overview

$$u_{i+1} = u_i + \frac{\gamma(q_i - a_i^H u_i)a_i}{\|a_i\|_2^2}$$

- \circ q_i ith element of q
- \bullet a_i ith row of A as a column vector
- \circ γ relaxation parameter $\in (0,2)$

Kaczmarz sweeps **guarantees convergence** in a finite (possibly large) number of steps.

Kaczmarz (Double) Sweep - Overview

$$Q = Q_1 Q_2 \dots Q_N Q_N Q_{N-1} \dots Q_1 \qquad Q_i = I - \frac{\gamma}{\|a_i\|_2^2} a_i a_i^H$$
$$u := Qu + Rq \qquad \Longrightarrow \qquad (I - Q)u = Rq$$

- Q is symmetric positive definite
- We can use CG to solve this system
- ullet Neither Q nor R need to be computed in practice
- Equivalent to using CG on the normal equations, preconditioned by SSOR

1 (CGMN).

4

5

6

- $1 p_0 = r_0 = dkswp(A, u_0, b, \gamma) u_0;$
- 2 while not converged do

$$q_k = p_k - dkswp(A, p_k, 0, \gamma);$$

$$\alpha_k = \langle r_k, r_k \rangle / \langle p_k, q_k \rangle;$$

$$u_{k+1} = u_k + \alpha_k r_k;$$

$$r_{k+1} = r_k - \alpha_k q_k$$
;

$$\beta_k = \langle r_{k+1}, r_{k+1} \rangle / \langle r_k, r_k \rangle$$
;

$$p_{k+1} = r_k + \beta_k p_k;$$

$$k = k + 1$$
:

10 end while

Very low memory cost

- Very simple implementation
- Suitable for any matrix A (even nonsquare)

On CG:[Hestenes and Stiefel, 1952], on CGMN: [Björck and Elfving, 1979]

2 (CRMN).

10 end while

3

4

5

6

7

8

while not converged do

$$Ar_{k} := r_{k} - dkswp(A, r_{k}, 0, \gamma);$$

$$\beta_{k} = \langle r_{k}, Ar_{k} \rangle / \langle r_{k-1}, Ar_{k-1} \rangle;$$

$$p_{k} = r_{k} + \beta_{k}p_{k-1};$$

$$Ap_{k} = Ar_{k} + \beta_{k}Ap_{k-1};$$

$$\alpha_{k} = \langle r_{k}, Ar_{k} \rangle / \langle Ap_{k}, Ap_{k} \rangle;$$

$$u_{k+1} = u_{k} + \alpha_{k}r_{k};$$

$$r_{k+1} = r_{k} - \alpha_{k}q_{k};$$

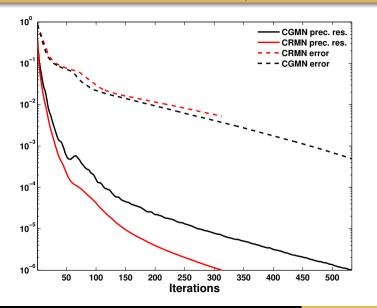
$$k = k + 1;$$

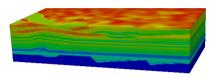
- Very low memory cost
- One extra vector storage
- One extra inner product
- Minimal residual properties

On CR: [Stiefel, 1955], comparisons:[Fong and Saunders, 2012, Eiermann and Ernst, 2001]

Numerical Experiment

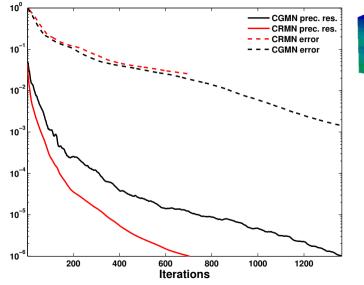
Forward Modeling - SEG/EAGE Overthrust

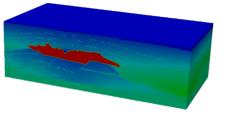




- $20.1 \times 20.1 \times 4.7 \ km^3$
- \bullet 100m grid spacing
- \circ $\mathcal{O}(1.9 \times 10^6)$ points
- \bullet 3Hz, $n_{\lambda}=7.2$
- $v_{min} = 2179m/s$,
- $v_{max} = 6000m/s$
- PML: 15 points

Forward Modeling - SEG/EAGE Salt Dome





- \bullet 4 × 4 × 1.2 km^3
- 20m grid spacing
- $\mathcal{O}(2.5 \times 10^6)$ points
- 3Hz, $n_{\lambda} = 22.7$
- $v_{min} = 1365 m/s$
- $v_{max} = 4991m/s$
- PML: 15 points

The True Stopping Criterion

CGMN/CRMN stops when
$$\dfrac{\left\|r_{j}\right\|_{2}}{\left\|r_{0}\right\|_{2}}$$

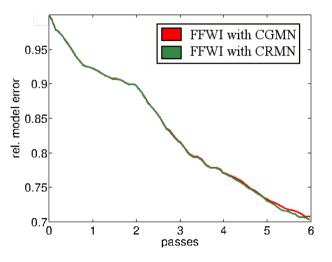
For k satisfying

$$\left| \Phi(m, \alpha^k \epsilon) - \Phi(m, \alpha^{k+1} \epsilon) \right| \le \eta \Phi(m, \alpha^{k+1} \epsilon)$$

Chosen Parameters

- $\begin{array}{lll} \bullet & \alpha & = 0.5 \\ \bullet & \epsilon & = 10^{-2} \\ \bullet & {\pmb{\eta}} & = 5 \times 10^{-2} \end{array}$

FFWI-CGMN vs. FFWI-CRMN - Overthrust



	FFWI	FFWI	
	with	with	Speedup
	CGMN	CRMN	
4~Hz	23,403	19,846	18%
6~Hz	30,189	24,387	24%
8~Hz	34,724	26,265	32%
Total	88,316	70,498	25%

Table: Total number of iterations of CGMN and CRMN during the inversion for each frequency slice

Conclusions & Future Work

Conclusions & Future Work

- Smaller error computed by CGMN does not bring any improvement to Frugal FWI
- CRMN seems to be a feasible option
- Does the performance gain of CRMN grow with the frequency?
- Does the same result hold for other kind of PDEs?
- Does this behaviour holds for other models? (no, not always!)

Questions?

Björck, Å. and Elfving, T. (1979).

Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations.

BIT Numerical Mathematics, 19(2):145–163.

Eiermann, M. and Ernst, O. G. (2001).

Geometric aspects in the theory of Krylov subspace methods.

Acta Numerica, 10(10):251-312.

Fong, D. and Saunders, M. (2012).

CG versus MINRES: An empirical comparison.

SQU Journal for Science, 17:1:44-62.

Friedlander, M. P. and Schmidt, M. (2012).

Hybrid deterministic-stochastic methods for data fitting.

SIAM Journal on Scientific Computing, 34(3):A1380–A1405.

Gordon, D. and Gordon, R. (2005).

Component-averaged row projections: A robust, block-parallel scheme for sparse linear systems.

SIAM J. Scientific Computing, 27(3):1092-1117.

CARP-CG: A robust and efficient parallel solver for linear systems, applied to strongly convection dominated pdes.

Parallel Computing, 36(9):495-515.

Parallel solution of high frequency Helmholtz equations using high order finite difference schemes.

Applied Mathematics and Computation, 218(21):10737-10754.

Herrmann, F. J., Calvert, A. J., Hanlon, I., Javanmehri, M., Kumar, R., van Leeuwen, T., Li, X., Smithyman, B., Takougang, E. T., and Wason, H. (2013).

Frugal full-waveform inversion: from theory to a practical algorithm.

The Leading Edge, 32(9):1082–1092.

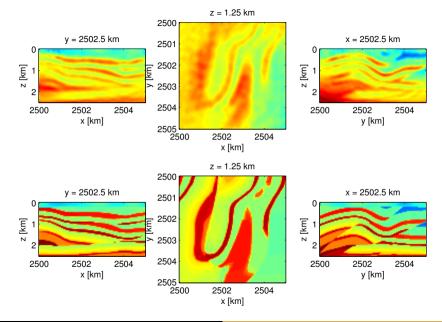
Hestenes, M. R. and Stiefel, E. (1952).

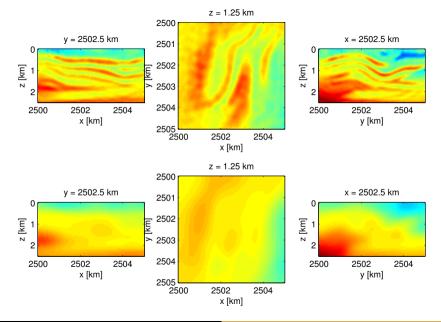
Methods of conjugate gradients for solving linear systems.

Operto, S., Virieux, J., Amestoy, P., L'Excellent, J.-Y., Giraud, L., and Ali, H. B. H. (2007). 3d finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study.

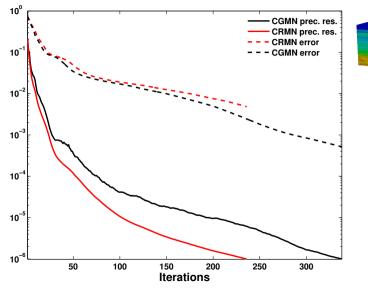
Stiefel, E. (1955).

Relaxationsmethoden bester strategie zur losung linearer gleichungssystem.



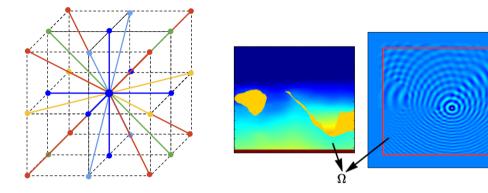


Forward Modeling - BG Compass



- $10 \times 10 \times 2 \ km^3$
- \bullet 75m grid spacing
- \circ $\mathcal{O}(4.9 \times 10^5)$ points
- 3Hz, $n_{\lambda} = 6.3$
- $v_{min} = 1420m/s$
- $v_{max} = 4650m/s$
- PML: 15 points

Frequency Modelling - Finite Difference Discretization

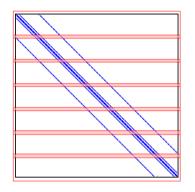


27-points parsimonious staggered second-order stencil

Perfectly Matched Layer (PML) boundary condition

[Operto et al., 2007]

Parallelization - Component Averaging Row Projection



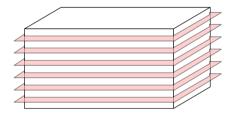


Figure: Illustration of the parallelization of CGMN (respectively CRMN), resulting on CARPCG method (respectively CARPCR)

[Gordon and Gordon, 2005][Gordon and Gordon, 2010][Gordon and Gordon, 2012]